

LHC Injectors Upgrade

Outline

- The LHC beams
 - Single bunches (probe and indiv)
 - 50 and 25 ns beams (standard and BCMS)
 - Doublet beam (scrubbing)
 - 8b+4e (low e-cloud)
- Summary

- The LHC beams
 - Single bunches (probe and indiv)
 - → Achieved performance in 2013
 - 50 and 25 ns beams (standard and BCMS)
 - Doublet beam (scrubbing)
 - 8b+4e (low e-cloud)
- Summary

LHCPROBE & LHCINDIV – specs @LHC injection

	LHCPROBE	LHCINDIV
Intensity [p/b]	$5 \times 10^9 - 2 \times 10^{10}$	$2 \times 10^{10} - 3 \times 10^{11}$
Transverse emittance, 1σ [μm]	1	< 2.5
Longitudinal emittance [eVs]	0.35	0.35 – 0.5

- LHCPROBE usually below or about 10¹⁰ p/b, transverse emittance not critical
- LHCINDIV parameter range also extended in MDs to produce single bunches with up to 4.5×10^{11} p/b and/or with lower longitudinal emittances (down to 0.15 eVs) at SPS injection
 - Accelerate and extract high intensity variants for possible impedance or beambeam studies?

LHCPROBE & LHCINDIV – 2013 status

Since 2013, new production mechanism in the PSB to cover parameter range for both these beams (S. Hancock, **CERN-ATS-Note-2013-040 MD**)

- Based on longitudinal blow up (C16 voltage) during the first part of the cycle for intensity setting
- Excellent intensity shot-to-shot reproducibility preserving the 6D phase space unchanged for different intensity values

→ Baseline for post-LS1

- The LHC beams
 - Single bunches (probe and indiv)
 - 50 and 25 ns beams (standard and BCMS)
 - → Achieved performance in 2012
 - → Expected performance after LS1
 - Doublet beam (scrubbing)
 - 8b+4e (low e-cloud)
- Summary

LHC25 and LHC50 (std & BCMS) - pre-LS1 status

50 ns and 25 ns beam at the SPS extraction in 2012 (Q20)

✓ Combined wire-scans at end of SPS flat bottom (values cross-checked with LHC) and intensity measured at SPS flat top after scraping

✓ Transport through PS/SPS nearly within intensity loss and emittance blow up

budgets (except for LHC25 std)

LHC25 and LHC50 Post-LS1: Expected performance

Recover 2012 performance

Machines exposed to air, electron cloud

Potential for higher bunch intensity

- → Possibly extended reach thanks to the upgraded longitudinal feedback in the PS
- \rightarrow 25 ns up to 1.3 x 10¹¹ p/b at the SPS extraction (limited by RF power and longitudinal instabilities)

Potential for higher brightness

- → Move RF manipulations in the PS to 2.5 GeV (instead of 1.4 GeV)
 - Larger longitudinal emittance from the PSB
 - ☑ Possible thanks to PSB control of longitudinal parameters along the cycle and at extraction
 - Space charge alleviated by both longer bunches and larger momentum spread
- → Improve SPS space charge limit (for 50 ns BCMS)
 - Working point optimization for high brightness beams

SPS scrubbing in 2014/15

Beam parameters at LHC injection after LS1

Assuming:

- Transport in the PS and SPS within budgets
- Benefits from reviewed longitudinal parameters in the PSB PS transfer
- Successful SPS scrubbing after exposure to air during LS1

Summary tables

25 ns	Intensity (p/b)	Emittance (μm)
Standard	1.3 x 10 ¹¹	2.4
BCMS	1.3 x 10 ¹¹	1.3

50 ns	Intensity (p/b)	Emittance (μm)
Standard	1.7 x 10 ¹¹	1.6
BCMS	1.7 x 10 ¹¹	1.1

The LHC beams

- Single bunches (probe and indiv)
- 50 and 25 ns beams (standard and BCMS)
- Doublet beam (scrubbing)
 - → Achieved performance in 2012/13
 - → Expected performance after LS1
- 8b+4e (low e-cloud)
- Summary

Doublet beam

- Machine tests in the SPS at the end of 2012-13 run
 - ✓ Doublet production scheme at SPS injection validated
 - ✓ E-cloud enhancement experimentally demonstrated
- Production scheme
 - Injection of trains of 72 x 10ns long bunches with 1.7e11 p/doublet on unstable phase and capture in two neighboring buckets in the SPS (done)
 - Acceleration on slower ramp and extraction to LHC of 1.6e11 p/doublet (to be set up, possible beam quality degradation)
 - Should be fine in LHC → only interlocked BPMs to be checked with doublets

