Status and prospects in higher order calculations and MC tools

Simon Badger (CERN) 12th August 2014

Physics at the LHC and Beyond 2014, Quy-Nhon, Vietnam

outline

Precision SM predictions for LHC physics

- higher order calculations
 - automated NLO: technology now available!
 - · theoretical methods for NNLO predictions: IR subtraction, loop integral methods etc.
- Monte Carlo tools and simulations
 - shower matching at NLO, multi-jet merging techniques
 - phenomenological results and implications

modelling hadron collisions

fixed order not good for all regions

UN²LOPS DY [Hoeche, Li, Prestel (2014)]

MiNLO Higgs [Nason, Re, Zanderighi (2014)]

MiNLO DY [Karlberg, Re, Zanderighi (2014)]

not quite yet...

Part I: Hard processes and theoretical methods

QCD at NLO

recent progress: NLO revolution!

automated IR subtraction

Frixione-Kunszt-Signer

Nagy-Soper

Catani-Seymour

new amplitude methods

(generalized)unitarity

integrand reduction

[Bern et al. (1994)]

[Britto et al. (2004)]

[Ossola et al. (2005)]

loop amplitudes

Efficient tree level generators well established

e.g. MadGraph, Alpgen, Comix, Helac,... Tree Methods

Feynman diagrams

off-shell recursion

on-shell recursion (BCFW)

integral basis separates analytic and algebraic parts

known functions at one-loop process independent

e.g. QCDLOOP, ONELOOP

tree-like complex momenta calculate numerically

automated NLO

MC MADLOOP, MADFKS, ... SHERPA MADGRAPH5_aMC@NLO HERWIG++/MATCHBOX GENEVA

* efficient algorithms with off-shell recursion

automated NLO

OLP Generic processes with Feynman Diagrams*

QCD corrections for anything up to $2\rightarrow4$ M

RECOLA (EW)

On-Shell Methods

Specific processes at $2\rightarrow5/6$, e.g. massless
QCD, W/Z+jets

Binoth Les Houches Accord (updated 2013)

MADLOOP, MADFKS, ...

MADGRAPH5_aMC@NLO

MC

SHERPA

HERWIG++/MATCHBOX

GENEVA

* efficient algorithms with off-shell recursion

QCD at NNLO

two-loop amplitudes

	analytic	FS colour	IS colour	local
antenna subtraction	✓	✓	✓	X
STRIPPER	X	✓	✓	✓
q_T subtraction	✓	X	✓	√
reverse unitarity	✓	X	✓	-
Trócsányi et al	X	✓	X	√

Infra-red subtraction

[taken from J. Currie LoopFest 2014]

recent NNLO progress

pp	\rightarrow	$\gamma\gamma$
		, ,

$$pp \to WH$$

$$gg \rightarrow gg$$

$$pp \to t\bar{t}$$

$$gg \to Hg$$

$$pp \to Z\gamma$$

$$pp \rightarrow tj$$

$$pp \to ZZ$$

$$pp \to HH$$

$$pp \to ZH$$

[Catani, Cieri, de Florian, Ferrera, Grazzini (2011)]

[Ferrera, Grazzini, Tramontano (2011)]

[Currie, Gehrmann de Ridder, Gehrmann, Glover, Pires (2013)]

[Czakon, Fiedler, Mitov (2013)]

[Boughezal, Caola, Melnikov, Petriello, Schulze (2013)]

[Grazzini, Kallweit, Rathlev, Torre (2013)]

[Bruchseifer, Caola, Melnikov (2014)]

[Cascioli, Gehrmann, Grazzini, Kallweit, von Manteuffel, Pozzorini, Rathlev, Tancredi, Weihs (2014)]

[de Florian, Mazzitelli (2014)]

[Ferrera, Grazzini, Tramontano (2014)]

year

loop integrals only recently available: new approach to DE [Henn (2013)]

di-jets at NNLO

gluons only, leading colour [Gehrmann de Ridder, Gehrmann, Glover, Pires arXiv:1301.7310] gluons only, full colour [Currie, Gehrmann de Ridder, Glover, Pires arXiv:1310.3993]

flat scale dependence

corrections over NLO up 40% at high p_T

quark channels on the way...

