

LHC Injectors Upgrade

LHC Injectors Upgrade

Slip stacking in the SPS

T. Argyropoulos, T. Bohl, E. Shaposhnikova

LIU Day 2014

11 April 2014

Outline

□ Slip stacking procedure in the SPS

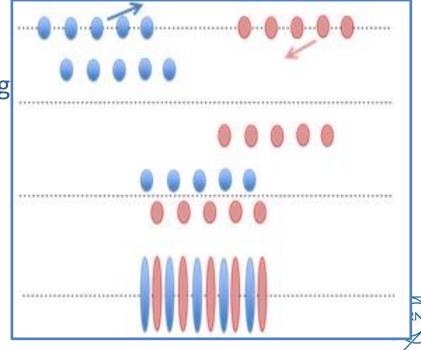
Basic beam dynamics concept

- Slip stacking simulations
 - Energy consideration
 - Initial conditions
 - Designed RF programs
 - Recapture optimization
- □ Beam parameters before extraction
 - Implementation and tests

G Summary

T. Argyropoulos, LIU Day 2014

Motivation


- Increase the peak luminosity for the HL-LHC (6-7×10²⁷ cm⁻² s⁻¹ at 7 ZTeV requested by the ALICE experiment)
 (D.Manglunki, RLIUP, Archamps 2013)
- Increase the number of bunches in the LHC → decrease the bunch spacing (from 100 ns to 50 ns)
- Bunch-splitting or batch compression difficult to perform in the PS
- Alternative: momentum slip-stacking in the SPS (R. Garoby)
- Potential feasibility based on
 - Large bandwidth of the SPS 200 MHz Travelling Wave RF system
 - Relatively small initial emittances
 - Low ion intensity (no need of FB, FF, 800 MHz, ...)

Procedure

Two super-batches injected into the SPS:

- > **PS batch**: 4 bunches spaced by 100 ns
- 6 PS batches injected into the SPS (batch space of 100ns)
- > SPS super-batch: 24 bunches spaced by 100 ns (2.3 μ s)
- □ The two super-batches are captured by the two pairs of 200 MHz TWC → independent beam controls are needed
- f_{RF} variation to accelerate the first batch and decelerate the second
- Let the batches slip
- Bring them back by decelerating the first and accelerating the second
- Once the bunches are interleaved they are recaptured at average RF frequency

Basic beam dynamics concept

The total voltage experienced by both batches

 $V_{tot} = V_0 \sin(\omega_{RF}t - \delta\omega t) + V_0 \sin(\omega_{RF}t + \delta\omega t) \Leftrightarrow$ $V_{tot} = 2V_0 \sin(\omega_{RF} t) \cos(\delta \omega t)$

 V_0 : voltage amplitude of each RF system ω_{RF} : RF angular frequency on central orbit **δω:** RF angular frequency offset from $ω_{RF}$

motion of the bunches is disturbed from the other RF system

 \Box At sufficiently large $\delta \omega$ this excitation averages within a synchrotron oscillation period \rightarrow bunches practically independent

➡ For constant energy separation and equal RF voltage amplitudes V_0

 $f_{s0} = f_{rev} \sqrt{h|\eta| eV_0 / 2\pi\beta^2 E} \rightarrow \text{small amplitude synchrotron frequency}$ $H_B = \sqrt{2\beta^2 \mathrm{E}eV_0/h|\eta|\pi}$ \rightarrow Bucket half height $\frac{\Delta f_{rev}}{f_{rev}} = -\eta \frac{\Delta E}{\beta^2 E}$

 ΔE : Energy difference between the two beams Δf_{rev} : difference in revolution frequency between the two beams Δf_{RF} : difference in RF frequency between the two beams

Combining the three equations we get:

$$\alpha \stackrel{\text{\tiny def}}{=} \frac{\Delta f_{RF}}{f_{s0}} = 2 \frac{\Delta E}{H_B}$$

Basic beam dynamics concept

□ $\alpha = 4 \rightarrow \Delta E = 2H_B$: tangent boundaries for the two buckets → lower limit for stable motion (F. E. Mills)

- But, rapid effective emittance growth from tracking simulations
- Acceptable to hold bunches for several T_s when α ≥ 8 : space of 1 empty bucket between the two → large emittance blow-up when recaptured
- Recapture when the 2 RF Voltages are in phase → disturbed bunch shape with empty phase-space in $\Delta E = 0$

