

Three Years of Remarkable LHC Operations: First Steps in an Incredible Journey

With the discovery of a Higgs boson, the SM could be completed → and ... it looks very much like "the SM Higgs Boson »

Higgs is a journey, not a destination

Is the SM Minimal? (2HDM/MSSM, NMSSM Models, Multi-Higgs Cascades)

Rare Higgs Modes, FCNC, LFV Higgs Decays, Long-Lived Higgs

Higgs: A Portal to BSM

THOUGHT OF

Tool for Discovery - Portal to DM (invisible decays), hidden sectors.

Higgs Boson Pair Production, resonant searches, etc ...

Two Higgs Doublet Models (2HDM)

- ➤ Effective theory; extension of SM by adding a second complex Higgs doublet
- 5 Higgs Bosons: 2 CP-even neutral bosons: h (light) & H (heavy), 1 CP-odd neutral boson (A) and 2 charged bosons (H±)
- 6 Parameters: $m_{h'}$, $m_{H'}$, $m_{A'}$, $m_{H\pm}$; α = mixing between h and H; $\tan\beta = \langle \text{vev} \rangle_{\text{u}} / \langle \text{vev} \rangle_{\text{d}}$ satisfying $\langle \text{vev} \rangle_{\text{u}}^2 + \langle \text{vev} \rangle_{\text{d}}^2 = (246 \text{ GeV})^2$
- > Flavor conservation can be enforced via symmetries
- Four types of 2HDM, depending on the way the Higgs doublets couple

Type I: one doublet couples only with vector bosons [Fermiophobic], other only with fermions
Type II: one doublet couples with up-type quarks, other with down-type quarks and leptons [MSSM-like]
Type III: one doublet couples with quarks as in Type I, other with leptons as in Type II [lepton-specific]
Type IV: one doublet couples with quarks as in Type II, other with leptons as in Type I [Flipped]

2HDM with natural flavor conservation:

➤ MSSM: 2HDM Type II + SUSY sector

						V 1
Coupling scale factor	Type I	Type II	Type III	Type IV	_ >	NMSSM: MSSM+1 additional singlet
κ_V	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$	$\sin(\beta - \alpha)$		→ 7 Higgs bosons:
κ_u	$\cos(\alpha)/\sin(\beta)$	$\cos(\alpha)/\sin(\beta)$	$\cos(\alpha)/\sin(\beta)$	$\cos(\alpha)/\sin(\beta)$		5 neutral h1, h2, h3 (CP even), a1,
κ_d	$\cos(\alpha)/\sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$\cos(\alpha)/\sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$		a2 (CP odd), 2 charged (H±)
ΚĮ	$\cos(\alpha)/\sin(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$-\sin(\alpha)/\cos(\beta)$	$\cos(\alpha)/\sin(\beta)$		Flavor-changing Vukawa couplings ar

G.C. Branco et al., Phys. Rep. 516 (2012) 1

➤ Flavor-changing Yukawa couplings are in principle possible (Type III models)

Beyond the Standard Model Higgs Sector

2 HDM/ MSSM

Pseudoscalars in Extended Higgs Sector:

Model	Higgs sector	CP-odd	SUSY partners
2HDM: Two-Higgs- Doublet-Model	Two doublets → 5 Higgs bosons (h, H, H ⁺ , H ⁻ , A)	A (heavy)	None
MSSM: Minimal Supersymmetric Standard Model	Two doublets → 5 Higgs bosons (h, H, H ⁺ , H ⁻ , A)	A (heavy)	+ sparticles
NMSSM: Next-to-minimal Supersymmetric Standard Model	Two doublets, one singlet → 7 Higgs bosons (h ₁ , h ₂ , h ₃ , H ⁺ , H ⁻ , a ₁ , a ₂)	a ₁ , a ₂ (light)	+ sparticles

