

Enabling Grids for E-sciencE

Transition from EGEE-II to EGEE-III High Energy Physics Cluster (TNA4.2.1)

Patricia Méndez Lorenzo (CERN, IT-GS/EIS)

NA4 Face-to-Face Steering Committee Meeting 27-28 March 2008 Université Paris VI

www.eu-egee.org

EGEE-II INFSO-RI-031688

EGEE and gLite are registered trademarks

- Introduction: HEP Cluster
- WLCG infrastructure
- The CCRC`08
- Workgroup Plan
- Communication Plan and Tools
- Summary

The HEP Cluster

Enabling Grids for E-sciencE

• HEP onto the EGEE-III Proposal:

- "Largest community and the largest contributor of computing and storage resources to EGEE"
- "Huge demand in terms of the size of stored data, number of jobs to manage, and number of active users"
- "High scalability and reliability from the middleware and the availability of of application-level service are crucial"
- "Four international collaborations comprising more than 4000 scientists all over the world"
- "Close contact with other international facilities as DESY (Germany), FNAL (USA), SLAC (USA).
 The total number of users in HEP VOs exceeds 5000"
- Grid Users and HEP:
 - Provisioned use:
 - Applications need quasi-dedicated resources
 - Offers an excellent long-term load ensuring the continuous use of the Grid
 - Scheduled use:
 - Many resources for a short time
 - Normally the resources are booked in advance for these communities
 - Opportunistic use:
 - Least demanding
 - Use of resources depending on their availability
- HEP is a clear example of provisioned use community, providing already support and infrastructure (services and middleware) for the rest of the potential Grid users

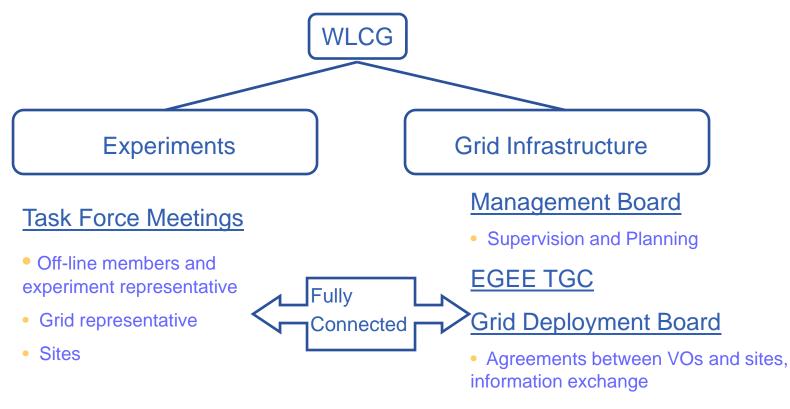
egee

The LHC infrastructure: WLCG

Enabling Grids for E-sciencE

- Much depending on a T0-T1-T2 hierarchical infrastructure
 - Role of each site has been agreed by the experiments following their own Computing models. In general:
 - Raw data collection and 1st reconstruction at T0
 - Movement of raw data to T1 for custodial purposes and 2nd reconstruction
 - Simulation and analysis at T2 sites (LHCb foresees the analysis at T1 and larger T2 sites)

WLCG infrastructure


- Services
 - Level of service signed individually by each site through a MoU
 - Contains the services provided by each site per experiment, the time schedule for recovery and the level of service
 - Ranges from 99% for key services at T0 up to 95% for several services at T2 sites
 - A general procedure has been defined to ensure a good level of service: Checklist for new services, recommendations for middleware and DB developers, operational techniques and

procedures

- Proposed to all T1 sites and will be extended to "crucial" T2 sites
- Operations
 - Daily operation meetings at CERN
 - Weekly operations meetings with the ROC responsibles
 - Experiments represented at the meetings
- Application and User Support: EIS team
 - Each application has a dedicated support person (all of them high energy physicists)
 - Members of the experiment task force groups
 - Close collaboration with both service/operations and middleware (development and deployment)

The LHC infrastructure: WLCG

Enabling Grids for E-sciencE

Grid Support

- EIS team (CERN + INFN): Not only HEP!!
- Monitoring and dashboard
- ARDA Ganga, DIANE, AMGA

eGee

Common Computing Readiness Challenge 08

- The primary objective is to demonstrate that the 4 LHC experiments could run together at 2008 production scale
- It is a WLCG exercise and NA4-HEP support has participated together with the experiments
 - This includes testing all functional blocks
 - We have established the CCRC simultaneously to the experiments FDR (Full Dress Rehearsals) which means the testing of the whole computing model using both real (cosmic) and simulated data
 - It is therefore a stress tests of the Grid infrastructure offered to the experiments under real data taking conditions
 - It is foreseen to have a yearly CCRC exercise during shutdowns of the accelerator
- Two challenge phases have been foreseen
 - February 08: Not all 2008 resources in place. Still adapting to new versions of some services
 - May 08: All 2008 resources in place. Full 2008 workload, all aspects of experiments` production chains

The CCRC`08 (II)