Energy consideration

Flat bottom

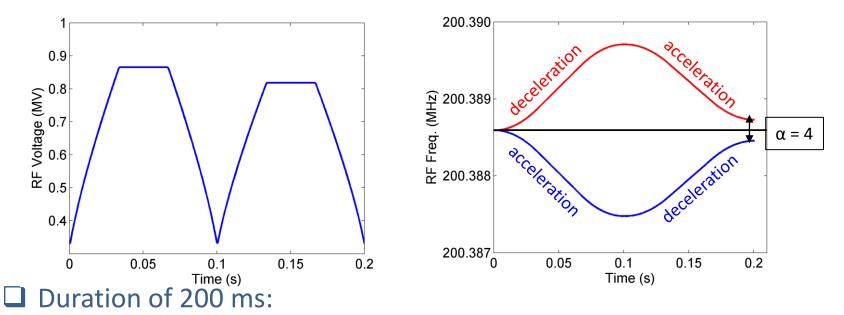
Strong effects of space charge, IBS and RF noise (observed during operation)

- Flat top
 - Extra time for filamentation is needed
 - Uncaptured beam will be transferred into the LHC

Intermediate energy plateau

- Benefits due to high energy (no IBS, space charge)
- Filamentation during the ramp to top energy
- Clean beam for the LHC

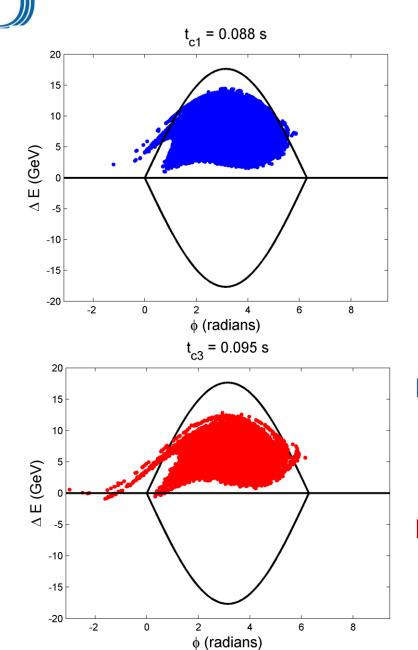
Simulations presented below were performed at 300 GeV/c (proton equivalent)

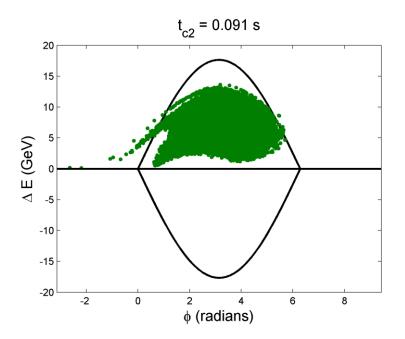

Slip stacking at 300 GeV/c (proton equivalent)

- **L**ongitudinal emittance: $\varepsilon_{I} = 0.125 \text{ eVs/A}$
- □ Initial RF Voltage: V_{RF} = 0.34 MV (filling factor in momentum of 0.9)
- Maximum momentum separation: dp/p=1.84x10⁻³ → much larger than the bucket height (0.22x10⁻³) but within the aperture limit → reduce slip time and minimize the mutual influence of the two beam during the slip

Initial conditions used in the sir	Initial conditions used in the simulations for slip-stacking						
Parameter	Symbol	Value	Units				
Lorentz factor	γ	127	-				
Slippage factor	η	3x10 ⁻³	-				
Longitudinal emittance	ε _l	0.125	eVs/A				
RF voltage amplitude	V_{RF}	0.34	MV				
Small amplitude synchrotron frequency	f_{s0}	68	Hz				
Maximum momentum separation per beam	dp/p	1.84x10 ⁻³	-				
Maximum radial displacement per beam	ΔR	6.0	mm				
Frequency offset per beam	Δf_{RF}	1116	Hz				

Designed RF programs

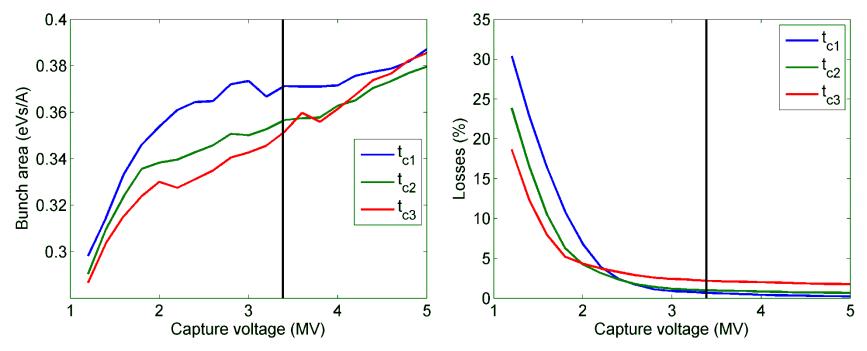

The RF programs calculated for a single RF for constant filling factor in momentum (0.9)



