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Introduction 
General remark: 

• As the aim of the LHC is saturating the experiments with useful luminosity, 

the Injectors aims at  saturating the LHC capabilities. 

• Once this regime is achieved, machine availability and reliability becomes 

the only effective lever arm for performances. 

 

Tentative schedule before HL-LHC: 

• Run II: Integrate luminosity at 13 TeV center of mass. Target  25 ns 

operations and only if necessary fall back to 50 ns or 8b+4e. 

• Run III: Maximize LHC performance. Prepare for HL-LHC times. 

 

Target performance: 

• LHC program: Integrate 300 fb-1 or more before LS3. 

• HL-LHC program: Integrate 3000 fb-1 or more for the following decade. 

 
 

 

 



• Bunch intensity: Will beams saturate the cooling capacity due to e-cloud or  

be unstable? 
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Injectors’ parameters as seen by the LHC 
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Beam current limitations 

• Baseline 2.2 1011 ppb, current ~1 A. 

• Assuming  e-cloud issues solved. 

• Couple bunch instability stabilized  by the 

damper. 

• Single bunch instability threshold far in the 

present model (with metallic collimator) or 

stabilized by head-on tune spread. 

Understanding intensity limitations  in the LHC is constantly evolving. 

O. Bruning, R. Assmann,  
E. Métral and teams 
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E-cloud G. Rumolo, G. Iadarola 
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E-cloud solution currently relying on: 
 
• Scrubbing for dipoles for suppression 

of electron cloud (SEY 1.3-1.4). (e.g. 
doublet beams for  25 ns scrubbing) 

 
• Expected to be difficult to eliminate 

the electron cloud in the quadrupoles 
(SEY<1.2-1.3). 

 
• Effects on on beam only at injection if 

ecloud in the dipoles. Can be cured if 
dipoles are scrubbed. 

 
• Cryo power compatible with the 

electron cloud in the quadrupoles only. Based on simulations 



• Bunch intensity: Will beams saturate the cooling capacity due to e-cloud or  

be unstable? 

 

• Emittance: Will the emittance be preserved during cycle? Is sufficiently 

small? Can small emittance be traded with intensity or number of bunches?   
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Injectors’ parameters as seen by the LHC 



LHC Injection to Collisions  
R. Tomas, O. Dominguez 

• 5% intensity loss assumed: when and where do 

we loose? Transfer lines, septa, TDI, LHC (BLM 

sunglasses), injection, ramp and setup limits 

should be assessed. 

• 20% emittance blow-up budget, implies: 

• Control of the additive sources of blow-up. 

• Control of the blow-up due to electron 

clouds. 

• Impedance reduction with metallic 

collimators. 

• 10 cm bunch length during injection to stable 

beam. 

• Lower limit on starting emittance. 

 

 

ϵcol ≈ ϵinj + 0.2 Nb /ϵinj [1011/µm]  

Assuming: 10% blowup on top of IBS 



Bunch 
Spacing 

Bunch 
Population 
Inj. 

Emit. 
Std/BCMS 
Inj. 

Bunch 
Population 
Coll. 

Emit. 
Std/BCMS 
Coll. 

LHC 25 ns 1.3 · 1011 2.4 µm 1.2 · 1011 2.8 µm 

1.3 µm 1.7 µm 

50 ns 1.7 · 1011 1.6 µm 1.6 · 1011 2.0 µm 

1.1 µm 1.6 µm 

8b+4e 1.8 · 1011 2.3 µm 1.7 · 1011 2.7 µm 

1.4 µm 1.9 µm 

LIU 25 ns 2.0 · 1011 1.4 µm 1.9 · 1011 1.9 µm 

1.9 µm 1.9 · 1011 2.3 µm 

HL-LHC 25 ns 2.3 · 1011 2.3 µm 2.2 · 1011 2.5 µm 

50 ns 3.7 · 1011 2.7 µm 3.5 · 1011 3.0 µm 
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Transmission of Beam parameters 



• Bunch intensity: Will beams saturate the cooling capacity due to e-cloud or  

be unstable? 

