

LHC Run-I: Scalar boson Spin/CP Results

"Physics at LHC and Beyond" in Quy Nhon (Vietnam)

(14.08.2014)

Discovery of a new boson announced on 4th of July 2012

[Phys. Lett. B 716 (2012) 1-29], [Phys. Lett. B 716 (2012) 30]

 \rightarrow Is it a CP-even spin-0 particle as predicted by the SM (J^P = 0⁺)?

- Landau-Yang theorem: Massive spin-1 particle cannot interact with 2 massless identical bosons (which forbids the decay to γγ, and also the production of a spin-1 resonance in ggF)
 [Dokl. Akad. Nauk Ser. Fiz. 60 (1948) 207], [Phys. Rev. 77, 242 (1950)]
 - \rightarrow The observation of H $\rightarrow \gamma\gamma$ already disfavores spin-1 hypothesis, but we test spin/CP without prejudice (eg. $\gamma\gamma$ and 4l peaks might not originate from the same particle)

References:

- ATLAS:
 - Spin/CP paper [Phys. Lett. B 726 (2013), 120-144] (γγ, 4I, IvIv, Combination)
 - Couplings paper [Phys. Lett. B 726 (2013) 88]
- CMS:
 - H → WW → IvIv: Paper [JHEP01 (2014) 096], Preliminary note [CMS-PAS-HIG-12-014]
 - H $\rightarrow \gamma \gamma$: Paper [arXiv:1407.0558]
 - H → 4I: Paper [Phys. Rev. D 89, 092007], Preliminary note [CMS-PAS-HIG-14-012]
- Theory:

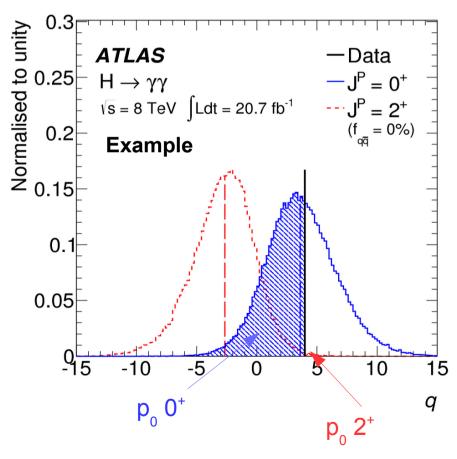
[Phys. Rev. D 81 (2010) 075022], [Phys. Rev. D 86, 095031], [Phys. Rev. D 89 (2014) 035007]

Hypothesis testing: Compatibility of the data with 0⁺ vs...

 $J^P = 0^-$: Pseudo-scalar

J^P = 1⁺, 1⁻: Vector and pseudo-vector

various $J^P = 2^{+/-}$: Graviton-inspired tensor and pseudo-tensor models



Test statistics: $q = \log \frac{\mathcal{L}(J^P = 0^+, \hat{\hat{\mu}}_{0^+}, \hat{\hat{\theta}}_{0^+})}{\mathcal{L}(J^P_{\text{alt}}, \hat{\hat{\mu}}_{J^P_{\text{alt}}}, \hat{\hat{\theta}}_{J^P_{\text{alt}}})}$

$$CL_s(J_{alt}^P) = \frac{p_0(J_{alt}^P)}{1 - p_0(0^+)}$$
 CL = 1 - CLs

95% exclusion corresponds to CLs=5%

Decay Amplitudes of Spin-1 and Spin-2:

Spin-1:
$$A(X_{J=1} \to VV) = b_1 \left[(\epsilon_1^* q) (\epsilon_2^* \epsilon_X) + (\epsilon_2^* q) (\epsilon_1^* \epsilon_X) \right] + b_2 \epsilon_{\alpha\mu\nu\beta} \epsilon_X^{\alpha} \epsilon_1^{*\mu} \epsilon_2^{*\nu} \tilde{q}^{\beta}$$
vector particle pseudo-vector

 \rightarrow effective fraction $f_{b2} = \frac{|b_2|^2 \sigma_2}{|b_1|^2 \sigma_1 + |b_2|^2 \sigma_2}$ to test mixtures of parity states vs. SM

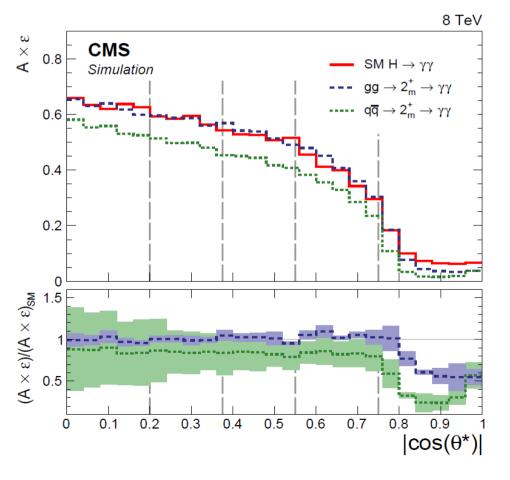
$$\begin{aligned} \textbf{Spin-2:} \quad & A(X_{J=2} \rightarrow V_1 V_2) = \Lambda^{-1} \left[2c_1 t_{\mu\nu} f^{*1,\mu\alpha} f^{*2,\nu\alpha} + 2c_2 t_{\mu\nu} \frac{q_\alpha q_\beta}{\Lambda^2} f^{*1,\mu\alpha} f^{*2,\nu,\beta} \right. \\ & \left. + c_3 \frac{\tilde{q}^\beta \tilde{q}^\alpha}{\Lambda^2} t_{\beta\nu} (f^{*1,\mu\nu} f^{*2}_{\mu\alpha} + f^{*2,\mu\nu} f^{*1}_{\mu\alpha}) + c_4 \frac{\tilde{q}^\nu \tilde{q}^\mu}{\Lambda^2} t_{\mu\nu} f^{*1,\alpha\beta} f^{*(2)}_{\alpha\beta} \right. \\ & \left. + m_V^2 \left(2c_5 t_{\mu\nu} \epsilon_1^{*\mu} \epsilon_2^{*\nu} + 2c_6 \frac{\tilde{q}^\mu q_\alpha}{\Lambda^2} t_{\mu\nu} \left(\epsilon_1^{*\nu} \epsilon_2^{*\alpha} - \epsilon_1^{*\alpha} \epsilon_2^{*\nu} \right) + c_7 \frac{\tilde{q}^\mu \tilde{q}^\nu}{\Lambda^2} t_{\mu\nu} \epsilon_1^{*\epsilon} \epsilon_2^{*} \right) \right. \\ & \left. + c_8 \frac{\tilde{q}^\mu \tilde{q}^\nu}{\Lambda^2} t_{\mu\nu} f^{*1,\alpha\beta} \tilde{f}^{*(2)}_{\alpha\beta} + c_9 t^{\mu\alpha} \tilde{q}_\alpha \epsilon_{\mu\nu\rho\sigma} \epsilon_1^{*\nu} \epsilon_2^{*\rho} q^\sigma \right. \\ & \left. + \frac{c_{10} t^{\mu\alpha} \tilde{q}_\alpha}{\Lambda^2} \epsilon_{\mu\nu\rho\sigma} q^\rho \tilde{q}^\sigma \left(\epsilon_1^{*\nu} (q \epsilon_2^*) + \epsilon_2^{*\nu} (q \epsilon_1^*) \right) \right] , \end{aligned}$$