- It is an important test to be undertaken by the whole support infrastructure which has taken into account the following aspects to define the successful rate:
 - <u>Scaling factors</u>: set by the experiments and established with the sites to ensure the necessary resources
 - <u>Critical services</u>: Defined by the experiments depending on their computing models and including the impact of service degradation or interruption
 - WLCG MoU: level of service provided by each site, availability, interventions....
- The key aspect of the exercise has been the stress of a general and multipurpose Grid infrastructure applied and "individualized" for each community depending on their service requirements.
 - This means production, this is what we will face with any community

Work Plan (I)

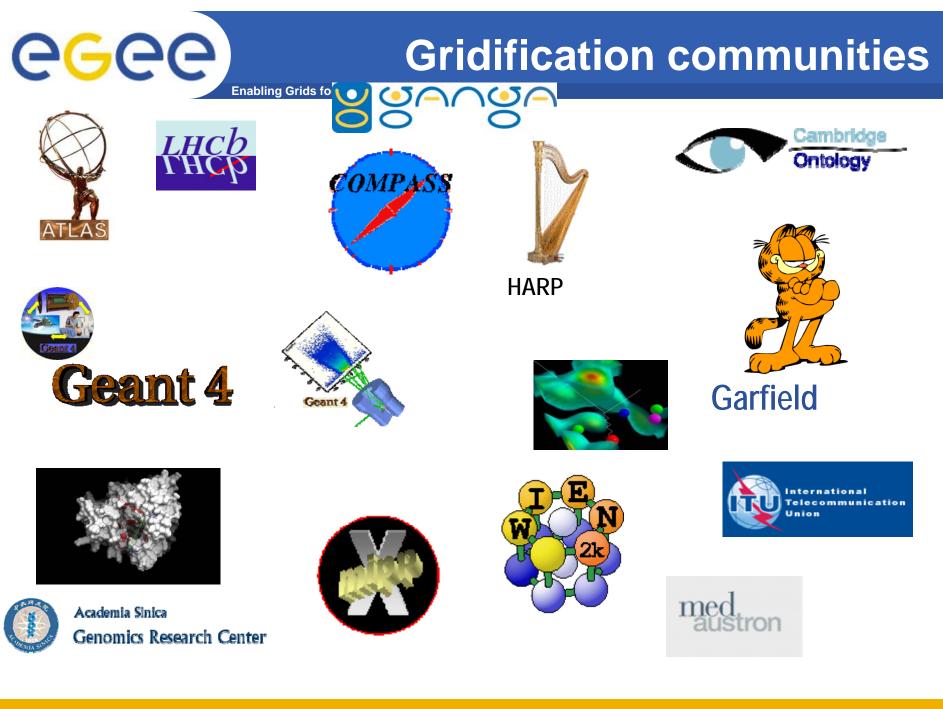
Enabling Grids for E-sciencE

Principal Goals of the NA4-HEP cluster

- The support team has to be expert on the experiment computing models and on Grid infrastructures
- Experiment Support and integration
 - Participation in CCRC`08 and experiment FDR
 - Acting as contacts between sites-services-experiments
 - The support tasks depend on the requirements of each experiment
- Continuing gridification projects arriving at CERN also besides HEP
 - Ganga and DIANE are the key tools towards a successful gridification
 - Next project: Beam Collimation and simulation: Close infrastructure to Fusion initiatives (ITER)
- Monitoring: SAM, Dashboard and Gridmap and expansion to other communities
 - Each EIS member is involved in the creation of the experiment specific tests for each service
 - The created infrastructure can be used by any other application

No	SiteName	NodeName	Status	alice									
				SA.	UPR	PR	PSR	sh	PM	DPD	R36	10	WM
A	siaPacific												
1	GOG-Singapore	soursop.ngpp.ngp.org.sg	NA	na	na	na	na	na	na	na	na	error	na
2	IN-DAE-VECC-01	grid.tier2-kol.res.in	ERROR	<u>ok</u>	error	ok	ok	na	<u>ok</u>	error	error	error	<u>ok</u>
3	KR-KISTI-GCRT-01	vobox.gridcenter.or.kr	ERROR	<u>ok</u>	error	<u>ok</u>	ok	na	ok	error	<u>ok</u>	na	war
C	ERN			_									
4	CERN-PROD	lxb7281.cem.ch	OK	<u>ok</u>	<u>ok</u>	ok	ok	na	ok	<u>ok</u>	ok	na	ok
5	CERN-PROD	voalice03.cem.ch	OK	<u>ok</u>	ok	ok	ok	na	<u>ok</u>	<u>ok</u>	ok	na	war
C	entralEurope												
6	BUDAPEST	grid156.kfki.hu	OK	<u>ok</u>	<u>ok</u>	<u>ok</u>	ok	na	ok	<u>ok</u>	ok	na	ok
7	CYFRONET-IA64	ares01.cyf-kr.edu.pl	OK	<u>ok</u>	<u>ok</u>	<u>ok</u>	<u>ok</u>	na	<u>ok</u>	<u>ok</u>	<u>ok</u>	error	<u>ok</u>
8	IEPSAS-Kosice	vobox-iep-grid.saske.sk	OK	ok	ok	ok	ok	na	ok	ok	ok	error	war
9	egee.man.poznan.pl	ce.egee.man.poznan.pl	OK	<u>ok</u>	<u>ok</u>	ok	<u>ok</u>	na	<u>ok</u>	<u>ok</u>	<u>ok</u>	error	war
10	praguelcg2	goliasx31.farm.particle.cz	OK	ok	ok	ok	ok	na	ok	ok	ok	na	ok