Summary of 2 HDM / MSSM and NMSSM Searches

		CMS			ATLAS		
	L(fb ⁻¹)	Result	Reference	L(fb ⁻¹)	Result	Reference	
			2 HDM Neutral ar	nd Charged Higgs:			
$\phi \to \tau\tau$	25	m _A – tanβ	arXiv: 1408.3316	20	m _A -tanβ	ATLAS-CONF- 2014-049	
φ → bb	5	m_A - $tan\beta$	PLB 722, 207 (2013)	-	-	-	
$H^+ \rightarrow \tau \nu +$ lep/ $\tau \nu$ +jet	5	$Br(t \rightarrow bH^{+})$	CMS-HIG-12-052	5 20	Br (t \rightarrow bH ⁺) m_A -tan β σ (H+)	JHEP03(2013)076 ATLAS-CONF- 2013-090	
H⁺ → cs	20	$Br(t \rightarrow bH^+)$	CMS-HIG-13-035	5	$Br(t \rightarrow bH^+)$	EPJC736(2013)2465	
		2 HDM Higgs Cascac			ade and Indirect Limits:		
$H\rightarrow W^{\pm}H^{\mp}\rightarrow W^{\pm}W^{\mp}h(bb)$	-	-	-	20	m(H ⁺)-m(h ⁰)	PRD89,032002(2014)	
H→ hh, A→Zh	20	tan β – cos $(\beta-\alpha)$	CMS-HIG-13-025	-	-	-	
Indirect limits γγ,VV,ττ,bb	-	-	-	25	$tan \beta - cos (\beta - \alpha)$	ATLAS-CONF- 2014-010	
		NMSS	M Neutral Bosons;	Doubly	Charged H	iggs:	
h1 → 2a1 → 4μ	21	$\sigma xBR(a\rightarrow 4\mu)$	CMS-HIG-13-010	-	-	-	
h1 → a1 → 2μ	1	σxBR(a → 2μ)	PRL109,121801(2012)	0.04	σxBR(a→2μ)	ATLAS-CONF- 2011-020	
h1→2a1→4γ	-	-	-	5	$\sigma xBR(a\rightarrow 4\gamma)$	ATLAS-CONF- 2012-079	
Doubly charg $\Phi^{++} \rightarrow l^+ l^+$	5	$ \begin{array}{c} \text{oxBR}(\Phi^{++} \rightarrow \\ l^+ l^+); \end{array} $	EPJC 72 (2012) 2189	1.5	$\sigma xBR(\Phi^{++} \rightarrow l^+l^+);$	PRD85,032004(2012)	

MSSM Landscape of the BSM Higgs Searches

Five Higgs Boson in MSSM:

→ CP-even (h, H); CP-odd (A), H^{+/-}: assume 125 GeV is light CP-even Higgs in 2HDM?

6 New MSSM Benchmark Scenarios:

- Proposed by M. Carena et al., Eur. Phys. J. C73, 2552(2013)
- Each addressing certain phenomenology

♦ High tan β : ϕ →ττ, ϕ →μμ; H⁺→τν, tb A. Djouadi et al., arXiv: 1307.5205 50 Direct Constraints 25 10 $\tan \beta$ MSSM Higgs fit 7.5 2.5 Fit of μ ratios 250 155 200 350 500 750 $M_A(GeV)$ Intermediate tanβ: $H/A \rightarrow \chi_i^0 \chi_j^0, \chi_i^+ \chi_j^-; H^+ \rightarrow \chi_i^+ \chi_j^0$

♦ Low tan β: $A \rightarrow Zh$; $H \rightarrow hh$, tt;

 $H^+\rightarrow cs$, cb, τv , tb, Wh

Neutral MSSM Higgs Boson φ(h, H, A) Searches

Production via gluon fusion (b-, t- loops) and associated b-quark annihilation

 \triangleright 2 HDM and Fermions: enhanced coupling to b-quarks and τ -leptons

 $(g_{b\bar{b}H}^{MSSM} = \tan \beta \cdot g_{b\bar{b}H}^{SM})$ production rate enhanced × tan² β); associated production dominant

- small-moderate $tan\beta$: gluon-fusion production is dominant
- high tanβ: b-associated production is enhanced
- \triangleright Decay Modes: bbar (90%), ττ (10%), μμ (0.04%)

Coll.	Channel	Dataset	Cite
CMS	TT	25fb-1(7+8TeV)	CMS-PAS-HIG-13-021
ATLAS	ττ/μμ	5fb-1(7TeV)	JHEP02(2013)095
LHCb	ττ	1fb-1(7TeV)	JHEP05(2013)132
D0	ττ+bb	5-7fb-1(2TeV)	PLB 710, 569 (2012)
D0+CDF	bb	3-5fb-1(2TeV)	PRD 86, 091101 (2012)
CMS	bb	3-5fb-1(7TeV)	PLB 722, 207 (2013)