IR subtractions: antennas two-loop amplitudes

[Anastasiou, Glover, Oleari, Tejeda-Yeomans (2000-2003)]

top pair production at NNLO

[Czakon, Fielder, Mitov (2013)]

STRIPPER - sector improved phase space for real radiation

[RV and RR in qq channel with Antenna subtraction: Abelof, Gehrmann de Ridder, Maierhofer, Pozzorini (2014)]

differential distributions on the way

loop integral basis still not known analytically

constraining PDFs top mass measurements

significant deviations from previous approximate resummations

pp—>H+j at NNLO

$$\frac{\sigma_{pp\to H+1j}}{\sigma_{pp\to H}} \sim 0.3$$

IR subtractions with sector decomposition (c.f. STRIPPER)

again: scale variations around order of PDF uncertainties

[more details in talk by Boughezal]

Higgs cross section at N³LO [see talk by Duhr]

also with antenna sub. gg→Hg [Chen, Gehrmann, Glover, Jaquier, (in prep.)]

pp—ZZ at NNLO

[Cascioli, Gehrmann, Grazzini, Kallweit, von Manteuffel, Pozzorini, Rathlev, Tancredi, Weihs arXiv: 1405.2219]

IR with q_T subtraction

recently completed loop integrals using new DE method

[Gehrmann, von Manteuffel, Tancredi, Weihs arXiv: 1404.4853]

[Caola, Henn, Melnikov, Smirnov arXiv: 1402.7078, arXiv:1404.5590]

NNLO ~ 11-17% over NLO (4-6% over NLO+gg initial state)

may suggest small corrections also in WW need to wait and see...

2→2 at NNLO: towards differential distributions

most experimental analyses need differential distributions

[Currie et al. (2013)]

talk by F. Caola LoopFest 2014

coloured final states at the limit of subtraction methods

highly CPU intensive

talk by M. Jaquier LoopFest 2014

progress being made: full distributions coming soon

beyond $2 \rightarrow 2$ at NNLO?

measurements from Run II likely to reach % level precision

particularly ratios e.g. 3j/2j for α_s

2→3 QCD needs new theoretical methods

unknown loop integrals

highly non-trivial kinematics

reduction algorithms

reduction algorithms

integration-by-parts identities:

[Tkachov, Chetyrkin (1981)]

very difficult with large numbers of scales

powerful codes: Reduze, FIRE, ...

maximal unitarity

[Kosower, Larsen (2011)]

on-shell reduction computation of master integral coefficients via contour integration

4-D studies with complicated kinematics

Kosower, Larsen, Caron-Huot, Johansson, Sogaard, Zhang

integrand reduction

[Mastrolia, Ossola (2011)] [SB, Frellesvig, Zhang (2012)]

generalized OPP method without IBPs using computational algebraic geometry

valid in d-D

not (yet) to minimal basis of integrals

Mastrolia, Mirabella, Ossola, Peraro, SB, Frellesvig, Zhang, Huang, Feng

five-gluon all-plus helicity amplitude [SB, Frellesvig, Yang (2013)]

loop integrals

Much improved understanding of integration methods and basis of functions

still more needed for full set of NNLO integrals

cross talk between physics and mathematics

canonical basis for differential equations

[Henn]

direct integration methods

[Brown][Panzer]

technology already playing leading role in N³LO computations [see talk by Duhr]

Part II: Monte-Carlo and precision phenomenology

new methods for MC simulations

NLO is the new standard precision for SM predictions

shower matching

MC@NLO, POWHEG

multi-jet merging

MEPS@NLO, FxFx, UNLOPS, MiNLO, Geneva

Frixione, Webber, Nason

Hoeche, Krauss, Schoenherr, Siegert, Frixone, Frederix, Lonnblad, Prestel, Platzer, Hamilton, Nason, Oleari, Zanderighi, Alioli, Baur, Berggren, Hornig, Tackmann, Vermilion, Walsh, Zuberi

now being implemented into MCs

SHERPA, HERWIG++/MATCHBOX, POWHEG-BOX, GENEVA, MADGRAPH5_aMC@NLO,...

sketch of PS matching

NLO+PS merging must avoid double counting

sketch of PS matching

multi-jet merging

LO example

LO methods

[Hoeche, Krauss, Schumann, Siegert (2009)]

unitary

CKKW-L

[Catani et al (2001)] [Lonnblad (2002)]

MLM

[Mangano]

MEPS

[Prestel, Lonnblad (2012)]

NLO methods

FxFx

[Frederix, Frixione (2012)]

NLOPS

[Prestel, Lonnblad (2012)] [Platzer (2012)]

MEPS@NLO

[Hoche et al. (2012)]

MINLO

[Hamilton et al. (2012)]

GENEVA

[Alioli et al. (2013)]

mild dependence on merging scale

precise SM backgrounds

$$pp \to H \to 4l$$

MEPS@NLO + 0,1 jets [OPENLOOPS + SHERPA: Cascioli et al. arXiv:1309.0500]

ME+PS see [aMC@NLO: Hirschi et al. arXiv:1110.4738]

Scale choices

dynamical choices often give more stable NLO predictions e.g H_T

multi-scale choices: e.g. MiNLO [Hamilton, Nason, Zanderighi (2012)]

ME merging at NLO (MEPS@NLO)

PS matched with S-MC@NLO

Fixed order

Higgs + jets

H+2j@NLO

[Campbell, Ellis, Zanderighi (2006)]