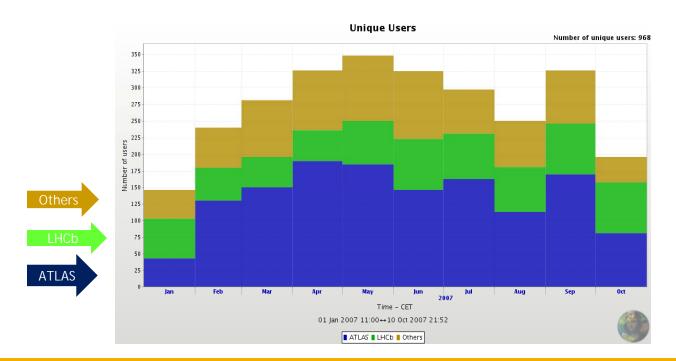
Gridmap view



Work Plan (II)

Enabling Grids for E-sciencE

- Analysis tools and middleware development
 - Example: CMS (CRAB): INFN product. CLI oriented tool which handles the submission of the jobs supporting EGEE and OSG m/w infrastructures.
 - If required the support members are the perfect actors to provide experiments with missing functionalities
 - Can be used by the rest of communities
 - Examples: VOBOXES used by all HEP experiments
 - Ganga
 - ATLAS and LHCb as HEP customers
 - Used by many other communities and established as the gridification tool by any new community
 - This is a tool which we would like to generalized to any community counting with your collaboration
 - o There are more Grid UIs, but where posible, Let's unify tools within Ganga
 - DIANE
 - Version 2.0 ready for production and will be used during the Geant4 production in May
 - AMGA
 - Good example of collaboration between different applications and institutes
- Middleware testing: Performance and scalability
 - Following the experiment requirements, the m/w has to be put in production ensuring their needs
 - Examples: Testing of the gLite WMS following the ATLAS and the CMS requirements and the CREAM CE
 - Collaboration with JRA1 and SA3 totally transparent to the end-users: experiments



EGEE-II INFSO-RI-031688

Ganga

- User friendly job submission tool
 - Able to hide all grid and m/w specifications
 - Applicable to many backends
- Analysis tool used by ATLAS and LHCb and defined as the gridification toolkit (combined with Diane if needed) for new applications arriving at CERN

Work Plan (II)

• Services

- Software: testing and creation are key purposes (WLCG)
- Documentation: maintenance of the gLite User Guide
- m/w and services expertise
- Tutorials: We consider that new applications and users should be trained on upper layer tools (Ganga, Diane)
 - FTS, LFC, WMS... cannot be considered user tools but must be implemented with the support team assistance into the computing models but transparently to the end users

Subtasks

- VO Support will be fundamental towards new VO creation
- The collaboration between VO and Application support is mandatory at this point
- Clients
 - HEP experiments (mostly off-line groups), new applications (application developers)
- Metrics
 - Difficult to established but this could be an initial point:
 - Number of users (not number of certificates), site efficiency (SAM and dashboard included), new applications (matter of quality not only number)

• Policies

- Each application will be considered individually depending on the available manpower and resources at that moment

Enabling Grids for E-sciencE

- The support team is fully engaged with each experiment
 - The communication is performed on a daily based collaboration
 - Active participation into the TF meetings (weekly in most of the cases)
 - Daily representation during the CCRC operations meetings
 - Experiment contacts with operations and services
 - Represented in the GDB, TMB, operations meetings, etc
- Communication with EGEE through the NA4 contact person
- Active participation on EGEE conferences and User Forums
 - HEP participation will be always ensured
 - Fundamental to share information with the rest of communities
- GGUS has been established as the individual user support toolkit into HEP applications
 - Improvement in this sense is needed if we want to avoid users contacting directly with sites or application support
 - It does not provide individual user support

- The NA4-HEP Cluster will face a crucial year due to the real data taking beginning in 2008
- The support team is embedded also into the WLCG structure collaborating with the experiments, services and operations
- The CCRC`08 is the key exercise to test the Grid infrastructure that will be provided to the HEP experiments during the real production
 - Each experiment has its own computing model, own requirements and needs in terms of support and services
 - CCRC`08 has to observed each individual application onto a general Grid infrastructure
- Support, software testing and software creation are the key tasks of the team at CERN
 - Ganga, Diane and AMGA will continue the development and their establishment as the application tools for HEP application and others
 - Collaboration with other communities are oriented towards the general establishment of these tools
- The gridification of other communities will be one of our goals but always depending on the man-power available at each moment