

Inclusive production of top quarks and W/Z bosons with jets at the LHC

Chunhui Chen
Iowa State University
On behalf of the ATLAS and CMS Collaboration

Rencontres du Vietnam 2014: Physics at LHC and beyond Quy-Nhon, Vietnam August 10-17, 2014

Outline

- \triangleright Production of W/Z at LHC at 7 (~5fb⁻¹) and 8 TeV (~20fb⁻¹)
 - ✓ Inclusive W/Z production
 - √ Production of W/Z + jets
 - ✓ Production of W/Z + heavy flavor
 - ✓ Other selected topics
- > Top production at LHC at 7 and 8 TeV
 - ✓ Top pair production
 - ✓ Top pair production + jets, heavy flavors, W/Z bosons
 - ✓ Single top production
- > Emphasis on most recent measurements
 - ✓ Some (many) measurements are not covered:
 - EW production of Z, high mass DY production etc
 - √ Very little experimental analysis details

W/Z production at LHC

Inclusive W/Z production at LHC

- > Precision physics to test standard model (SM)
 - √ W/Z productions are theoretically well understood, Constrain Parton density function (PDF)
- > Benchmark process for detector calibration
 - ✓ Clean final states with leptons at LHC environment: Trigger, identification and resolution
- > They are important background in searches of new physics (NP)

- > Measurements at both 7 & 8TeV by LHC
- > Many possible final states
 - ✓ Best to use leptonic final states
- > Studies of kinematic distribution:
 - ✓ rapidity, MET ...

ATLAS, PRD,85,072004(2012) CMS, JHEP,10,132(2011) CMS, PRL,112,191802(2014)

- > Stat uncertainties smaller than sys uncertainties
 - ✓ Sys error at percent level, dominated by luminosity uncertainty (~2-3%)
- > Good agreement between electron and muon channels
- > Good agreement between data and NNLO theoretical prediction

W/Z + jets production at LHC

- > Similar analysis as inclusive W/Z production with an additional jet requirement
 - ✓ Different jet cone size between ATLAS (0.4) and CMS (0.5)
- > Detailed comparison on a high statistics sample and in a large kinematics range
 - ✓ precious information to validate/tune the predictions.
 - Tested variables: 1^{st} , 2^{nd} , 3^{rd} 4^{th} -leading jet p_T and p_T , p_T (Sum p_T including or not lepton and neutrino), angular separation of jets, invariant mass of lead-subleading jets. Inclusive and exclusive distributions...

Jet multiplicity well reproduced up to ≥7 jets on 5 order of magnitudes!

W/Z + jets production at LHC

W/Z + jets production ratio at LHC

Ratio measurement allows to reduce experimental sys error

Production of high p_T hadronic W/Z

- \triangleright High p_T hadronic W/Z production cross section (7TeV)
 - ✓ Reconstruct hadronic product inside single jets & identify signal using jet mass
 - ✓ Suppress multijet production using jet substructure in jet rest frame: PRD 85(2012),034007

$$\sigma_{W+Z} = 8.5 \pm 0.8 \text{ (stat.)} \pm 1.5 \text{ (syst.) pb}$$

5.1±0.5 pb (MCFM)

- Z->bbbar cross section (8TeV)
 - \checkmark Combine 2 b-tagging jets to form a Z candidate with p_T>200GeV
 - ✓ Separate signal and background using a Neutral Network analysis

$$\sigma_{Z \to b\bar{b}}^{\rm fid} = 2.02 \pm 0.20 \text{ (stat.) } \pm 0.25 \text{ (syst.)} \pm 0.06 \text{ (lumi.) } \text{pb} = 2.02 \pm 0.33 \text{ pb}$$

POWHEG: $\sigma_{{
m Z} \to b \overline{b}}^{
m fid} = 2.02 ^{+0.25}_{-0.19} ({
m scales}) ^{+0.03}_{-0.04} ({
m PDF}) \, {
m pb}$

aMC@NLO: $\sigma_{7 \to b\bar{b}}^{\text{fid}} = 1.98^{+0.16}_{-0.08} \text{(scales)} \pm 0.03 \text{(PDF)} \text{ pb}$

W/Z + b(b) production at LHC

- > Measurement done with 7TeV data
- > Signal extracted by fitting flavor-sensitive variables:
 - √ NN output, secondary vertex mass
- > Differential measurement available
- > Measurement consistent with theory
 - ✓ Still large experimental uncertainty
 - b-jet tagging efficiency, b-jet template shape