[MCFM: Campbell, Ellis, Williams (2010)]

[GOSAM+SHERPA: Cullen et al. (2012)]

fast analytic amplitudes with on-shell methods: Berger, Dixon, Del Duca, SB, Glover, Risager, Mastrolia, Williams, Sofianatos, Ellis, Campbell one-loop corrections in the heavy top quark effective theory

H+3j@NLO

[GOSAM+SHERPA: Cullen et al. (2013)]

VBF H+3j @ NLO

[VBFNLO: Camapanrio et al. (2013)]

likely very important for Run II

Higgs + jets

H+3j@NLO

[GOSAM+SHERPA: Cullen et al. (2013)]

LHC 8 TeV cteq6mE pdf anti-kt: R=0.5, $p_T > 20$ GeV, $|\eta| < 4.0$ 10^{-4} 10^{-5} 10^{-6} 10^{-6} 10^{-6} 10^{-6} 10^{-6} 10^{-7}

$$\sigma_{\text{LO}}[\text{pb}] = 0.962^{+0.51}_{-0.31}$$
, $\sigma_{\text{NLO}}[\text{pb}] = 1.18^{+0.01}_{-0.22}$

 $p_{T,i}[GeV]$

H+Ij,2j@NLO+PS

[MCFM+Powheg+MadGraph4: Campbell et al. (2012)]

H+0,1,2 j MEPS@NLO

[MCFM+SHERPA: Hoeche, Krauss, Schoenherr (2014)]

SM backgrounds: $pp \rightarrow H \rightarrow \gamma \gamma$

Significant higher order corrections

need a consistent description of hard photons

Fragmentation functions

$$pp \to \gamma \gamma$$

+0j @ NNLO [Cieri et. al (2011)]

experimental comparisons: "tight isolation accord"

$$pp \to \gamma \gamma + j$$

Cieri, de Florian [Les Houches WG report 1405.1067]

incl. fragmentation [GOSAM: Gehrmann, Greiner, Heinrich (2013)]

$$pp \to \gamma \gamma + 2j$$

[GOSAM: Gehrmann, Greiner, Heinrich (2013)]

[NJET+SHERPA: SB, Guffanti, Yundin (2013)]

[BLACKHAT+SHERPA: Bern et al. (2014)]

$$pp \to \gamma \gamma + 3j$$

[NJET+SHERPA: SB, Guffanti, Yundin (2013)]

mild dependence on smooth isolation cone parameters

SM backgrounds: $pp \rightarrow H \rightarrow \gamma \gamma$

$$pp \to \gamma \gamma + 3j$$

[NJET+SHERPA: SB, Guffanti, Yundin (2013)]

large NLO corrections in some regions

LO→NLO: reduction of scale dependence

fairly large variations outside standard range

scale variations may under-estimate theoretical uncertainties

multi-jets at NLO

asymmetric cuts

4 jets @ NLO

[BLACKHAT+SHERPA: Bern, Dixon, Hoeche, Ita, Kosower, Ozeren, (2011)]

[NJET+SHERPA: SB, Biedermann, Uwer, Yundin (2012)]

5 jets @ NLO

[NJET+SHERPA: SB, Biedermann, Uwer, Yundin (2013)]

3 jets @ NLO+PS

POWHEG+NLOJET++ [Kardos, Nason, Oleari (2014)]

di-jet cross sections

di-jet total cross section doesn't agree that well with the data

much better agreement with PS matched simulation

[BLACKHAT+SHERPA: Hoeche, Schoenherr (2012)]

comparison with HERWIG++ shower in progress

[HERWIG++/MATCHBOX: Bellm, Fischer, Gieseke, Plätzer, Rauch, Reuschle, Wilcock, Richardson]

NJET+MADGRAPH +COLORFULL(Sjödahl) +HERWIG/MATCHBOX

optimizing high multiplicty

Extract the most information from a single run

Flexible analysis with Root Ntuples

Factorization scale, Renormalization scale and PDF re-weighting BLACKHAT+SHERPA: public Ntuples

$$pp \to W^{[\to l\nu]}/Z^{[\to l^+ l^-]} + \le 4j$$
$$pp \to \le 4j$$
$$pp \to \gamma\gamma + \le 2j$$

[NTUPLEREADER: Bern et. al arXiv:1310.7439]

PDF errors still intensive (e.g. 100 sets for NNPDF)

FASTNLO v2 [Britzger et al. (2012)]

APPLGRID [Carli et al. (2009)]

also applications for NNLO distributions

PDF uncertainties ~ 3-5%

off-shell effects in top pair production

$$pp \to W^+W^-b\bar{b}$$

[Bevilacqua et al. (2011)] [Denner et al. (2011)] [Frederix arXiv:1311.4893 [Cascoli et al. arXiv:1312.0546]