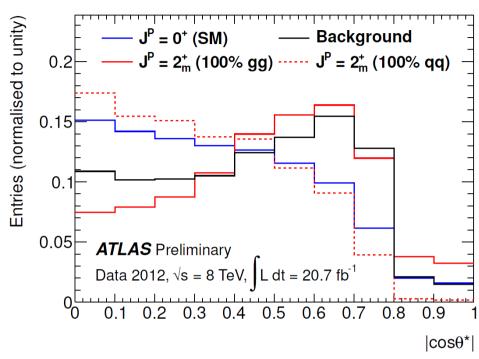
If c_1 and c_5 non-zero: $J^P = 2_m^+$: Graviton with minimal couplings to SM particles If $c_1 << c_5$: $J^P = 2_b^+$: Graviton in an ED model where SM fields can propagate into the bulk If other c_1 non-zero: $J^P = 2_b^{+/-}$: Spin-2 models with higher-dimension operators

Discriminating Spin-0 from Spin-2:

- Polar angular distribution of the photons in the resonance rest frame $|\cos\theta^*|$ [Phys. Rev. D 16, 2219]:

$$|\cos \theta^*| = \frac{|\sinh(\Delta \eta^{\gamma\gamma})|}{\sqrt{1 + (p_T^{\gamma\gamma}/m_{\gamma\gamma})^2}} \frac{2p_T^{\gamma 1}p_T^{\gamma 2}}{m_{\gamma\gamma}^2}$$





 $|\cos\theta^*|$ distribution for a scalar is flat, kinematic cuts shape the distribution

Spin-2 particle polarization depends on initial state helicities, results given as a function of the production fractions (ggF or qq).

Signal models:

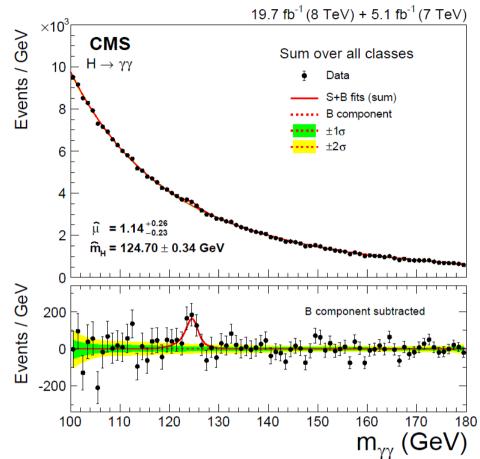
- Spin-0: Powheg+Pythia,
- Spin-2: JHU (LO generator), in case of ggF:
 p_{T,vv} reweighted to that of Powheg

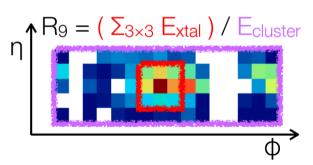
Event selection ATLAS:

- 2 isolated well-identified photons
- relative pT cuts: p_{T,1} > 0.35 * m_{$\gamma\gamma$}, p_{T,2} > 0.25 * m_{$\gamma\gamma$} to minimize correlations between |cos θ *| and m_{$\gamma\gamma$}
- 14977 selected data events, 14300 estimated bkg events, 370 expected Higgs boson events
- not categorized for the spin-analysis

Event selection CMS:

- two photons, $p_{T,1} > 33$ GeV, $p_{T,2} > 25$ GeV
- photon identification based on BDT (shower shape variables, isolation, energy densities)
- 4 categories based on $|\eta|$ and R_g variable: Both photons in the barrel and both R_g >0.94 Both photons in the barrel, at least one R_g <0.94 At least one photon in the endcap and both R_g >0.94 At least one photon in the endcap, at least one R_g <0.94





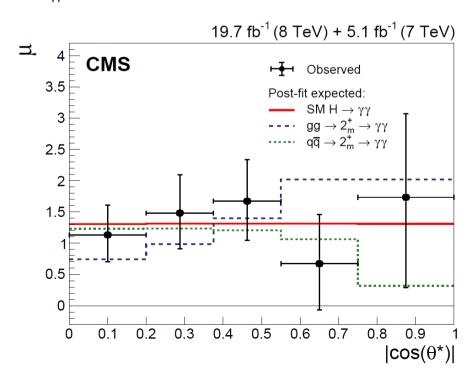
Unconverted photons have large R_o

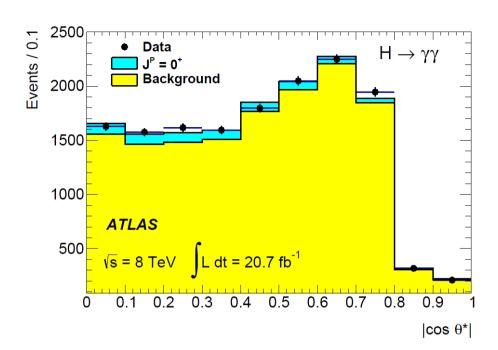
Analysis ATLAS:

