ATLAS & CMS Higgs Prospects for future (HL)LHC runs

tíme

O. Arnaez - Rencontres du Vietnam

Introduction

Performance and methodology

 Experimental environment are degraded at high number of interactions per bunch-crossing, μ, because of pile-up in the subdetectors

- Higgs prospects are studied by refining current analyses or designing new ones
 - CMS assumes that the upgraded detector will compensate the effects of higher pile-up and extrapolates event rates from existing Run I-like selections
 - ATLAS evaluated the performance using full-simulation studies (sometimes similar, sometimes worse than today) and most often smeared truth-level info with efficiencies/resolution
 - Different scenarios usually considered for what concerns the reduction of systematic uncertainties (in particular the signal theoretical ones)

15 août 2014

A peak! A cape! It's a peninsula!

300

- ZZ final states remain very clear channels
- The statistics allow to probe many production modes
- Total H production cross-section uncertainty can be constrained by ZZ events at O(few %)
 - CMS showed that these channels could also benefit from a tracking system extended in rapidity (increase of acceptance)

SM	$\Delta\mu/\mu$ ATLAS	Total	Stat.	Expt. syst.	Theory
	Production mode		3	500 fb^{-1}	
	ggF	0.152	0.066	0.053	0.124
	VBF	0.625	0.545	0.233	0.226
	WH	1.074	1.064	0.061	0.085
	ttH	0.535	0.516	0.038	0.120
	Combined	0.125	0.042	0.044	0.108
			3	000 fb^{-1}	
	ggF	0.131	0.025	0.040	0.124
	VBF	0.371	0.187	0.225	0.226
	WH	0.390	0.375	0.061	0.085
	ZH	0.532	0.526	0.038	0.073
	tĪH	0.224	0.184	0.034	0.120
	Combined	0.100	0.016	0.036	0.093

Events/1.0 GeV

Diphoton channels

- Yukawa coupling measurements
- Measurements limited by current • signal uncertainties
- Reaching the ~3.5% level of precision • on the combined signal strength (without th. uncertainties)

15 août 2014

	Production mode	Total	Statistical	Experimental	Theoretical
	tīH	+21 -17	+13 -12	+5 -4	+17 -11
1	WH	+26 -25	+21 -20	+13 -12	+10 -8
	ZH	+35 -31	+32 -29	+7 -7	+12 -8
	ggF	+19 -14	+3 -3	+1 -1	+19 -14
	VBF	+29 -29	+18 -18	+1 -1	+23 -23

WW, $b\bar{b}$ and $\tau\tau$

• Going from 8 to 14 TeV, tt increases ~1.7x faster than the signal ; jet counting affected by pile-up conditions \rightarrow in general, current categories have a largely degraded S/B \rightarrow HL-LHC studies require dedicated optimizations

 $\tau\tau$ expectations on the signal strength precision are 8(5)% with current (/2) theory uncertainties

15 août 2014

Rare channels

- Rare decays are the ones benefitting the most from the large HL-LHC dataset
- Zγ sensitive to potential new particles in loop
 - ~20-30% precision on signal strength (~4 σ) expected by CMS/ATLAS

Channels summary

CMS Projection

ATLAS Simulation Preliminary $\sqrt{s} = 14 \text{ TeV}: \left[\text{Ldt} = 300 \text{ fb}^{-1} \right]; \left[\text{Ldt} = 3000 \text{ fb}^{-1} \right]$

Dashed band = adding current theo. unc.

Channels summary

CMS Projection

Updated **ATLAS** Simulation Preliminary by hand $\sqrt{s} = 14 \text{ TeV}: \left[\text{Ldt} = 300 \text{ fb}^{-1} ; \right] \text{Ldt} = 3000 \text{ fb}^{-1}$

Combination

- Inputs from ATLAS and CMS concerning the individual channels are very similar although techniques to obtain those prospects are quite different
- As for run-I data, those channels prospects can be combined to obtain precision on couplings measurements
- One very simple model consists in fitting scale factors for fermions on one hand and bosons on the other hand:

• ATLAS combined results do not include yet the new information for Z_γ, VH(_{γγ}), ttH(_{γγ}) and VH(bb)

Combination (2)

- Inputs from ATLAS and CMS concerning the individual channels are very similar although techniques to obtain those prospects are quite different
- As for run-I data, those channels prospects can be combined to obtain precision on couplings measurements
- One very simple model consists in fitting scale factors for fermions on one hand and bosons on the other hand:

 ATLAS combined results do not include yet the new information for Zγ, VH(γγ), ttH(γγ) and VH(bb)

Couplings fit

 Using the κ-framework one can fit couplings scale factors or their ratios to get rid of total width assumptions
See Giovanni's talk
ATLAS
Simulation Preliminary

ATLAS combined results do not

for $Z\gamma$, VH($\gamma\gamma$), ttH($\gamma\gamma$) and VH(bb)

include yet the new information

15 août 2014 O. Arnaez

 $\Delta\lambda$

Missing partial decay width ?

