

Cloud Overview

- Adam Huffman
- Imperial College
- GridPP 32 Collaboration Meeting

Agenda

- GridPP Cloud at Imperial
- Cloud Activity at other GridPP Sites
- Experiment Activities
- CERN Private Cloud
- Common Themes
- Plans

GridPP Cloud at Imperial College

25/03/14 3 Cloud Overview - Adam Huffman, Imperial College - GridPP32

GridPP Cloud at Imperial College

OpenStack Havana

- Deployed with Packstack (from Red Hat RDO)
- Hardware:
 - 1 controller, 6 compute nodes
 - 176 cores, 448GB RAM
 - 1.5TB instance storage currently (3TB in reserve)
 - 40 core/256GB compute node ready to add
 - 1 node for testing next OpenStack release (RDO Test Days)

GridPP Cloud at Imperial College - Networking

Tyranny of choice:

- Nova-network
 - Stable, heading for deprecation
 - Simple to setup and use
- Neutron (was Quantum)
 - Very flexible, very complex
 - Fragmented documentation
 - Will test with Icehouse upgrade
- External access
 - Wish to keep grid and cloud VLANs separate
 - Public IPs "controversial"
 - Login instance workaround

GridPP Cloud at Imperial College - Storage

Storage types:

- Instance (Nova), volume (Cinder), image (Glance)
- Local instance storage at first

Shared storage

- Expansibility
- Flexibility
- Migrations

GridPP Cloud at Imperial College – GlusterFS/Ceph

GlusterFS experience

- Good:
 - Setup and basic operations simple
- Bad:
 - FUSE performance
 - Fragile upgrades
 - Permissions bug with migration
 - IPv6 (?)
- Plans:
 - Expand Ceph test cluster (~10TB)
 - Interest in CephFS
 - Replace GlusterFS?

GridPP Cloud at Imperial College - Usage

Usage for 2014 so far:

- gridpp tenant (primarily ATLAS)
 - 12,850.74 vCPU hours
 - 1,938,725.76 disk GB hours
- ichep-test tenant (CMS Stealth Cloud)
 - 88,054.28 vCPU hours
 - 4,324,985.66 disk GB hours
- Measures usage, not load

OpenStack Dashboard Interface

Users

Cloud activity at other GridPP sites

25/03/14 10 Cloud Overview - Adam Huffman, Imperial College - GridPP32

Oxford

- Setup by Kashif Mohammad
- OpenStack Havana
 - Deployed with Packstack
- 1 controller, 2 compute nodes
 - 32 cores
- Floating IPs available for debugging
- Successfully running ATLAS jobs (see later)
- Accounting/funding concerns limiting expansion

RAL

StratusLab prototype private laaS

- 800 cores, 1.4TB RAM, 14TB shared storage
- Internal development, testbeds, HTCondor bursting (see Andrew Lahiff's talk)

Migrate to production-quality OpenNebula IaaS over next year

- 900 vCPUs, 3.5TB RAM and ~1PB raw storage for Ceph
- Integrate with Tier 1 batch system
- Virtualize all Tier 1 worker nodes?
- Offer cloud endpoints for LHC VOs

LHC VO Cloud Activity

25/03/14 13 Cloud Overview - Adam Huffman, Imperial College - GridPP32

ATLAS

- Frank Berghaus (UVic), Peter Love (Lancaster) & others
 Aims:
 - Minimise local (site) dependencies
 - More flexible resource allocation
- Cloud Scheduler and APF
- Images based on SL 6.4, looking at uCernVM

ATLAS Cloud architecture

Cloud Overview - Adam Huffman, Imperial College - GridPP32

GridPP Clouds running ATLAS jobs

- Running ATLAS jobs on CERN and GridPP clouds
- Panda queues:
 - OPENSTACK_CLOUDSCHEDULER
 - GRIDPP_CLOUD
 - Sean is moving the Australian Nectar clouds over

Feb 27, 2014	Cloud Operation & Integration	

25/03/14 16 Cloud Overview - Adam Huffman, Imperial College - GridPP32

13/28

ATLAS Status and Plans

Status:

- GridPP running single-core production
- Ready to use cloud resources for ATLAS production
- Also running production jobs on HLT
 - 15,000 cores (see SIM@P1 talks)
- Plans:
 - Scale-up
 - Add analysis & multi-core production jobs
 - Accounting
 - Separate Panda queues per country/organization
 - What information is needed and how to present it?