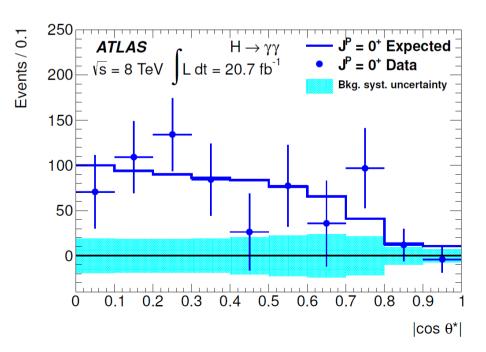
- Background |cosθ*| shape from data from mass sidebands 105–122 GeV and 130-160 GeV
- Residual correlations between $m_{_{\gamma\gamma}}$ and $|\cos\theta^*|$ at most 2%, treated as uncertainties
- Simultaneous fit to signal region ($m_{_{\gamma\gamma}}$) and two sidebands ($m_{_{\gamma\gamma}} \times |cos\theta^*|$)

Analysis CMS:

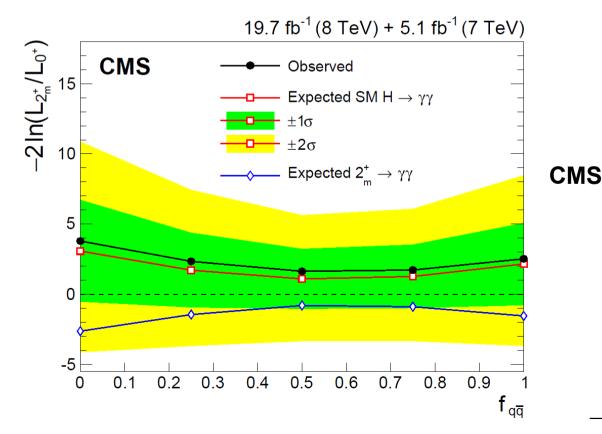
- Divide each category into five $|\cos\theta^*|$ bins
- Fit $m_{_{\gamma\gamma}}$ in each $|cos\theta^*|$ bin

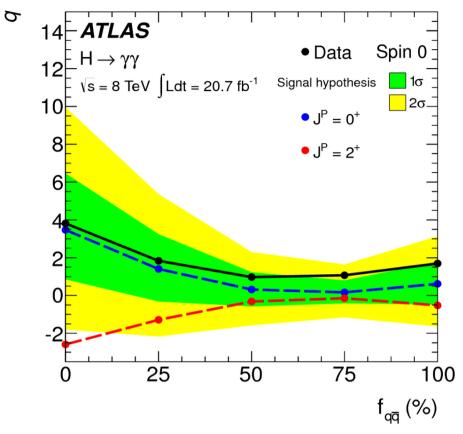






ATLAS:	$f_{q\overline{q}}$	Obs. p ₀ 0 ⁺	Obs. p ₀ 2 ⁺	CLs 2 ⁺
	100%	0.798	0.025	0.124
	75%	0.902	0.033	0.337
	50%	0.708	0.076	0.260
	25%	0.609	0.021	0.054
	0%	0.588	0.003	0.007





3 :	$f_{q\overline{q}}$	Expected CLs	Observed CLs
	1	0.17	0.15
	0.75	0.31	0.25
	0.5	0.36	0.29
	0.25	0.22	0.17
	0	0.08	0.06

 \rightarrow 2⁺ hypotheses disfavored by the data.

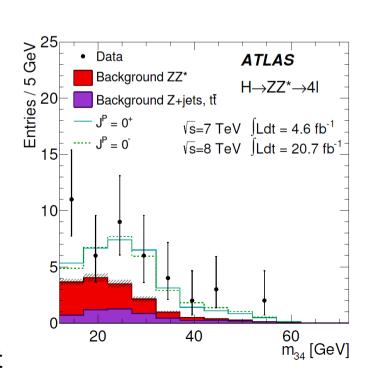
Discriminating variables:

- masses of the 2 reconstructed Z bosons, and $m_{_{41}}$
- 5 decay angles: $\theta_{\rm 1},\,\theta_{\rm 2},\,\Phi,\,\Phi_{\rm 1},\,\theta^{\star}$

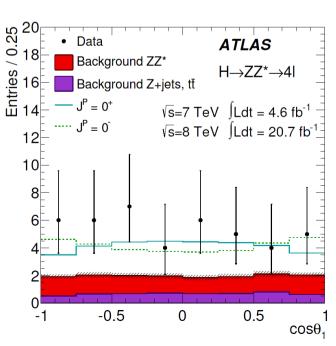
Event selection: [Phys. Lett. B 726 (2013) 88]

- 2 pairs of same-flavor opposite-charge isolated leptons
- Signal region: $115 < m_{_{Al}} < 130 \text{ GeV}$
- 43 selected data events, 16 expected bkg events,
 18 expected signal events

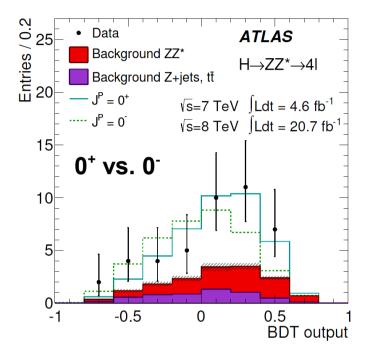
- 2 masses and 5 angles combined into a BDT to separate 0⁺ from alternative
- BDT output evaluated in separate signal regions: one with high S/B (121-127 GeV) and two low S/B regions (115-121 GeV,127-130 GeV)
- BDT-outputs used as observable in the likelihood fit