Doublet beam

- Machine tests in the SPS at the end of 2012-13 run
 - ✓ Doublet production scheme at SPS injection validated
 - ✓ E-cloud enhancement experimentally demonstrated
- Production scheme
 - Injection of trains of 72 x 10ns long bunches with 1.7e11 p/doublet on unstable phase and capture in two neighboring buckets in the SPS (done)
 - Acceleration on slower ramp and extraction to LHC of 1.6e11 p/doublet (to be set up, possible beam quality degradation)
 - Should be fine in LHC → only interlocked BPMs to be checked with doublets

The LHC beams

- Single bunches (probe and indiv)
- 50 and 25 ns beams (standard and BCMS)
- Doublet beam (scrubbing)
- 8b+4e (low e-cloud)
 - → Expected performance after LS1

Summary

8b+4e scheme

- Trains with 4 missing bunches every 8 bunches (H. Damerau, RLIUP)
 - Allows for larger intensity per bunch
 Is expected to reduce e-cloud effects

Production

- Std scheme \rightarrow Unbalance h = 7 \rightarrow 21 triple split into a double split, leaving empty bucket – bunch pattern 6x(8b+4e) + 8b
- BCMS \rightarrow merging and triple splitting suppressed bunch pattern 3x(8b+4e) + 8b

8b+4e scheme

- Limited to 1.8 x 10¹¹ p/b because of longitudinal instabilities in the SPS
- Brightness limited by
 - → PSB brightness for standard scheme
 - → No outstanding bottleneck for BCMS

8b+4e scheme

- Limited to 1.8 x 10¹¹ p/b because of longitudinal instabilities in the SPS
- Brightness limited by
 - → PSB brightness for standard scheme
 - → No outstanding bottleneck for BCMS

- The LHC beams
 - Single bunches (probe and indiv)
 - 50 and 25 ns beams (standard and BCMS)
 - Doublet beam (scrubbing)
 - 8b+4e (low e-cloud)

Summary

Summary

 Lots of MD time needed to produce "old" beams with new schemes and "new" beams

LHC start up and scrubbing

- LHCPROBE and LHCINDIV with new production mechanism in the PSB
- LHC50 standard
 - Up to 1.7 x 10^{11} p/b with $\epsilon_{x,y}$ =1.6 μm
- LHC25 standard
 - Up to 1.3 x 10^{11} p/b with $\epsilon_{x,y}$ =2.4 μm
- LHC25 doublet
 - Up to 1.6 x 10^{11} p/doublet with $\epsilon_{x,y} > 3.0~\mu m$

Physics

- LHC50 (standard or BCMS)
 - BCMS up to 1.7 x 10 11 p/b with $\epsilon_{\text{x,y}}\text{=}1.1~\mu\text{m}$
- LHC25 BCMS
 - Up to 1.3 x 10^{11} p/b with $\varepsilon_{x,y}$ =1.3 μm
- 8b+4e as alternative if LHC scrubbing is not enough to run with LHC25 BCMS
 - Up to 1.8 x 10^{11} p/b with $\epsilon_{\rm x,y}$ =2.3/1.4 μm (std/BCMS)

LHC Injectors Upgrade

THANK YOU FOR YOUR ATTENTION!

Post-LS1: PSB – PS transfer

Recombination kicker rise time:

Kinetic energy, E _{kin}	Rise time
1.4 GeV	105 ns

	E _{kin}	Bucket length	Max bunch length
h=7 (std)	1.4 GeV	327 ns	220 ns
h=9 (BCMS)	1.4 GeV	255 ns	150 ns

Constraints on longitudinal emittance per bunch at PS injection

- Bunches to the SPS with ε_z =0.35 eVs
- Quality of RF manipulations at E_{kin}=2.5 GeV
- Bunches crossing transition on h=21 with ϵ_z <1 eVs
- PSB available voltage (h1+2) to obtain the above bunch lengths

Post-LS1: PSB – PS transfer

Recombination kicker rise time:

Kinetic energy, E _{kin}	Rise time
1.4 GeV	105 ns

	E _{kin}	Bucket length	Max bunch length	Bunch length (pre-LS1)
h=7 (std)	1.4 GeV	327 ns	220 ns	180 ns
h=9 (BCMS)	1.4 GeV	255 ns	150 ns	150 ns

Constraints on longitudinal emittance per bunch at PS injection

- Bunches to the SPS with ε_7 =0.35 eVs
- Quality of RF manipulations at E_{bin}=2.5 GeV
- Bunches crossing tra RF Manipulation: @1.4 GeV @2.5 GeV
- PSB available voltag 50 ns (Std/BCMS) 1.2/0.9 eVs 1.9/0.9 eVs

25 ns (Std/BCMS) 1.2/0.9 eVs 2.8/1.5 eVs

