

LINAC4 COMMISSIONING OVERVIEW

ALESSANDRA LOMBARDI

LINAC4 LAYOUT AND COMPONENTS

COMMISSIONING STAGES

	Energy	Key issue	Schedule
LINAC4 stand alone	3MeV	RFQ transmission Chopping	Done
	12 MeV	Matching to DTL	Imminent
	30-50 MeV	Transporting in PMQ channel	Dec 2014
	100 MeV	Setting the RF phases	Mar 2015
	160 MeV - DUMP	Final energy	End 2015
	160 MeV	Reliability + sector tst	2016
Connection to PSB	160 MeV –LBE LBS		T0+8months

FOUR IMPORTANT RESULTS

- The RFQ behaves as expected and we can reproduce the transmission curve. The mechanics, RF and the dynamics design are validated
- The integrated chopper dynamics (<u>premiere</u>) works and the chopper rise/fall time is adequate
- The through-beam emittance is the same as the chopper-off emittance
- The through-beam can be matched to the DTL (and soon the DTL will tell us how well)

1-RFQ TRANSMISSION

RFQ Transmission vs. RF power for different pressure in the LEBT (neutralisation)

2-BEAM CHOPPING

3-EMITTANCE OF THE THROUGH BEAM

Emittance measured with chopper off (left) and with chopper on (right) downstream the inline dump

4-MATCHING TO THE DTL

95% transmission.
As predicted by the simulation codes (TraceWin and Travel)

IN SUMMARY

What has been done

- The LEBT, RFQ, and chopper line have been commissioned in their final set-up.
- The model have been finetuned and are an excellent guide to commissioning endeavours.
- So far so good....

What needs to be done

- The final source needs to be installed (Jacques).
- The DTL, CCDTL, PIMS and transfer line need to be installed and commissioned.
- A reliability run is planned for 2016

NOMINAL BEAM AT PSB

Intensity	40 mA	
Transverse	ransverse E= 0.3-0.4 pi mm mrad norm rms	
	Alpha= 0 Beta $x = 5,2.5,10$ m Beta $y = 4,2,8$ m	
	Dispersion = 0 or 1.2 m	
Longitudinal	±100 keV rms energy spread (100-800 KeV possible)	
	160 MeV ± 1.2 MeV (dynamically over 20 µsec)	
Chopped	1 µsec for the distributor rise time 1 MHz frequency of the PSB as low as just letting few µbunches (50 nsec)	
	Archamps	

Archamps