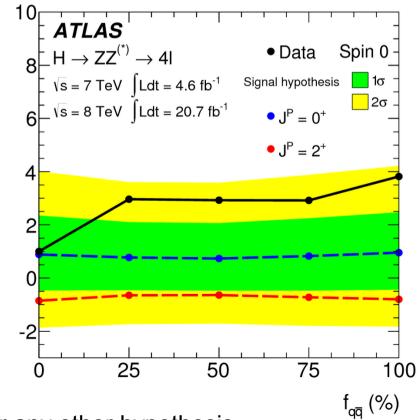
BDT output example:



Results:

Alternative	Obs. p_0^{\dagger}	Obs. p ₀ alt	CLs alt
0-	0.31	0.015	0.022
1+	0.55	0.001	0.002
1 ⁻	0.15	0.051	0.060

$f_{q\overline{q}}$	Obs. p_0° 0 ⁺	Obs. $p_0^{2^+}$	CLs 2⁺
100%	0.962	0.001	0.026
75%	0.923	0.003	0.039
50%	0.943	0.002	0.035
25%	0.944	0.002	0.036
0%	0.532	0.079	0.169



→ Data favores the 0⁺ hypothesis over any other hypothesis

ATLAS: $H \rightarrow WW \rightarrow ev\mu v$

Event - 2 high pT opposite-flavor leptons (25 GeV, 15 GeV)

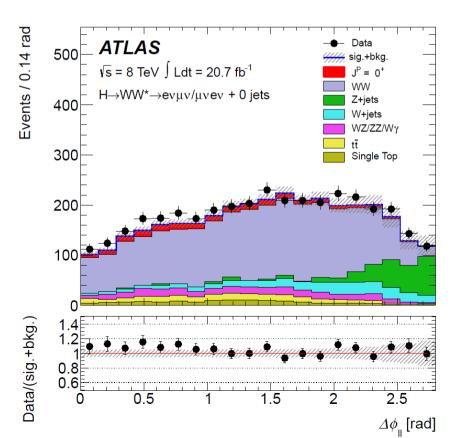
selection: - Veto on high pT jets, cuts on $m_{_{||}}$, $p_{_{T,||}}$, $\Delta \phi_{_{||}}$

- 3615 data events selected, 3300 expected bkg events, 170 expected signal events

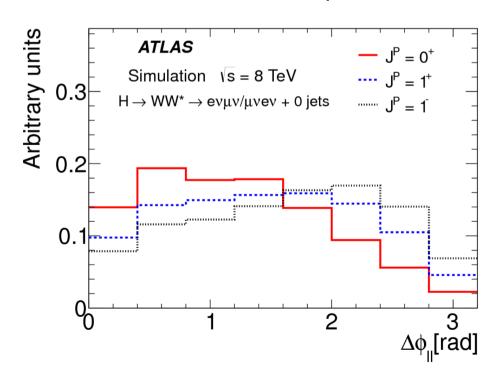
All major backgrounds estimated from data in control regions [Phys. Lett. B 726 (2013) 88]

Analysis: - BDT combining \mathbf{m}_{\parallel} , $\Delta\Phi_{\parallel}$, \mathbf{p}_{\parallel} and \mathbf{m}_{\parallel} $m_{\mathrm{T}}^2 = 2p_{\mathrm{T}}^{\ell\ell}E_{\mathrm{T}}^{\mathrm{miss}}\left(1-\cos\Delta\phi(\ell\ell,\vec{E}_{\mathrm{T}}^{\mathrm{miss}})\right)$

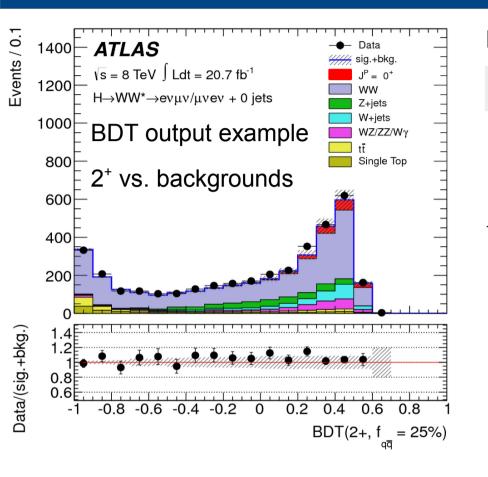
- 2 BDT classifiers: One for 0⁺ vs. bkg, the other for the J^P alternative vs. bkg
- 2D BDT output used in the likelihood fit



Discrimination example:



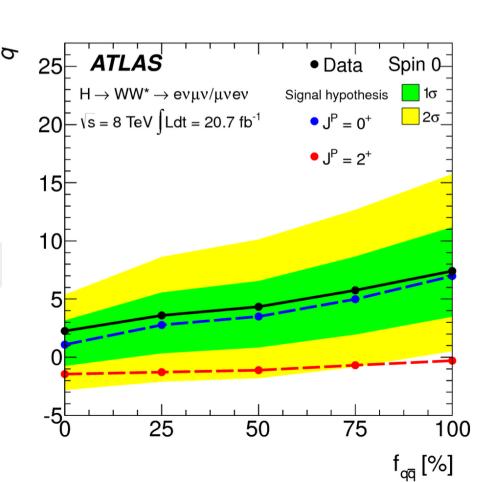
ATLAS: $H \rightarrow WW \rightarrow ev\mu v$



Results:

Alternative	Obs. p_0^{\dagger}	Obs. p ₀ alt	CLs alt
1+	0.70	0.02	0.08
1-	0.66	0.006	0.017