ATLAS, arXiv:1407.3643 ATLAS, JHEP06(2013)084 CMS, arXiv:1312.6608

W/Z + b(b) production at LHC

Other measurements: ATLAS, arXiv:1407.3643 ATLAS, JHEP06(2013)084 CMS, arXiv:1312.6608 CMS, JHEP06(2014)120 CMS, JHEP12(2013)39

W + charm production at LHC

W boson production associated with single charm: scattering of gluon and a down type quark (LO)

- Directly sensitive to s quark distribution in PDF
 - ✓ Contribution from d quark ~ 10% (Cabbibo suppressed)
 - ✓ Different PDF assume different s quark suppression with respect to d quark
- > Signal reconstruction
 - ✓ Similar W reconstruction as other analysis
 - ✓ Reconstruction of charm meson in D*+ and D+ modes

$$D^{*+} \to D^0 \pi^+ (D^0 \to K^- \pi^+, K^- \pi^+ \pi^0, K^- \pi^+ \pi^- \pi^+)$$
 and $D^+ \to K^- \pi^+ \pi^+$

- ✓ Identify c-jet using soft (low p_T) muon tagging inside jets
- √ Select signal as opposite (OS) same (SS) sign
 - Automatically subtract Wcc and Wbb background
 - Cancel combinatorial background

ATLAS, JHEP05(2014)068 CMS, JHEP02(2014)013

W + charm production at LHC

Top production at LHC

Top pair production

Large top quark production at LHC:

 $\begin{array}{ccc} & \sigma_{gg}/\sigma_{tot} \\ \text{Tevatron} & \approx 15\% \\ \text{LHC 7 TeV} & \approx 85\% \\ \text{LHC 14 TeV} & \approx 90\% \end{array}$

- > Precision test of QCD calculation
 - ✓ Improved theoretical calculation: NLO to NNLO+NNLL QCD
 - ✓ Less than 10% uncertainty for cross section (~3% from scale & ~5% from PDF)
 - Eg: arXiv:1303.6254, 1303.7215
- > Important data sample for detector calibration
- > Crucial SM background in many NP searches

- ➤ Top pair signature (based on W decay):
 - ✓ Dileptons: Low branching ratio (Br) and low background (Bg)
 - ✓ Lepton+jet: compromise between Br and Background
 - ✓ All jets: High Br and Background
 - ✓ Others: tau final states

Top pair production

- > Dilepton final state: best channel to measure top pair cross section
 - ✓ 2 isolated high pT lepton and large missing ET
 - ✓ Counting b jets to determine the cross section
 - Fit b jet efficiency with the cross section

3 -	W ⁺ l ⁺
200 00000×	ν ₁ ν ₁ ν ₂ ν ₃ ν ₄ ν ₄ ν ₅ ν ₇
6	\bar{t} \bar{v}_t
112	$\frac{1}{\bar{b}}$

	7TeV		8T	eV
Error	ATLAS	CMS	ATLAS	CMS
Total	3.5%	4.2%	4.5%	5.5%
Stat	1.7%	1.5%	0.7%	0.8%
Sys	2.3%	3.2%	2.3%	4.7%
Lumi	2.0%	2.2%	3.1%	2.6%

$$N_1 = L\sigma_{t\bar{t}} \epsilon_{e\mu} 2\epsilon_b (1 - C_b \epsilon_b) + N_1^{\text{bkg}}$$

$$N_2 = L\sigma_{t\bar{t}} \epsilon_{e\mu} C_b \epsilon_b^2 + N_2^{\text{bkg}}$$

- Measurement in good agreement with prediction
- Data/MC consider LHC beam energy uncertainty
 - ✓ 1.8% error for cross section
- ATLAS and CMS results at 7TeV ~ 20 tension

Top pair production

Differential top pair production

▶ Lepton + jet final state: full reco. of both tops ✓ Kinematic variables: top p_T, top pairs system (total mass, average p_T & rapidity)

Good data/MC agreement at low $p_{\rm T}$ Both ATLAS & CMS data lower than NLO QCD prediction at high $p_{\rm T}$

Top pair + jets production

- > Dilepton or lepton+jet final state: select 2 b-jets and count additional jets
 - ✓ Measure gap fraction: prob. to emit no additional jet
 - ✓ ATLAS and CMS use the results to constrain top mass sys error due to radiation

Top pair + HF / Top pair + W/Z

- Measure top pair + HF (b or c) production
 - ✓ Dilepton final state: Select 2 b-jets and examine additional jet
 - ✓ ATLAS: 7TeV with 4.7fb-1 data
 - Prediction: 3.4% (5.2%) by ALPGEN+HERWIG (POWHEG+HERWIG)

$$R_{
m HF} = rac{\sigma_{
m fid}(tar{t} + {
m HF})}{\sigma_{
m fid}(tar{t} + {
m j})} = 6.2 \pm 1.1 {
m (stat)} \pm 1.8 {
m (syst)}\%$$