	Production:
ত ^{10⁴} চ	
<u>5</u>	—— bb→φ (tan β=30) —— bb→φ (tan β=20)
3	—— gg→φ (tan β=30)
10 ²	— gg→φ (tan β=20)
S 10	— gg→ Higgs(SM)
BR(Higgs/♦→ττ) [pb]	bb→
3R(
ш 10 ⁻¹	gg→¢
10-2	
10 ⁻³	
	gg→Higgs(SM)
10-4	The Base of Parks
10 ⁻⁵	VBF Higgs(SM)
10-6	
	100 150 200 250 300 350 400 450 500 m _{A/Higgs} [GeV]
Townson.	m _{A/Higgs} [GeV]

Neutral MSSM Higgs Boson φ(h, H, A) Searches

- **Cover five of six possible \tau\tau decay patterns:** $\tau_{\mu}\tau_{had}$, $\tau_{e}\tau_{had}$, $\tau_{had}\tau_{had}$, $\tau_{e}\tau_{\mu}$, $\tau_{\mu}\tau_{\mu}$
- Split events into b-tag and no-b-tag categories

	ATLAS	CMS
Channels	$τ_h τ_h$, $e τ_h$, $μ τ_h$, $e μ$ (94%)	$τ_h τ_h$, $e τ_h$, $μ τ_h$, $e μ$, $μ μ$ (97%)
Categories	II, Ih: b-tag / b-veto Ih high-mass: incl. hh: single-/di-tau trigger	all channels: b-tag / no b-tag
Discriminant	II, Ih: di-tau mass taking missing energy into account (MMC) hh: total transverse mass	all channels: di-tau mass taking missing energy into account (SVFit)

- Dilepton: sensitive at low mass where hadronic background is large
- Semi-leptonic: sensitive at wide range of masses
- Hadronic: sensitive at high mass:hadronic bkg. decreases

Neutral MSSM Higgs Boson φ(h,H,A) → ττ Search

Di-tau mass reconstruction (SVFit) based on likelihood method using $e/\mu/\tau$ momenta and E_T^{miss} information

J. Phys. Conf. Ser. 513(2014)022035

➤ Analysis is similar to SM H → ττ but optimized for different production mechanisms and Higgs boson masses

NIMA654(2011) 481

- Separate optimizations in $\tau_{lep}\tau_{had}$ channel for the high- and low- mass
- → best sensitivity at high mass
 - $\tau_{lep}\tau_{lep}$ and $\tau_{lep}\tau_{had}$ channels combined for m_A <200 GeV
 - $\tau_{lep}\tau_{had}$ and $\tau_{had}\tau_{had}$ channels combined for $m_A \ge 200$ GeV

Model-Independent Limits: Neutral Higgs Boson φ → ττ Searches

- No evidence of signal beyond the SM found
- Separate for gluon-fusion and b-associate production mechanisms
 - \rightarrow Calculate σ^*BR limit on one process while the other is left floating freely

arXiv: 1408.3316

Model-independent
 σ×BR limits achieve
 limits down to ~10fb at
 high mass

ATLAS-CONF-2014-049

$\varphi(h, H, A) \rightarrow \tau\tau$: MSSM Interpretation

Model-Dependent Interpretation: Statistical Approaches

- Old Approach:
- Test MSSM vs background only (h+H+A+BG) vs (BG)
- New discovered particle was not taken into account
- New Approach:
- Take into account the discovered Higgs boson at 125 GeV
- Hypothesis test of MSSM vs SM: (h+H+A+BG) vs (h_{SM}+BG)
- Presence of h(125) weakens the MSSM limits

https://twiki.cern.ch/twiki/bin/viewauth/CMS/Hig13021PaperTwiki

M(A) – tanß Exclusion Limits: MSSM Benchmark Scenarios

19.7 fb⁻¹ (8 TeV) + 4.9 fb⁻¹ (7 TeV

Reduced

 σ (ggF)

MSSM light-stop scenario

m_₄ [GeV]