 \rightarrow 0⁺ preferred by the data over any other hypothesis

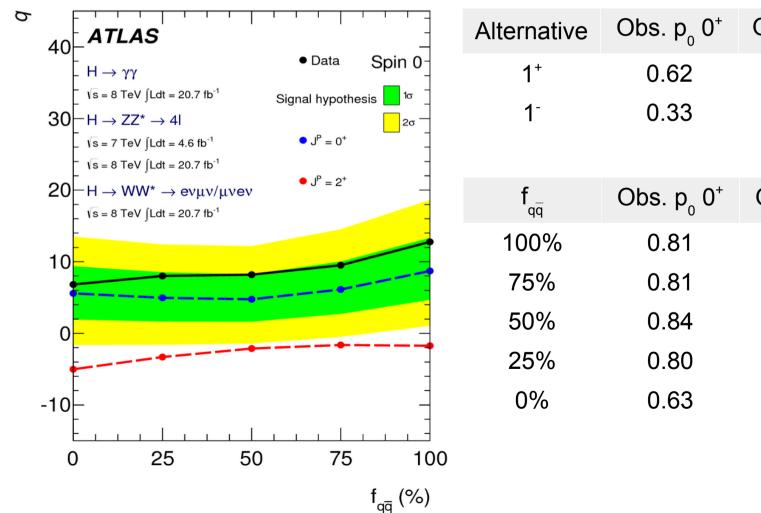


$f_{q\overline{q}}$	Obs. p ₀ 0 ⁺	Obs. p ₀ 2⁺	CLs 2⁺
100%	0.541	0.0001	0.0004
75%	0.586	0.001	0.003
50%	0.616	0.003	0.008
25%	0.622	0.008	0.020
0%	0.731	0.013	0.048

ATLAS: Combination ($\gamma\gamma$, evµ ν , 4I)

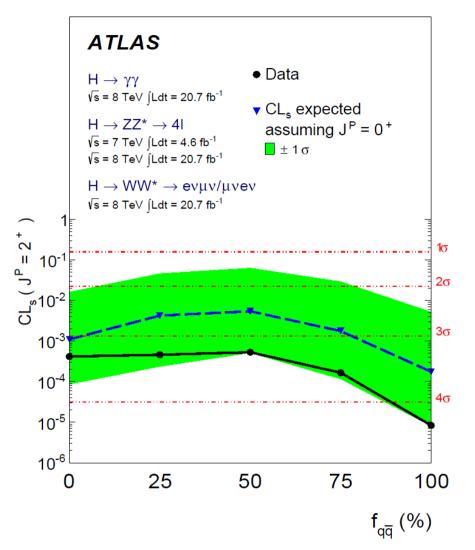
- Higgs boson mass m_{\perp} = 125.5 GeV, signal strength μ profiled and not correlated across channels
- Result insensitive to variations of m_{_} by its uncertainty of 0.6 GeV
- Systematic uncertainties included, their impact on the combined result is less than 0.35

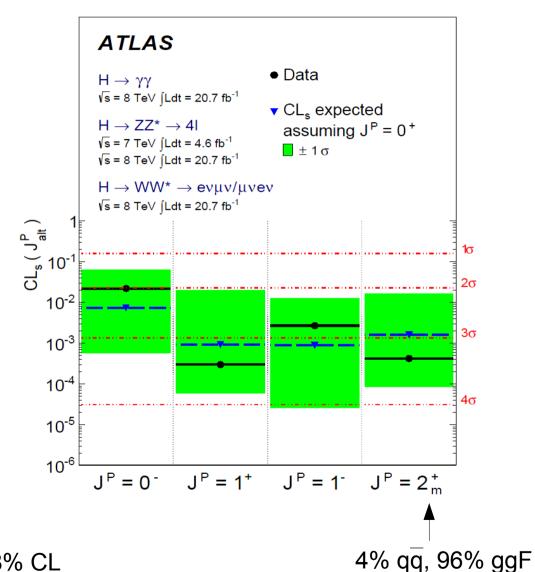
Results:



Alternative	Obs. p_0° 0 ⁺	Obs. p ₀ alt	CLs alt
1+	0.62	1.2.10-4	3.0.10-4
1 ⁻	0.33	1.8·10 ⁻³	2.7·10 ⁻³
$f_{q\overline{q}}$	Obs. p ₀ 0 ⁺	Obs. p ₀ 2 ⁺	CLs 2 ⁺
100%	0.81	1.6·10 ⁻⁶	0.8·10 ⁻⁵
75%	0.81	3.2·10 ⁻⁵	1.7צ'10-4
50%	0.84	8.6·10 ⁻⁵	5.3.10-4
25%	0.80	$0.9 \cdot 10^{-4}$	4.6.10-4
0%	0.63	1.5.10-4	4.2·10 ⁻⁴

Combined CLs values of any alternative wrt. 0⁺:

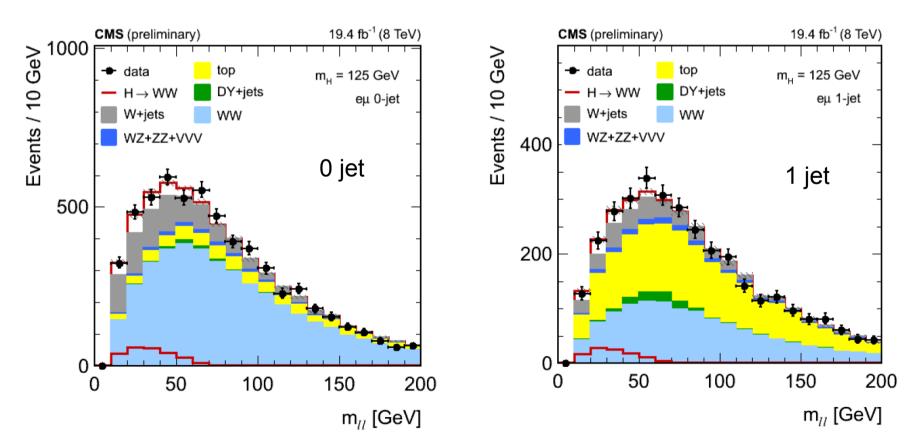




- → 0⁻ rejected (from 4I channel alone) at 97.8% CL
- → 1⁺ and 1⁻ rejected (from combination of WW and ZZ) at 99.7% CL
- \rightarrow 2⁺ rejected at 99.9% CL from combining ZZ, WW and $\gamma\gamma$