- fast compared to the cycle (about 50 s)
- slow enough to avoid particle losses
- □ Final energy corresponds to the case of $\alpha = 4 \rightarrow$ bunches are distorted before the end \rightarrow optimization of the capture time is needed

CERI

Capture time


- Recapture bunches when the two RF voltages are in phase shape
- While approaching each other in energy more particles are lost.

Beam capture optimization

Optimize capture voltage and time with respect to:

- Final emittance
- Particle losses

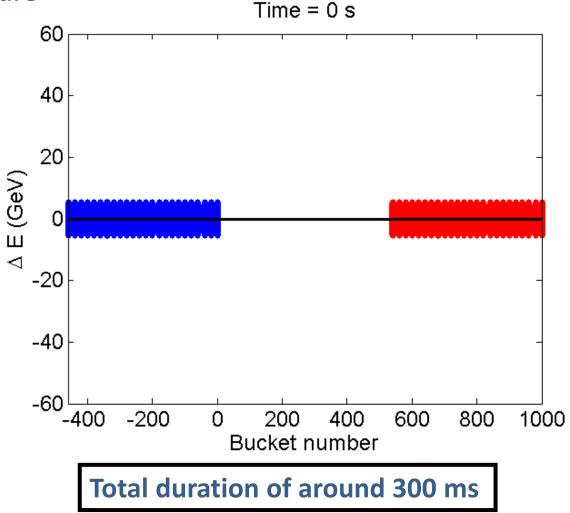
lacksim Selection based on minimizing losses ightarrow larger longitudinal emittance

Capture time: t_{c2}
 Capture voltage: 3.4 MV

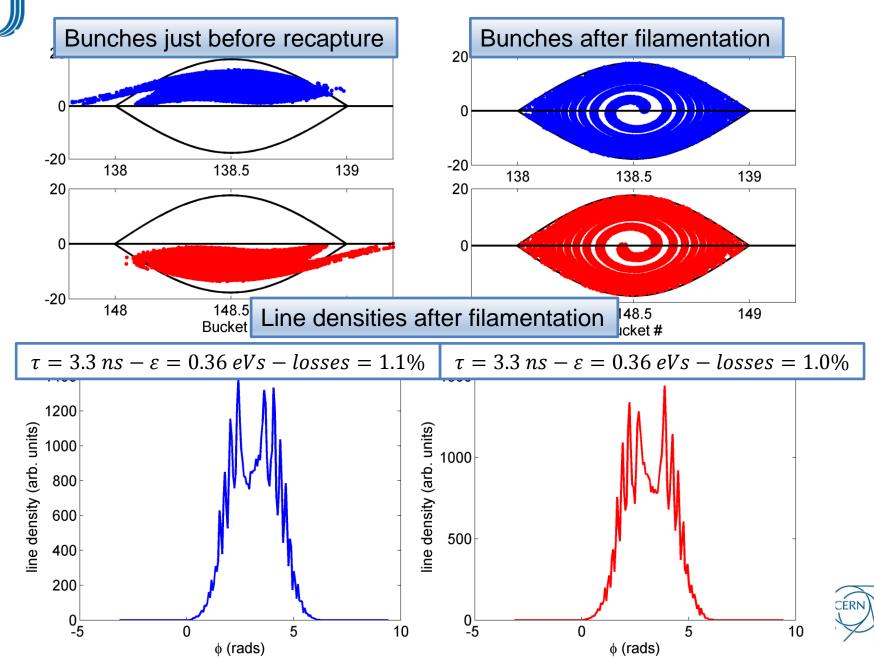
>
$$\epsilon_{\rm I} \sim 0.35 - 0.36 \, {\rm eVs/A}$$

> Losses ~ 1 - 1.5 %

Example for selected conditions

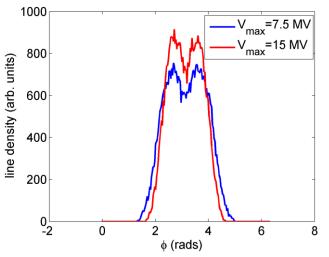


- Using the designed RF programs (**200 ms**): distance between the last bunch of each batch **d** = **2.4** μs
- Since batch length is 2.3 μ s \rightarrow very small batch spacing (T_B=100 ns)
- In reality **T**_B is **defined by the LLRF specifications**: large enough to assure that each batch is exposed only to the RF voltage of its corresponding pair of 200 MHz TWC $(T_{R} > 1.3 \mu s)$
- Extra slipping time at maximum energy separation.