- ► Very low tan β upper limits (tan β < 5 for $m_A < 250$ GeV → touching the LEP constraint at low m_A
- m_A-tanβ exclusions in new benchmark scenarios (arXiv:1302.7033)
- $ightharpoonup m_h^{mod}$ scenario much better suited for mass of h(125), than m_h^{max} scenario

Charged MSSM Higgs Boson Searches

Relation between m_{top} and M_{H±} dictates both production mode and decay channels

- \triangleright Decay via H+ → τv / cs / tb, depending on m(H+) and tan β
- \triangleright τ / b / top reconstruction play a central role in the searches

Low mass $H\pm (M_{H\pm} < m_{top})$: Final state: $H\pm bWb$

Dominant Decays:

- $tan\beta > 3$: B(H+ $\to \tau \nu$)~90%
- $\tan \beta < 1$: B(H+ \to cs)~70%

Heavy ($M_{H\pm} > m_{top}$): Final state: tH±

- $H \pm \rightarrow tb$ dominant
- H± $\rightarrow \tau \nu$ can be sizeable

Coll.	Channel	Dataset	Cite
ATLAS	тv+jets	20fb-1(8TeV)	ATLAS-CONF-2013-090
ATLAS	τν+lep	5fb-1(7TeV)	JHEP03(2013)076
ATLAS	CS	5fb-1(7TeV)	EPJC 73 6 (2013) 2465
CMS	τν+lep/jet	5fb-1(7TeV)	CMS-PAS-HIG-12-052
CDF	CS	2fb-1(2TeV)	PRL 103, 101803 (2009)
D0	tb	1fb-1(2TeV)	PRL 102, 191802 (2009)

Charged Higgs Boson Searches (H+ → cs)

H+ \rightarrow cs dominant decay mode for tan β<1 and m(H+)<m _{top}

Same topology as $t\bar{t}$ decays in lepton + jets channel

→ Search for second peak in di-jet mass distribution

SM $t\bar{t}$ semi-leptonic H+ production in top decays

- Kinematic fit of both top candidates m=172.5 GeV → improves mass resolution of *cs* candidate (WH separation)
- \triangleright Bkgs.: $t\bar{t}$, W/Z+jets, di-bosons, QCD
- Mjj (invariant mass of non-b-tagged jets) distribution after kinematic fit → no signal

corresponding production & decay topology

Charged Higgs Boson Searches (H+ -> τν)

$H+ \rightarrow \tau \nu + jets (light and heavy H+)$

Model-independent limits:

- Light H+:
- BR $(t \rightarrow H + b) = 0.24 2.1\%$ for 90<*mH*+<160 GeV
- ➤ Heavy H+:
- $\sigma(H+)=0.017-0.9 \text{ pb}$ for 180< mH+<600 GeV
- Results interpreted in MSSM mhmax scenario
- ongoing searches: heavy $H+ \rightarrow tb$

2HDM Higgs Cascade: Searches for Charged Higgs Boson

2 HDM phenomenology allow for cascade decays: $H \rightarrow W \pm H^{\mp} \rightarrow W \pm W^{\mp} h \rightarrow W^{\pm} W^{\mp} bb$

- No particular model assumed
- > CP-odd (A) too heavy to participate in decay chain
- Only consider gluon fusion production
- h0 (125 GeV) is the SM Higgs Boson
 → exploit h→bb decay to gain statistics
- Drawback: same final state as tt semileptonic (l+jets) → use MVA to discriminate against bkg.
- Produce limits in the (mH,mH±) plane

➤ Upper limits : larger than theoretical (SM-like) H⁰ Cross-section

> Approaching SM pred. in high-mass region

2 HDM Higgs Cascade: Searches for H→ hh and A→ Zh

h (126) is the SM-like Higgs boson:

- $\mathbf{H} \rightarrow \mathbf{hh}$ dominant in $2m_h < m_H < 2m_{top}$
- **A** \rightarrow **Zh** dominant in $m_h + m_z < m_H < 2m_{top}$

Exclusive search in various final states:

- \blacktriangleright Multileptons: ≥ 3 leptons; 0 or 1 τ had
- Diphotons: = 2 photons; at least one lepton

Leptons	Photons	OSSF pairs	Hadronic $ au$	b-tag
4	0	0, 1 or 2	0 or 1	0 or 1
3	0	0 or 1	0 or 1	0 or 1
2	2	0 or 1	0	-
1	2	-	0	-
1	2	-	1	-
0	2	-	1 or 2	-