Event selection:

- Particle flow algorithm used to reconstruct all particles in the event
- 2 high p_⊤ (20 GeV and 10 GeV), isolated and opposite-charged leptons required,
 lepton efficiencies determined from data from Z → II decays
- 0 or 1 high-p_{τ} jet required (p_{τ} > 30 GeV in $|\eta|$ < 4.7)
- m $_{_{\parallel}}$ > 12 GeV, p $_{_{\top\parallel}}$ > 30 GeV, missing E $_{_{\top}}$ > 20 GeV

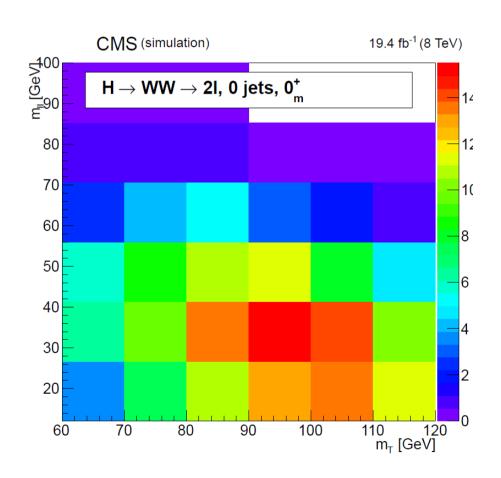


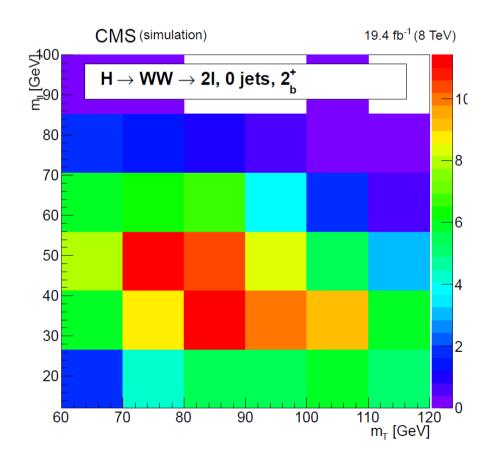
Signal: JHU used to generated spin-0/1/2 signals, ggF spin-0 production with Powheg (NLO)

Discriminants: $m_{_{\parallel}}$ and $m_{_{\top}}$

2D templates for 0-jet and 1-jet categories used in the likelihood fit

0-jet category signal templates shown here:



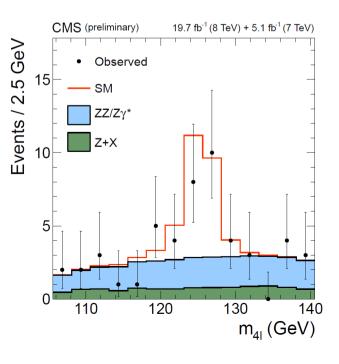


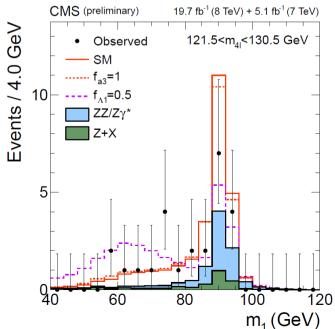
Event selection:

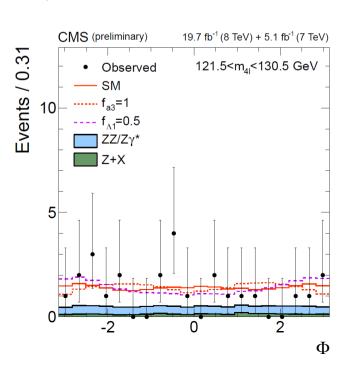
- 2 pairs of same-flavor opposite-charged isolated leptons, one lepton with p_¬ > 20 GeV, another one with p_¬ > 10 GeV
- $40 < m_{Z1} < 120$ GeV and $12 < m_{Z2} < 120$ GeV (m_{Z1} closer to nominal Z mass than m_{Z2})
- Signal region: 105.6 < m_{AI} < 140.6 GeV
- → 50 data event selected, 20 expected signal and 36 expected background events

Observables: 3 masses (m_{41} , m_{71} , m_{72}), 5 angles (θ_1 , θ_2 , Φ , Φ_1 , θ^*)

→ They discriminate signal from background and the various signal hypothesis from each other