 

• Emittance: Will the emittance be preserved during cycle? Is sufficiently 

small? Can small emittance be traded with intensity or number of bunches?   

 

• Bunch spacing: Will collisions saturate the experiments? 
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Injectors’ parameters as seen by the LHC 
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Bunch Spacing and Filling Schemes 
Luminosity is proportional to nbunches .  If experiments limited by pile-up, 

maximum luminosity and integrated luminosity is proportional to  nbunches  too. 

• Filling schemes with 12 SPS injections in the LHC. 

• 25ns: 2592; 50 ns: 1296; 8b+4e: 1728. 

 

B. Gorini 

Filling scheme Total IP1-5 IP2 IP8 

BCMS: 48b 6 Ps inj, 12 SPS inj 2604 2592 2288 2396 

Standard: 72b 4 Ps inj, 12 SPS inj  2748 2736 2452 2524 
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Assumptions on experimental conditions 
• Average pile-up limit in IP1, IP5: 

• Maximum 50 event per crossing for after LS1; 

• Maximum  140 events per crossing for HL-LHC  with 

• 1.3 event/mm baseline but 0.7 event/mm stretched target; 

• Average pile-up limit in IP8:  4.5 events per crossing. 

• Max lumi leveled in IP2: 2 1031 cm-2s-1. 

 

• Burn-off and pile-up estimation based on: 

• Assumed visible cross-section: 85 mb in IR1/5, 75 mb in IP8; 

• Assumed total cross-section: 110 mb. 

A. Ball, B. Di Girolamo, B. Gorini, R. Jacobsson 



Bunch 
Spacing 

Bunch 
Population 

Emit. 
Std 
BCMS 

Pile-up 
Max/Lev 

Daily 
Lumi 
[fb-1] 

Fill 
duration 
[h] 

LHC 6.5 TeV 
β*=60cm 

25 ns 1.2 · 1011 2.8 µm 30/50 0.58 10.1 

1.7 µm 50/50 0.78 7.5 

50 ns 1.6 · 1011 2.0 µm 76/50 0.53 8.1(5.6) 

1.6 µm 95/50 0.52 7.8(4.4) 

8b+4e 1.7 · 1011 2.7 µm 75/50 0.72 8.5(4.7) 

1.9 µm 90/50 0.70 8.3(5.9) 

LIU 7  TeV 
β*=15cm 

25 ns 1.9 · 1011 2.3 µm 419/140 2.99 7.2(5.7) 

1.9 · 1011 1.9 µm 510/140 2.93 7.8(6.7) 

HL-LHC 7 TeV 
β*=15cm 

25 ns 2.2 · 1011 2.5 µm 517/140 3.17 8.6(7.3) 

50 ns 3.5 · 1011 3.0 µm 517/140 1.75 15(14.1) 
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Bunch spacing and pile-up  
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HL-LHC Performance reach 
• Assuming  80 days of successful fills limited by leveled luminosity and fill 

durations, how much luminosity may we integrate in one year? 

𝐿lev ~ 𝑛pileup  ∙ 𝑛bunches 

𝐿int = 0. 5 𝑡phys𝐿lev
 𝑡fill

 𝑡fill+ 𝑡turnaround
 

Average  fill  
duration  2012 

Simplest model that bounds integrated 
performance: 
run at max allowed luminosity for half of the 
scheduled physics until a failure occurs. 
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HL-LHC Performance reach 
• Assuming  80 days of successful fills and a given peak luminosity, available 

current, how much luminosity could we integrate in one year? 

𝐿lev ~ 𝑛pileup  ∙ 𝑛bunches 

Average  fill  
duration  2012 

Adding a simple model of peak machine luminosity and burn-off decay (F. Zimmerman). 
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HL-LHC Performance reach 
• Assuming  80 days of successful fills and a given peak luminosity and 

available current, how much luminosity could we integrate in one year? 