H→hh:

CMS-PAS-HIG-13-025

	$h \rightarrow WW^*$	$h \to ZZ^*$	h o au au	$h \rightarrow bb$	$h o \gamma \gamma$
$h \rightarrow WW^*$	√	✓	✓	X	✓
$h \to ZZ^*$	_	√	√	✓	✓
h o au au	-	<u>-</u> 8	✓	X	✓
$h \rightarrow bb$	_	_	_	X	X
$h o\gamma\gamma$	=	-	-	-	X

$H \rightarrow Zh$:

	$h \rightarrow WW^*$	$h \to ZZ^*$	h o au au	$h o \gamma \gamma$
$Z \rightarrow ll$	√	√	✓	✓
$Z \rightarrow qq$	X	√	X	X
$Z \rightarrow \nu \nu$	X	√	X	X

- Use SuShi + 2HDMC to calculate cross sections and BRs from theory
- Translate limits on σ*BR in limits on α and β (determine cross-section and BRs for H and A production/decays)
- > cos(β -α) = 0: Decoupling limit: h behaves like in SM

Direct Constrants: on 2 HDM (Type I and Type II) Models

Reinterpretation of h(126) Couplings in 2 HDM Model

- Parameterize difference in Higgs couplings w.r.t. SM (production/decay rates in $\gamma\gamma$, ZZ, WW, $\tau\tau$, bb interpret in each type of **2HDM)**
- Assume Higgs decay kinematics not significantly altered and h(126) light CP-even neutral Higgs
- Rescaling rates according to k_i for the SM production modes (bbH included as correction scaling with the square of b-quark coupling)
- Extracting from k_i information on tan β and $\cos(\beta-\alpha)$

Higgs Sector in NMSSM

NMSSM: additional gauge singlet w. r. t. MSSM → further extend Higgs sector: 1 additional CP-even and 1 additional CP-odd wrt MSSM

scalars with $m_h < 125$ not excluded in NMSSM)

2m,

2m_r

2m_h

Motivated by two model interpretations:

- * NMSSM: • h_{1,2} (SM-like Higgs) decays to 2 a₁ (*CP*-odd)
- BR(a1 \rightarrow µµ) sizeable, if 2mµ<ma1<2m τ

❖ Dark SUSY:

- $h\rightarrow 2n_1\rightarrow 2n_D 2y_D\rightarrow 2n_D 4\mu$
- n₁ lightest neutralino, n_D -dark neutralino, γ_D - dark photon
- BR($y_D \rightarrow \mu\mu$) up to 45% depending on y_D mass

125/2 GeV

 $\rightarrow 2m_{\tau} < m_{h_1} < 2m_h: h_2 \rightarrow h_1h_1 \rightarrow 4\tau + X$

 $> 2m_u < m_{h1} < 2m_\tau : h_1 \rightarrow a_1 a_1 \rightarrow 4\mu + X$

- $> 2m_b < m_{h1} < 125/2 \text{ GeV}: h_2 \rightarrow h_1 h_1 \rightarrow \tau\tau bb + X$
- $Wh_2 \rightarrow h_1h_1 \rightarrow bbbb$ $ightharpoonup 125/2 \text{ GeV} < m_{h1} < 125 \text{ GeV} :$
 - $h_3 \rightarrow h_2 h_1 \rightarrow WWbb$

125 GeV

m_{H1} axis

Can be very light

Neutral NSSM Higgs Boson Searches: h → 2a +X → 4µ + X

- ➤ Search for pair production of a new light boson from the decay of a SM-like Higgs boson:
- NMSSM: substantial BR $a \rightarrow \mu\mu$ if $2m_{\mu} < m_{a} < 2m_{\tau}$ h $\rightarrow 4\mu$ +X final state is explored
- Background dominated by bb and J/ψ pair production
- 1 event observed in signal region, compatible with bkg. prediction 3.8 ± 2.1
- Limit obtained for $0.25 < m_a < 3.55$ GeV, $m_b > 86$ GeV

 m_{a_a} [GeV/ c^2]

• Search interpreted for NMSSM, dark-SUSY models as well as

model-independent

nMSSM Interpretation:

CMS-PAS-HIG-13-010

Dark SUSY Interpretation:

Model - Independent Limit:

Summary of Rare, FCNC, LFV and Invisible Higgs Decays

	CMS			ATLAS		
	L(fb ⁻¹)	Result	Reference	L(fb ⁻¹)	Result	Reference
			Rare SM Hi	ggs Deca	ays:	
h → μμ	25	$\mu(\sigma/\sigma_{SM})\!\!<7.4$	CMS-HIG-13-007	25	μ (s/s _M)< 7.2	arXiv: 1406.7663
$h \rightarrow Z\gamma$	25	μ (s/s _M)< 10	arXiv: 1307.5515	25	$\mu (\sigma/\sigma_{SM})\!\!<11$	arXiv: 1402.3051
h → γ*γ → μμγ	20	$\mu \left(\sigma / \sigma_{SM} \right) < 10$	CMS-HIG-14-003	-	-	-
	FCNC, Lepton Flavour Violating and Exotic Higgs Decays:					
t → cH	20	$BR(t \rightarrow cH) < 0.56 \%$	CMS-HIG-13-034 CMS-HIG-14-001	25	$BR(t \rightarrow cH) < 0.83 \%$	arXiv: 1403.6293
Η → τμ	20	BR (H → τμ) < 1.57%	CMS-HIG-14-005	-	-	-
$\Phi \rightarrow \pi_V \pi_V$ (long-lived)	-	-	-	25	σxBR vs. decay length	ATLAS-CONF-2014- 041
	20 BR (H $\rightarrow \tau \mu$) < CMS-HIG-14-005					
Z(ll) - H(inv)				25	BR(inv)<0.75	PRL112,201802(2014)
Z(bb)-H(inv)	25	BR (inv) <	arXiv: 1404.1344	-	-	-
VBF-H(inv)		0.58		-	-	-

- Searches for particles with long lived signatures at colliders → see talk Rachel Christine Rosten
- Comparison of collider and non-collider DM results → see talk Phat Srimanobhas

Rare SM Higgs Decays

Rare Higgs decays as probes of new couplings and SM extensions (may enhance SM branching ratios)

Decay mode	Limit (σ/σ _{SM})@ 125 GeV			
	CMS	ATLAS		
$h \rightarrow \gamma^* \gamma \rightarrow \mu \mu \gamma$	< 10	-		
h→Zγ	< 10	< 11		
h→μμ	< 7.4	< 7.2		

\bullet H \rightarrow µµ

- SM BR @125 GeV $\simeq 2 \times 10^{-4}$
- probes directly 2nd generation Higgs fermion coupling

$+ H \rightarrow Zy/y^*y$

- SM BR @125 GeV $\simeq 1 \times 10^{-4}$ (Z \rightarrow ee, $\mu\mu$)
- constrains new particle contributions in loops

$\varphi(h,H,A) \rightarrow \mu\mu$ Final State:

- Clean signature μμ resonance
- Main backgrounds: \mathbb{Z}/γ^* , tt, \mathbb{W}
- Categorization of events
- mass resolution
- production ggF/VBF mechanism
- tan β can be extracted from the signal mass M_{A0} = $M_{\mu^+\mu^-}$ and its width ($\Gamma_{\mu^+\mu^-}$)

Rare SM Higgs Decays

❖ h→ $Z\gamma$ Final State: sensitive to BSM contributions in loops → e.g. composite Higgs

- μμγ and eeγ final states
- Main backgrounds: Zy EWK® production, FSR in $Z\rightarrow ll$ decays, jets (mis)identified as photon in Z+jets events
- > m(lly) use to extract limits

$+ h \rightarrow \gamma * \gamma \rightarrow \mu \mu \gamma$ Final State: Sensitive to BSM loop/tree level processes \rightarrow e.g. new resonances

- ➤ "Dalitz decay": internal conversion of γ^* into $\mu\mu$
- $ightharpoonup m_{\mu\mu} < 20 \text{ GeV to separate } \gamma^* \gamma$ from $Z\gamma$
- Similar sensitivity as in H \rightarrow Z($\rightarrow \mu\mu$) χ

	SNC	Coll.	Dataset	Cite
2 HDM Higgs and FCNC		ATLAS	25fb-1(7+8TeV)	arXiv:1403.6293 [hep-ex]
		CMS	20fb-1(8TeV)	CMS-PAS-HIG-13-034
NC biglety grammaged in CM days to	G3. f		ATTEN ATT	EC ATTEL A LOCAL