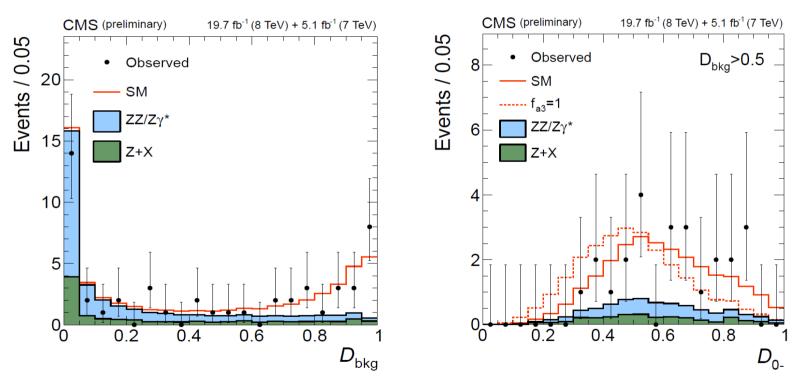






Kinematic discriminant approach (KD method), using MELA and MEKD packages

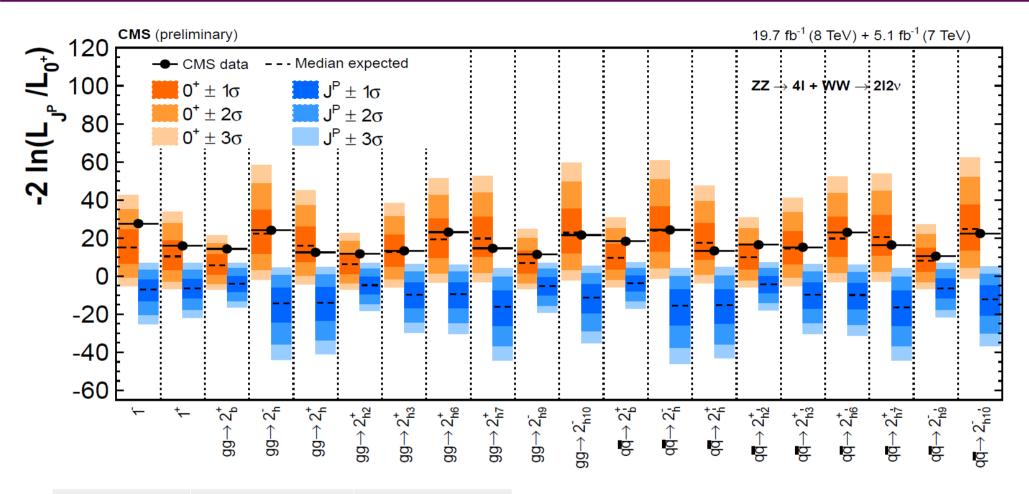
- Computing probabilities for an event from the matrix element as a function of the observables, using JHU for signal and MCFM for backgrounds
- Various kinematic discriminants are built to discriminate hypotheses, eg.
 0⁺ vs. backgrounds, pure CP states vs. Interferences etc,
- Additional KD observables constructed for exotic signal models (eg. higher dim operators)



Multidimensional distribution method (MD method):

- 8-dimensional likelihood fit (3 masses, 5 angles), using either analytical expression (eg. signal, $qq \rightarrow ZZ$) or histogram templates on generator level (eg. Z+jets and gg \rightarrow ZZ) as inputs
- usage of transfer functions to model the detector response

CMS: Hypothesis Testing, Combined Results (IvIv, 4I)



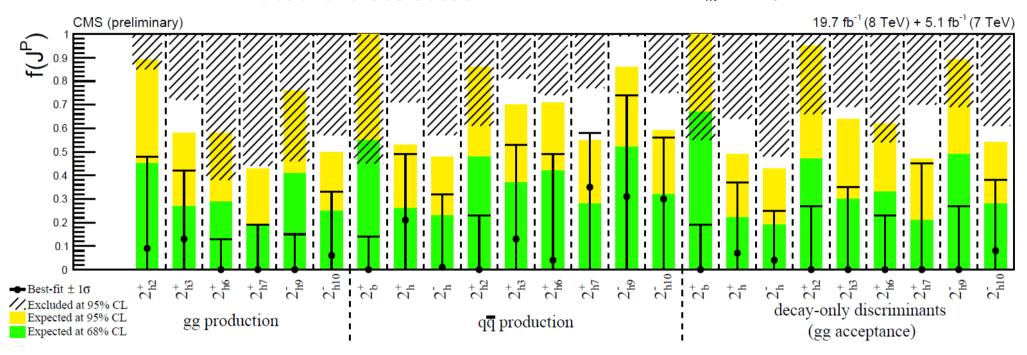
Alternative	Obs. p_0^+	Obs. p ₀ alt
1 ⁻	-1.3σ	4σ
1+	-0.7σ	3.9σ
$gg \rightarrow 2$	-1.5σ - 0.5σ	3.4σ - 4.0σ
$q\overline{q} \to 2$	-1.2σ -0.5σ	3.2σ - 4.0σ

- → Data compatibel with 0⁺ hypotheses
- → Any alternative excluded with at least 99.9% CL.

Search for nearby, non-interfering 2^{+/-} states:

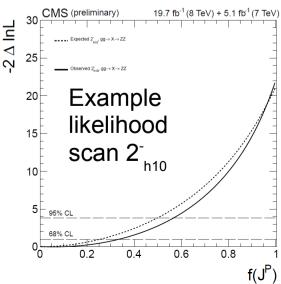
 $f\left(J^{CP}\right) = \frac{\sigma_{J^{CP}}}{\sigma_{0^+} + \sigma_{I^{CP}}}$

Fractional cross section:



Probes for the presence of a 2nd particle in the mass peak of the 4l signal region. However, masses separated such that there is no interference with the 0⁺ resonance

- \rightarrow Observations compatibel with f = 0
- → 95% limits on f set depending on the model of the 2nd resonance