[Heinrich, Maier, Nisius, Schlenk, Winter arXiv:1312.6659]

factorized (NWA)

non-factorized (off-shell)

GOSAM+SHERPA

factorized approx.
underestimates error
using template method
mass extraction from m_{lb}

effects O(IGeV)

off-shell effects in top pair production

$$pp \to W^+W^-b\bar{b}$$

[Heinrich, Maier, Nisius, Schlenk, Winter arXiv:1312.6659]

GOSAM+SHERPA

small effects in **charge** and **forward/backward** asymmetries

ratio A^{FB}_{II} / A^{FB}_{tt} more stable to NLO effects (scale variations, off-shell...)

QCD+EW

mixed EW+QCD effects can be large at high pT

Kuhn, Kulesza, Schulze, Pozzorini (2005)

e.g. ~30-50% at LHC-14 for pT~1-2 TeV in Z+j

Largely known for 2→2 processes

Nearly ready for production in automated codes

problem: book-keeping all interference terms between g and gs

see Z+2j [RECOLA: Actis, Denner, Hofer, Scharf, Uccirati]

e.g. GOSAM, RECOLA, OPENLOOPS, aMC@NLO

Outlook

- NLO: new standard accuracy for modelling SM backgrounds
 - wide range of phenomenological tools now available
 - 2→5/6 processes now possible
 - · detailed theory uncertainty estimates with ME+PS @ NLO
 - NNLO precision for 2→2 processes [di-jets, H+j, tt, VV]
 - beyond 2→2? automated NNLO? [more theory needed here]

Backup slides

Vector bosons at NNLO

state-of-the-art in high multiplicity → W+5 jets @ NLO

[BLACKHAT+SHERPA: Bern at al. arXiv:1304.1253]

Some recent updates:

VBFNLO: [v2.7.0: Baglio et. al (2014)]

$$pp \to VV \quad pp \to W\gamma\gamma + j$$

 $pp \to VV + 2j$

backgrounds to $pp \to VH$ with MEPS@NLO $pp \to WZ, ZZ, WWW, ZWW, WZZ, ZZZ$ [OPENLOOPS+SHERPA: Hoeche et al. (2014)]

recent updates in MCFM: [v6.8]

Higgs width $pp o ZZ o e^+e^-\mu^+\mu^-$ incl. gg inital states [Campbell, Ellis, Williams (2013)] $pp o \gamma\gamma\gamma$ and $\gamma\gamma j$ [Campbell, Williams (2014)]

POWHEG-BOX: (new V2)

 $pp \rightarrow WW, WZ, ZZ$ [Melia et al. (2011)] $pp \rightarrow WW + 2j$ EW and QCD [Jager, Zanderighi (2012)]

pp o ZZ + 2j EW and dim 6 CP viol. [Jager, Karlberg, Zanderighi (2013)]

Recent top studies at NLO

$$pp \to t\bar{t} + 2j$$
 NLO

[HELAC-NLO: Bevilacqua et al. (2010)]

 $pp \to t\bar{t}b\bar{b}$ NLO+PS

POWHEL: Garzelli et al. (2013)

 $pp \to t\bar{t} + W^{\pm}/Z/\gamma$ NLO+PS

POWHEL: Garzelli et al. (2012)

POWHEL: Kardos, Trócsányi (2014)

 $pp \to W^+W^-b\bar{b}$ NLO+PS

POWHEL: Garzelli et al. (2014)

 $pp \to t\bar{t}t\bar{t}$ NLO

[HELAC-NLO: Bevilacqua, Worek (2012)]

full mass effects $pp \to b \bar{b} b \bar{b}$ NLO

[HELAC-NLO: Bevilacqua, et al. (2013)]

 $pp \to t\bar{t} + j$ NLO+PS

POWHEL: Kardos et al. (2011)

[Alioli, Moch, Uwer (2011)]

 $pp \rightarrow t\bar{t} + 0, 1, 2j$ MEPS@NLO

[OPENLOOPS+SHERPA: Hoeche et al. (2014)]

POWHEL = HELAC-NLO+POWHEG-BOX

precise SM backgrounds

top backgrounds: off-shell with full b-quark mass effects

$$pp \to H \to l^+ \nu l^- \bar{\nu} b \bar{b}$$

[aMC@NLO: Frederix arXiv:1311.4893]

[OPENLOOPS+SHERPA: Kallweit et al. arXiv:1312.0546]

top coupling measurements

probes for ttH coupling at NLO accuracy

$$pp \to t\bar{t}H + j$$
 NLO

[GOSAM+SHERPA: van Deurzen et al. arXiv: 1307.8437]

constraining ttZ couplings at NLO accuracy

[Schulze, Rontsch arXiv:1404.1005]