- FCNC highly suppressed in SM due to GIM mechanism → can be relaxed in BSM
- **LHC:** Large tt cross section and large topcoupling to Higgs: for t->cH possible new physics rate higher than SM by $\sim 10^{10}$ - 10^{12}

_					
Process	SM	QS	2HDM-III	FC-2HDM	MSSM
$t \rightarrow u\gamma$	$3.7 \cdot 10^{-16}$	$7.5 \cdot 10^{-9}$	_	_	$2 \cdot 10^{-6}$
$t \rightarrow uZ$	$8 \cdot 10^{-17}$	$1.1 \cdot 10^{-4}$	_	_	$2 \cdot 10^{-6}$
$t \rightarrow uH$	$2 \cdot 10^{-17}$	$4.1 \cdot 10^{-5}$	$5.5 \cdot 10^{-6}$	_	10^{-5}
$t \rightarrow c \gamma$	$4.6 \cdot 10^{-14}$	$7.5 \cdot 10^{-9}$	$\sim 10^{-6}$	$\sim 10^{-9}$	$2 \cdot 10^{-6}$
$t \rightarrow cZ$	$1 \cdot 10^{-14}$	$1.1 \cdot 10^{-4}$	$\sim 10^{-7}$	$\sim 10^{-10}$	$2 \cdot 10^{-6}$
$t \rightarrow cH$	$3 \cdot 10^{-15}$	$4.1 \cdot 10^{-5}$	$1.5\cdot 10^{-3}$	$\sim 10^{-5}$	10^{-5}

FCNC: t → cH Decays

Searches done using ttbar topology:

- ➤ Reinterpretation of searches:
- Diphoton: CMS-PAS-HIG-13-025 $(H\rightarrow hh, A\rightarrow Zh)$
- **❖** Multilepton: CMS-PAS-SUS-13-002

Used to place limit on coupling

 $g_{tHc} < 0.14$ (observed)

CMS-PAS-HIG-13-034

Combine most sensitive categories for stat. interpretation:

- Multileptons: 3 leptons (no hadronic tau), no oppositesign same-flavour pair (OSSF) or an OSSF and a b-tag
- Sensitivity improved by diphoton channel b -tag

Higgs Decay Mode	observed	expected	1σ range
$H \rightarrow WW^*$ ($\mathcal{B} = 23.1 \%$)	1.58 %	1.57 %	(1.02–2.22) %
$H \rightarrow \tau \tau$ ($\mathcal{B} = 6.15\%$)	7.01 %	4.99 %	(3.53–7.74) %
$H \rightarrow ZZ^*$ ($\mathcal{B} = 2.89 \%$)	5.31 %	4.11 %	(2.85–6.45) %
combined multileptons (WW*, $\tau\tau$, ZZ*)	1.28 %	1.17 %	(0.85–1.73) %
$H \rightarrow \gamma \gamma$ ($\mathcal{B} = 0.23\%$)	0.69 %	0.81 %	(0.60–1.17) %
combined multileptons + diphotons	0.56 %	0.65 %	(0.46–0.94) %

Study of Top-Higgs Coupling (tHq): $tHq \rightarrow bW \rightarrow lv \ q(H \rightarrow \gamma \gamma)$

2 HDM Higgs: FCNC (t -> qH) Decays

In 2 HDM Type III model (without flavor conservation) The c(u)H coupling is present at tree level

Search for FCNC $t \rightarrow qH$ done in top-pair events: $tt \rightarrow b(W \rightarrow ff) \ q(H \rightarrow \gamma \gamma)$

FCNC: t->qH, where H->γγ Other t->bW, both leptonic & hadronic W decays used

Search for excess in $M_{\gamma\gamma}$ mass spectrum

CLs as a function of the FCNC branching ratio

Limit on Br $(t\rightarrow cH)$:

B(t→Hc)< 0.83% (0.53%)

Observed (expected)

Limit on Higgs.