→ Maximize leveled luminosity by pile-up limit and number of bunches, 

→ Maximize probability of long fills 

→ Obtain long fills 

𝐿lev ~ 𝑛pileup  ∙ 𝑛bunches 

Average  fill  
length  2012 
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HL-LHC Performance reach 
• Assuming  80 days of successful fills and a given peak luminosity how much 

luminosity may we integrate in one year? 

→ Maximize leveled luminosity by pile-up limit and number of bunches, 

→ Maximize probability of long fills 

→ Obtain long fills  

 

𝐿lev ~ 𝑛pileup  ∙ 𝑛bunches 

Average  fill  
length  2012 
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HL-LHC Performance reach 
• Assuming  80 days of successful fills and a given peak luminosity how much 

luminosity may we integrate in one year? 

→ Maximize leveled luminosity by pile-up limit and number of bunches, 

→ Maximize probability of long fills 

→ Obtain long fills  

 

𝐿lev ~ 𝑛pileup  ∙ 𝑛bunches 

Average  fill  
length  2012 
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HL-LHC Performance reach 
• Assuming  80 days of successful fills and a given peak luminosity how much 

luminosity may we integrate in one year? 

→ Maximize leveled luminosity by pile-up limit and number of bunches, 

→ Maximize probability of long fills 

→ Obtain long fills by bunch population 

 

𝐿lev ~ 𝑛pileup  ∙ 𝑛bunches 

Average  fill  
length  2012 



 

• 200 MHz: If used as main RF in LHC, can it lift 

SPS bunch population limit? 

 

• Bunch-by-bunch variations: Does it affect 

performance (or how much the differences will 

limit the average)? 
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Open questions for the LHC 



Performance of different scenarios (7 TeV) 

Nb coll 

[1011] 

 

e*n coll 

[mm] 

Min b* 

(xing / sep) 

[cm] 

Xing 

 angle 

[mrad] 

# Coll. 

 Bunches 

 IP1,5 

Lpeak 

[1034   

cm-2s-1] 

Llev 

[1034  

cm-2s-1] 

Lev. 

time 

[h] 

Opt. Fill 

 length 

[h] 

η6h 

[%] 

 

ηopt 

[%] 
 

 

Avg. Peak- 

pile-up  

density 

[ev./mm] 

RLIUP2 1.5 1.36) 15/15 341 2592 19.0 4.8 4.7 6.0 63.4 63.4 0.94 

LIU-BCMS 1.9 1.656) 13.5/13.53) 405 2592 23.4 4.8 6.7 7.8 61.0 57.5 0.98 

LIU-STD 1.9 2.26 14.5/14.53) 457 2736 17.0 5.06 5.7 7.2 58.2 56.4 1.01 

HL-Flat 2.2 2.5 30/7.51) 3352)/550 2736 18.6 5.06 7.0 8.4 57.8 53.5 1.12 

HL-Round 2.2 2.5 15/15 4762)/590 2736 20.1 5.06 7.3 8.6 57.8 53.1 1.03 

LIU-BCMS 1.9 1.65 13.5/13.53) 579 2592 23.4 6.875) 4.6 6.4 51.4 51.3 1.34 

HL-Round 2.2 2.5 15/15 473 2736 20.1 7.245) 4.8 7.0 48.2 47.4 1.37 

HL-SRound 2.2 2.5 10/104) 600 2736 26.8 7.245) 5.8 7.6 47.6 45.7 1.55 

1) compatible with crab kissing scheme (S. Fartoukh) 
2) BBLR wire compensator assumed to allow 10σ 
3) b* could be reduced to 14.5 and 13.5 cm at constant aperture 
4) Ultimate collimation settings 
5) Pile-up limit at 200 event/ crossing  6) 30% blow-up from IBS makes 1.85 um is more likely 



21 

Conclusion 

• Injector beam parameters should aim at saturating the 

LHC and experiment capabilities. 

• When experiments are not limited by total pileup, BCMS 

beams are an effective tool for increasing performance. 

• For HL-LHC times, the LHC expects maximum injectable 

bunch population with the maximum number of bunches. 

• Present LIU offer is a close match, but increasing bunch 

population is a key to exploit large accepted luminosity or 

long fill durations. 