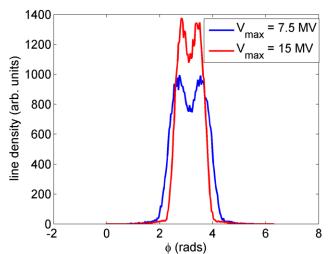

Example with $T_B = 2.7 \ \mu s$

T_B =2.7 µs large enough for RF voltage modulation \rightarrow each batch sees only the voltage of one pair of TWC during most part of the procedure

Beam parameters



Beam parameters at flat top


Accelerate the beam to top energy

Two possible schemes to provide the final bunch length at extraction

I. Adiabatic voltage increase

II. Bunch rotation

Implementation and tests

- AM and FM of the RF cavities is foreseen after LS2 (LIU TDR SPS LLRF, P. Baudrenghien, T. Bohl, G. Hagmann): individual beam and cavity controllers
- Tests can be done before only with one batch (flat top, flat bottom) to:
 - ➢ Investigate the beam life time without the phase loop (PL) → unpredicted behavior of the PL during the slip stacking procedure → might be necessary to operate without PL
 - \succ Define the aperture limitation ΔR
 - Test and optimize the designed RF programs regarding the particle losses and the final longitudinal emittance

Summary

Momentum slip-stacking in the SPS proposed as a potential way of increasing the number of bunches for the nominal I-LHC beams

- Particle simulations performed to confirm this possibility regarding the beam dynamics (no intensity effects had been included)
- Small particle losses (~1-2 %) when recapture RF voltage is high → large emittance blow-up (factor of 3) → large bunch length
- □ Can be reduced by the increase of the available RF voltage (LS2) and by bunch rotation before extraction → Acceptable beam parameters for the LHC
- □ Implementation is foreseen after LS2
- Useful tests can still be performed using only one RF system.

Summary table

- **Gimulations performed also with the Q26 optics**
 - More sensitive to IBS and space charge effects

Summary results of the slip-stacking simulations and beam parameters at extraction.

SP	Capture	Final	Losses	В	unch Lengt	h at flat top (o (ns)	
optics	Voltage (MV)	emittance (eVs/A)	Dunch consum Dunch		Bunch compr.		ו rot.	
	, , ,			V _{RF} = 7.5 MV	V _{RF} = 15 MV	V _{RF} = 7.5 MV	V _{RF} = 15 MV	
Q20	3.4	0.35 – 0.36	1 – 2	2.3	1.9	1.8	1.31	
Q26	2.0	0.35 – 0.36	1 – 2	2.0	1.7	1.41	1.05	

References

- 1. D. Manglunki, *Performance of the injectors with ions after LS1*, RLIUP, Archamps, Oct. 2013
- 2. T. Bohl, *Slip stacking of the Nominal I-LHC Beam*, Note-2013-26
- 3. E. Shaposhnikova, *Possible increase of bunch intensity in the SPS*, LIU-SPS BD WG, June 2011
- 4. D. Boussard and Y. Mizumachi. , *Production of beams with high linedensity by azimuthal combination of bunches in a synchrotron*, IEEE Trans. Nucl. Sci. Vol. NS-26 No. 3, 3623, June 1979.
- 5. T. Linnecar, *Azimuthal combination slip stacking*, Slides, SLI Meeting 2001-10-11, CERN.
- 6. R. Garoby, *RF Gymnastics in a synchrotron*, in Handbook of accelerator physics and engineering, World Scientific ed., 1999, pp 286-287.
- 7. F. E. Mills, Stability of Phase Oscillations Under Two Applied Frequencies, BNL Int. Report AADD176 (1971)
- 8. J. A. MacLachlan, *The Beam Dynamics of Slip Stacking*, FERMILAB-FN-0711, Nov. 2001
- 9. LIU TDR SPS LLRF, P. Baudrenghien, T. Bohl, G. Hagmann