✓ CMS: 7TeV with 5fb-1 and 8TeV with 19.6fb-1 data:

$$\sigma(t\bar{t}b\bar{b})/\sigma(t\bar{t}jj) = 3.6 \pm 1.1(\text{stat.}) \pm 0.9(\text{syst.})\%$$
 (7TeV)
$$\sigma(t\bar{t}b\bar{b})/\sigma(t\bar{t}jj) = 2.3 \pm 0.3(\text{stat.}) \pm 0.5(\text{syst.})\%$$
 (8TeV)

- Measure top pair + W/Z: X section ~200fb (NLO QCD)
 - ✓ Sensitive to additional contribution from NP effects
 - ✓ Experimental signature:
 - CMS: 2 SS leptons, 3 leptons, 4 leptons (counting)
 - ATLAS: 2 OS leptons (NN based on kinematics), 2 SS muons, 3 leptons (counting)

CMS 7 TeV I	PRL 110 ((2013	172002
CMS / TeV	PRL 110 ((2013	172002 (

 $t\bar{t}W + t\bar{t}Z$

Channels used	Process	Cross section	Significance
2ℓ	$t\bar{t}V$	430^{+170}_{-150} (stat.) \pm^{90}_{70} (syst.) fb	3.0
3ℓ	$t\bar{t}Z$	$280^{+140}_{-110} (\text{stat.})^{+60}_{-30} (\text{syst.}) \text{fb}$	3.3
CMS 8 TeV arXiv	v:1406.783	30	
CMS 8 TeV arXiv	v:1406.783 Process		Significance
			Significance

 380^{+100}_{90} (stat) $^{+80}_{-70}$ (syst) fb

ATLAS-CONF-2014-038

Summary of combined simultaneous fit results

Process	Measured cross-sections	Observed σ
$t\bar{t}Z$	$150^{+58}_{-54}(\text{total}) = 150^{+55}_{-50}(\text{stat.}) \pm 21(\text{syst.}) \text{ fb}$	3.1
$t\bar{t}W$	$300^{+140}_{-110}(\text{total}) = 300^{+120}_{-100}(\text{stat.})^{+70}_{-40}(\text{syst.}) \text{ fb}$	3.1

Evidence of top pair production associated with W/Z on 3σ level, cross section consistent with SM Expectation.

 $2\ell + 3\ell + 4\ell$

Single top production

- t-channel: high statistics at LHC
 - \checkmark S/B ~ $\tilde{2}$ after selection, precision measurement
 - \checkmark Study kinematics distribution: p_T , rapidity
 - ✓ Top and anti-top measurement separately
 - ✓ Good agreement between data and theory

- > Wt-channel: Evidence at 7TeV, observation at 8TeV
- s-channel: no evidence yet at LHC (set upper limit)

ATLAS, arXiv:1406.7844

Summary and outlook

- > Many 7 & 8 TeV analysis have been done by ATLAS and CMS
 - ✓ Most measurements limited by sys errors
 - ✓ Good agreement between data and theory
- Only a small set of measurements reported here:
 - ✓ All public results are summarized online:

https://twiki.cern.ch/twiki/bin/view/AtlasPublic https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResults

- > Looking forward to 14TeV challenges
 - ✓ High production rate, high luminosities
 - More precise measurements (smaller stat error)
 - Many sys error can be reduce with more data
 - Detail studies of kinematic distribution in multi dimensional phase spaces
 - ✓ More challenge environment: high pileups
 - · Clean and important data for detector calibration
 - ✓ Production of W/Z and top a prior for NP searches at the LHC
 - Proof of the understanding the detector
 - Irreducible background of searches for NP effects

Backup

The ATLAS Detector

46 m long, Overall weight: 7000 Tons

Excellent reconstruction efficiency and resolution: Electron, muon, track, jets, b-tagging & missing transverse energy

The CMS detector

W/Z reconstruction at LHC

- > Signal reconstruction:
 - \checkmark One isolated high p_T lepton &missing transverse energy (MET)

$$W \to \ell \nu \quad (\ell = e, \mu)$$

- ✓ Two (isolated) high p_T leptons:
 - 60(66) < m_{||} < 120(116) GeV for ATLAS(CMS)

$$Z \to \ell\ell \quad (\ell = e, \mu)$$

- > Background:
 - ✓ EWK: Drell-Yan, diboson, W->TV, Z->TT
 - √ top production
 - √ QCD: fake leptons from multijet production
- > Signal Extraction: fit MET for W and m₁₁ for Z
 - ✓ Signal template from MC & EWK and top bg fixed to MC
 - ✓ QCD template from control data sample
 - Invert lepton identification criteria