CMS

- Stealth Cloud (Daniela Bauer & Simon Fayer, Imperial)
 - Runs grid jobs transparently on a cloud, using glideinWMS
- CMSooooCloud (large team led by David Colling, Imperial)
 - OpenStack installed alongside HLT software
 - 13,000 cores, ~5,000 jobs, saturating 40Gb link, now 60Gb
 - Investigating inter-fill running
- UK testing (Andrew Lahiff, RAL)
 - Successfully run jobs at Imperial and Oxford
- Interest in opportunistic resources

CMS

CERN Private Cloud

- Up to 140 instances, 1,120 vCPU, 2.1TB RAM
- Massimo Sgaravatto (INFN) setup glideinWMS
- Image based on SLC6.5
- Worked around some wrinkles e.g. flavours, HTCondor bugs

CERN Tier-0

- Currently up to 50 instances, 400 vCPU, 800GB RAM (will be expanded soon to 7,000 cores)
- Very similar image to Private Cloud

LHCb

Cloud use cases:

- Cloud sites
- Testbeds
- Continuous Integration
- LHCbDIRAC
- Successfully run jobs on CERN Private Cloud
 - Change of staff since then
- Most UK effort on contextualization and Vac (see Andrew's talk)

LHCb Cloud Architecture

Cloud Overview - Adam Huffman, Imperial College - GridPP32

CERN Private Cloud

25/03/14 22 Cloud Overview - Adam Huffman, Imperial College - GridPP32

CERN Private Cloud

- Currently 50,000+ cores, 35,000 more in a few months at Wigner
- Migrating 100 servers/week as new OpenStack compute nodes
- 2 Cells at CERN, 1 at Wigner
- Successful migration to OpenStack Havana
- High CERN engagement in upstream project

Common Themes

Accounting Monitoring Security

Accounting

- Benchmarking complicated
 - Compute node may be running various workloads normally
 - Otherwise quiet node may activate Intel Turbo, skewing results
- Cloud/VM flexibility comes at a potential cost to efficiency
 - Need to match flavours carefully to available hardware
 - Effect of overcommit?
- EGI work on accounting
 - See Andrew McNab's talk for more discussion

Accounting/Allocation

Allocation

- Want hardware to be busy
- How to avoid a monopoly?

EGI Federated Cloud Accounting Test Portal

Cloud View --> Production

Data to graph: Computation Monetary Cost ▼	Computation Monetary Cost		
Period: Start year: 2013 V	Start month: 1	End year: 2014 🔻	End month: 3 🔻
Groupings: Show data for: SITE 🔻	as	s a function of: DATE 🔻	

Refresh by SITE and DATE.

The following table shows the distribution of grouped by SITE and DATE.

Problems to calculate the percentage

by SITE and DATE																
SITE	Feb 2013	Mar 2013	Apr 2013	May 2013	Jun 2013	Jul 2013	Aug 2013	Sep 2013	Oct 2013	Nov 2013	Dec 2013	Jan 2014	Feb 2014	Mar 2014	Total	%
100IT	0	0	0	550,967	854,566	0	153,297	1,155,869	0	0	5,577,117	0	0	7,808	8,299,624	7 5.86 %
CESGA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00%
FCA-LCG2	0	0	0	0	0	0	195,041	641,516	373,709	0	0	0	153,949	80,280	1,444,495	13.20%
IISAS-FedCloud	0	0	0	0	0	0	0	0	507,923	0	0	519,892	6,238	162,528	1,196,582	10.94%
Total	0	0	0	550,967	854,566	0	348,338	1,797,385	881,631	0	5,577,117	519,892	160,188	250,616	10,940,701	
Percentage	0.00%	0.00%	0.00%	5.04%	7 .81 %	0.00%	3.18%	16.43%	8.06%	0.00%	50.98%	4.75%	1.46%	2.29%		
Click here for XML encoded data																

Monitoring

Who should provide the monitoring?

- Sites?
- VOs?
- How to deal with ephemerality of cloud instances?
 - CERN Private Cloud
 - Keep records in Ganglia for 7 days, for CMS
 - Useful for debugging
 - BUT: usability problems when scaled up?

Security

Who controls cloud/VM image creation?

Who monitors that images are kept up to date?

EGI draft security questionnaire

Plans

- Ceilometer
- Containerization
- Device access (GPUs etc.)
- TripleO deployment
- EGI Federated Cloud
- Object Storage/Ceph
- LHCb

Thank you ...

Material from:

- Peter Love / Frank Berghaus
- Ian Collier
- Andrew McNab / Mario Ubeda Garcia
- Kashif Mohammad

All text and image content in this document is licensed under the Creative Commons Attribution-Share Alike 3.0 License (unless otherwise specified). "LibreOffice" and "The Document Foundation" are registered trademarks. Their respective logos and icons are subject to international copyright laws. The use of these therefore is subject to the trademark policy.