• Using Z-tagging, direct search for invisible branching fraction in ZH events can be carried out

BR($H \rightarrow \text{inv.}$) limits at 95% (90%) CL	300 fb^{-1}	3000 fb^{-1}	
Realistic scenario	23% (19%)	8.0% (6.7%)	ATLAS
Conservative scenario	32% (27%)	16% (13%)	

- Through the coupling fit, CMS expects to constrain the BR(inv) to better than 11%
- Limits on the invisible branching fraction can be interpreted as bounds on the strength of the interaction between the dark matter and the Higgs boson

Total width

• Interference of the $H \rightarrow \gamma\gamma$ signal with respect to the continuum diphoton background (gg $\rightarrow \gamma\gamma$ box diagrams)

- New techniques based on off-shell measurements have not been extrapolated yet to highluminosity datasets:
 - Currrent limits at 5-10x $\Gamma_{_{SM}}$
- See Giacomo's talk
- Almost already theoretical uncertainties-limited

Probing the coupling structure

- ZZ events provide the full angular information
 - See Jana's talk
- Very sensitive to non-SM (0^+) contributions

$A \rightarrow hZ$

0.35

0.3

0.25

0.2

0.15

0.1

0.05

ATLAS Preliminary, Simulation

 $m_A = 400 \text{ GeV}$

m₄ = 500 GeV

 $m_A = 700 \text{ GeV}$

 $m_{\Delta} = 260 \text{ GeV}$

a.u.

• 2HDM models can be probed in $A \rightarrow Zh \rightarrow 2l2b$ selections

See Maxim's talk

Source	Selected Events
B, Bj, Bjj-vbf, BB, BBB	$5.8 imes 10^4$
tj, tt, tB, ttB	$6.6 imes 10^4$
h (m _h =125 GeV)	< 1%
Total Background	1.2×10^{5}
$\mathcal{A} \rightarrow Zh \ (m_{\mathcal{A}} = 300 \text{ GeV})$	$1.3 imes 10^4$
$\mathcal{A} \rightarrow Zh \ (m_{\mathcal{A}} = 500 \text{ GeV})$	210
$\mathcal{A} \rightarrow Zh \ (m_{\mathcal{A}} = 800 \ GeV)$	85

Expected events for 3000 fb⁻¹

m^rec ∆

m₄ = 900 GeV

.... m_{llbb}

2HDM expected sensitivity

MSSM µµ limits

- high tan β region complementary to $A \rightarrow Zh$ for MSSM constraints
- High mass resolution at high dimuon mass
- Search for two production modes
 - gluon fusion
 - b associated production

15 août 2014

O. Arnaez - Rencontres du Vietnam

FCNC top to Higgs

- FCNC processes are forbidden at tree level in the SM
- $t \rightarrow cH$ observation in ttbar events would certainly be a sign of new physics

Typical BRs of EW FCNC-top decays:

Process	SM	QS	2HDM-III	FC-2HDM	MSSM
$t \rightarrow u\gamma$	$3.7 \cdot 10^{-16}$	$7.5 \cdot 10^{-9}$			$2 \cdot 10^{-6}$
$t \rightarrow uZ$	$8 \cdot 10^{-17}$	$1.1 \cdot 10^{-4}$		_	$2 \cdot 10^{-6}$
$t \rightarrow uH$	$2 \cdot 10^{-17}$	$4.1 \cdot 10^{-5}$	$5.5 \cdot 10^{-6}$	—	10 ⁻⁵
$t \to c\gamma$	$4.6 \cdot 10^{-14}$	$7.5 \cdot 10^{-9}$	$\sim 10^{-6}$	~ 10 ⁻⁹	$2 \cdot 10^{-6}$
$t \rightarrow cZ$	$1 \cdot 10^{-14}$	$1.1 \cdot 10^{-4}$	$\sim 10^{-7}$	$\sim 10^{-10}$	$2 \cdot 10^{-6}$
$t \to cH$	$3 \cdot 10^{-15}$	$4.1 \cdot 10^{-5}$	$1.5 \cdot 10^{-3}$	$\sim 10^{-5}$	10 ⁻⁵

• Event selection relies on diphoton Higgs decay for its clear signature

H

t

Di-Higgs boson production

The Higgs mechanism and the shape of its potential rely on the self-coupling term of the Lagrangian

00000000

 $V(\phi) = \mu^2 \phi^2 / 2 + \lambda \phi^4 / 4$

• Di-Higgs boson production dominated by box diagram

Η

- Negative interference with self-coupling diagrams
- Low cross-section
- Often large background
 - Large contributions from top and/or fakes processes
- Difficult (new!) analyses to develop

20222222

 Many channels are now being explored in order to assess the potential for the di-Higgs boson observation and the sensitivity to the self-coupling at the HL-LHC See José's talk

15 août 2014

O. Arnaez - Rencontres du Vietnam

Conclusions

- Prospects for the precision Higgs couplings measurements are very promising !
 - Often better than 10% for couplings
 - allowing for constraining new physics which would have not shown up elsewhere in the EWSB sector
 (J.Wells)
- Also, great potential for direct evidence of new physics in
 - (Not so?) rare decays
 - 2DHM models-like signatures
 - FCNC
- Now working on

"Two Higgs bosons get into an elevator...' (maintenance today)

- Adding more rare channels to this picture
- Establishing the potential for di-Higgs bosons measurements and sensitivity to the self-coupling
- Consolidating the detector designs and running conditions in order to achieve those goals
- Writing the developments of this story

15 août 2014

BACKUP