> Calculation of the total cross section:

$$\sigma = \frac{N_{\text{observed}} - N_{background}}{C_{W/Z} \times A_{W/Z} \times Br(W/Z \to \ell\nu\ell\ell) \times \text{Luminosity}}$$

Efficiency

Acceptance

CMS, PRL,112,191802(2014)

W/Z + jets production at LHC

CMS-PAS-SMP-14-009

- \triangleright First double differential measurement Z+jet with jet up to $|\eta|<4.7-30< p_{T}<550~GeV$
- > Largest experimental uncertainty from JES
- Predictions: MadGraph norm. NNLO / Sherpa2 (NLO 1j,2j /LO<=4j)</p>
- > Reasonable description from Sherpa2, some regions to investigate

Production of high p_T hadronic W/Z

- High p_T hadronic W/Z production cross section (7TeV)
 - ✓ Reconstruct hadronic product inside single jets & identify signal using jet mass
 - ✓ Suppress multijet production using jet substructure in jet rest frame
 - W/Z jet: back-to-back 2 body topology, QCD jet: isotropic distribution
 - LH using shape variable: thrust-minor, sphericity, aplanarity

ATLAS, arXiv:1407.0800

$$\sigma_{W+Z} = 8.5 \pm 0.8 \text{ (stat.)} \pm 1.5 \text{ (syst.) pb}$$
 5.1±0.5 pb (MCFM)

- Z->bbbar cross section (8TeV)
 - ✓ Combine 2 b-tagging jets to form a Z candidate with p_T>200GeV
 - ✓ Separate signal and background using a Neutral Network analysis

ATLAS, arXiv:1404.7042

η_{dijet} and Δη(dijet , balance jet)
 ✓ Simultaneous fit to dijet mass in signal and control region (constrain background shape)

$$\sigma_{Z \to b\bar{b}}^{\rm fid} = 2.02 \pm 0.20 \text{ (stat.) } \pm 0.25 \text{ (syst.)} \pm 0.06 \text{ (lumi.) pb} = 2.02 \pm 0.33 \text{ pb}$$

POWHEG:
$$\sigma_{Z \to b\bar{b}}^{\text{fid}} = 2.02^{+0.25}_{-0.19} (\text{scales})^{+0.03}_{-0.04} (\text{PDF}) \, \text{pb}$$

aMC@NLO: $\sigma_{7 \to b\bar{b}}^{\text{fid}} = 1.98^{+0.16}_{-0.08} \text{(scales)} \pm 0.03 \text{(PDF)} \text{ pb}$

Top pair + W/Z production

Cross section ~200fb estimated by NLO QCD

- Experimental signature:
 - CMS: 2 SS leptons, 3 leptons, 4 leptons (counting)
 - ✓ ATLAS: 2 OS leptons (NN based on kinematics), 2 SS muons, 3 leptons (counting)

CMS 7 TeV PRL 110 (2013) 172002

Channels used	Process	Cross section	Significance
2ℓ	$t\bar{t}V$	430^{+170}_{-150} (stat.) \pm^{90}_{70} (syst.) fb	3.0
3ℓ	$t\bar{t}Z$	$280^{+140}_{-110} \text{ (stat.)}^{+60}_{-30} \text{ (syst.) fb}$	3.3

CMS 8 TeV arXiv:1406.7830

Channels used	Process	Cross section	Significance
2ℓ	tŧŧW	170^{+90}_{-80} (stat) \pm 70 (syst) fb	1.6
3ℓ + 4ℓ	tīZ	$200^{+80}_{-70} (\text{stat})^{+40}_{-30} (\text{syst}) \text{fb}$	3.1
$2\ell + 3\ell + 4\ell$	$t\bar{t}W+t\bar{t}Z$	$380^{+100}_{-90} (\text{stat})^{+80}_{-70} (\text{syst}) \text{fb}$	3.7

Summary of combined simultaneous fit results

Process	Measured cross-sections	Observed σ
tīZ	$150^{+58}_{-54}(total) = 150^{+55}_{-50}(stat.) \pm 21(syst.) \text{ fb}$	3.1
tīW	$300^{+140}_{-110}(total) = 300^{+120}_{-100}(stat.)^{+70}_{-40}(syst.) \text{ fb}$	3.1

Evidence of top pair production associated with W/Z on 30 level, cross section consistent with SM Expectation.

Standard Model Production Cross Section Measurements

Status: July 2014