 $\lambda_{tcH} < 0.17 (0.14)$ $\sqrt{\lambda_{tcH}^2 + \lambda_{tuH}^2} < 0.17$ Equally

Equally sensitive to tuH and tcH:

Searches for Lepton Flavor Violating Higgs Decays

- ➤ Forbidden in the SM; naturally occur in 2HDM, composite Higgs, and Randall-Sundrum models
- Previous best limit from indirect searches: B(H→μτ)<10% → reinterpretation of ATLAS H→ττ searches and from τ→μγ (arXiv:1209.1397)
- ightharpoonup Can do better with the first dedicated search: H ightharpoonup and H ightharpoonup (within current LHC reach)
- \triangleright Similar strategy as for H \rightarrow ττ (but kinematics differ)

- Exploit collinearity between tau and MET
- Signal variable: "collinear mass", reconstructed from visible decay products

LFV Couplings: Search for H → τμ

- * Selection: isolated muon + isolated electron ($\mu\tau_e$) or hadronic tau candidate ($\mu\tau_{had}$)
- Categorize according to number of jets

Limits on Br (H $\rightarrow \tau \mu$) and Yukawa Coupling

- > BR (H \rightarrow $\tau\mu$) < 1.57% @ 95 CL observed (expected B(H \rightarrow $\mu\tau$) < (0.75 ± 0.38)%)
- \triangleright Best fit: B(H \rightarrow μτ) = (0.89±0.40)%

Mild excess in data at the level of 2.5σ

→ still compatible with the SM

Promising future in the LFV Yukawa sector

➤ Significant improvement (4.4x) wrt. indirect measurements

CMS-PAS-HIG-14-005

- Previous best limit from $\tau \rightarrow \mu \gamma$: $\sqrt{|\gamma_{\mu\tau}|^2 + |\gamma_{\tau\mu}|^2} < 0.016$
- Observed limit: $\sqrt{|Y_{\mu\tau}|^2 + |Y_{\tau\mu}|^2} < 0.0036$

Best limits on τ anomalous Yukawa couplings to date

Higgs Boson Pair Production (X → hh)

- ❖ SM: rate of Higgs pair production is very small
- BSM (rate of resonant hh production enhanced):
- \rightarrow Heavy(N)MSSM Higgs: H \rightarrow h(125)h(125)
- Radion or Kaluza-Klein excitation of graviton (Warped Extra Dimensions)

Model Independent Analysis → results interpreted in terms of spin-0 (radion) or spin-2 (KK graviton):

ightharpoonup hh → γγbb: large BR(H → bbar), low bkg., good mass resolution (H → γγ)

ATLAS (260-550 GeV):

- Non resonant: fit to inbunned m_{yy}
- Resonant production: counting experiemnt

CMS (260-1100 GeV):

- Low mass ($m_X < 400 \text{ GeV}$) \rightarrow fit to m_{yy} spectrum
- High mass (mX<400 GeV) \rightarrow fit to the m_{yyjj}
- ▶ hh→ bbbb: Increased sensitive at high mass

ATLAS/CMS: 4b-tagged jets, veto ttbar events

Search for Higgs Boson Pair Production: hh \rightarrow ($\gamma\gamma$)(bb) Final State

ATLAS: non-resonant and resonant (2 HDM model)

Spin-0 benchmark, $260 < m_X < 500 \text{ GeV}$

- Resonant : 2.1σ max. deviation (incl. LEE)
- Non-resonant (assuming SM Br(h)): σ<2.2 pb obs. (1.0 exp.)

CMS: resonant search (KK-graviton and radion)

Events / (10 GeV

Spin-0 (2) benchmarks $260 < m_X < 1100 \text{ GeV}$

Exclude:

- ❖ Radions : m_X <970 GeV; radion scale Λ_R =1 TeV
- **❖** RS1 KK-graviton : mass range 340< m_x<400 GeV.

Search for $X \rightarrow hh \rightarrow (bb)(bb)$ Final State

TeV resonance decaying into pair of SM Higgs bosons

KK Graviton

Excluded: $590 < m_x < 710 \text{ GeV}$

ATLAS-CONF-2014-005

Signal region (m $_{4j}$) mass (90% bkg. From multijet +10% ttbar)

95 % CL on σ x BR vs. m_{χ} for a KK excitation of graviton

CMS Searches → see Conference Poster Caterina Vernieri

+20-30% signal efficiency

We Have to Exploit All Opportunities !!!

... Preparing for the LHC Restart ...

« Dreaming for the BSM Future ... »