Results on non-interfering spin-1 states in the backup

CMS: Results (4I, WW) Testing Spin-1 Mixtures

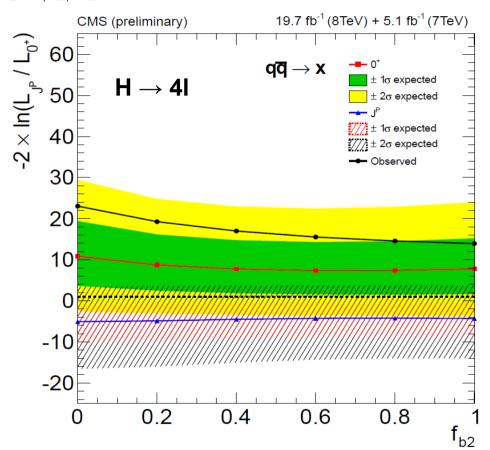
Testing pure and mixed spin-1 states:

$$A(X_{J=1} \to VV) = b_1 \left[(\epsilon_1^* q) (\epsilon_2^* \epsilon_X) + (\epsilon_2^* q) (\epsilon_1^* \epsilon_X) \right] + b_2 \epsilon_{\alpha \mu \nu \beta} \epsilon_X^{\alpha} \epsilon_1^{*\mu} \epsilon_2^{*\nu} \tilde{q}^{\beta}$$

$$f_{b2} = \frac{|b_2|^2 \sigma_2}{|b_1|^2 \sigma_1 + |b_2|^2 \sigma_2}$$

 $H \rightarrow 4l$ results:

f_{b2}	Obs. p ₀ 0 ⁺	Obs. p ₀ alt	CLs alt
0 (1-)	-1.4σ	> 4.5σ	<0.01%
0.2	-1.4σ	4.6σ	<0.01%
0.4	-1.3σ	4.4σ	<0.01%
0.6	-1.2σ	4.1σ	0.01%
0.8	-1.0σ	3.9σ	0.02%
1 (1 ⁺)	-0.8σ	3.8σ	0.04%



 $H \rightarrow WW$ results:

J^P model	J^P production	Expected ($\sigma/\sigma_{SM}=1$)	Observed 0 ⁺	Observed J^P	CLs
1-	$qar{q} o { m H}$	1.8σ (2.9 σ)	-0.2σ	2.1σ	3.9%
1_{Mix}	$qar{q} o { m H}$	1.6σ (2.6 σ)	-0.1 σ	1.7σ	8.7%
1+	$q\bar{q} o H$	1.5σ (2.3 σ)	0.1σ	1.4σ	14.0%

 f_{b2} =0 means pseudo-vector 1⁻, f_{b2} =1 means pure vector 1⁺, 1_{MIX} means f_{b2} =0.5

Langrangian.

Probing the tensor structure of the Spin-0 interaction

see also ICHEP talk from E. DiMarco

Decay amplitude of spin-0 particle → WW:

$$A(X_{J=0} \to WW) \sim v^{-1} \left(\left[a_1^{WW} - e^{i\phi_{\Lambda_1}} \frac{q_1^2 + q_2^2}{\left(\Lambda_1^{WW}\right)^2} \right] m_W^2 \epsilon_1^* \epsilon_2^*$$
 Equivalent to an effective field theory

SM tree level + leading momentum expansion. Λ_1 : scale of new physics

If particles in the loop are heavy, couplings will be real (in general complex).

a₂ terms: CP-even scalar a₃ terms: CP-odd scalar (not participating in EWSB)

Analysis fits for the terms of the expansion: a_2 , a_3 , Λ_1

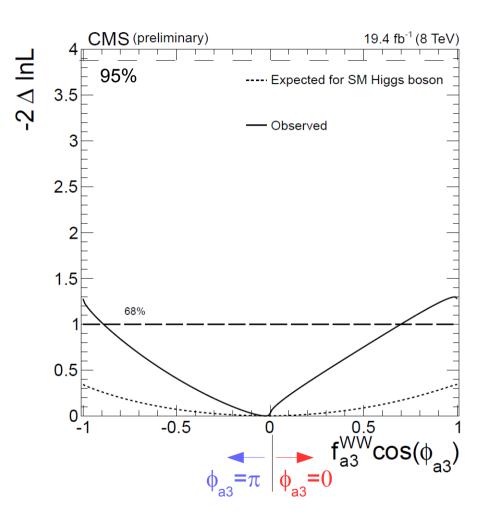
Couplings are converted into effective cross section fractions (anomalous coupling parameters):

$$f_{a3} = \frac{|a_3|^2 \sigma_3}{|a_1|^2 \sigma_1 + |a_2|^2 \sigma_2 + |a_3|^2 \sigma_3 + \tilde{\sigma}_{\Lambda_1} / (\Lambda_1)^4} \qquad \phi_{a3} = \arg\left(\frac{a_3}{a_1}\right) \qquad \sigma_{_i} \text{ is cross section of process corresponding to } a_{_{i\neq j}} = 1 \text{ and } a_{_{i\neq j}} = 0$$

$$f_{a2} = \frac{|a_2|^2 \sigma_2}{|a_1|^2 \sigma_1 + |a_2|^2 \sigma_2 + |a_3|^2 \sigma_3 + \tilde{\sigma}_{\Lambda_1} / (\Lambda_1)^4} \qquad \phi_{a2} = \arg\left(\frac{a_2}{a_1}\right) \qquad \sigma_{_{\Lambda^1}} \text{ is effective cross section of process corresponding to } \Lambda_{_i} > 0,$$

$$f_{\Lambda 1} = \frac{\tilde{\sigma}_{\Lambda_1} / (\Lambda_1)^4}{|a_1|^2 \sigma_1 + |a_2|^2 \sigma_2 + |a_3|^2 \sigma_3 + \tilde{\sigma}_{\Lambda_1} / (\Lambda_1)^4} \qquad \phi_{\Lambda 1}, \qquad a_{_{j\neq \Lambda 1}} = 0$$

Measurement of anomalous coupling parameters in $H \rightarrow WW$:



Signal component of the likelihood:

$$\mathcal{L}^i_{f^{WW}_{a3}} = (1 - f^{WW}_{a3}) \mathcal{L}^i_{0+} + f^{WW}_{a3} \mathcal{L}^i_{0-} + \sqrt{(1 - f^{WW}_{a3}) f^{WW}_{a3}} \mathcal{L}^i_{int}$$
 SM coupling anomalous c. Interference

Observed best-fit value of f_{a3} compatibel with 0 (within 0.16 σ)

The pure CP-odd states disfavored with 1.13σ

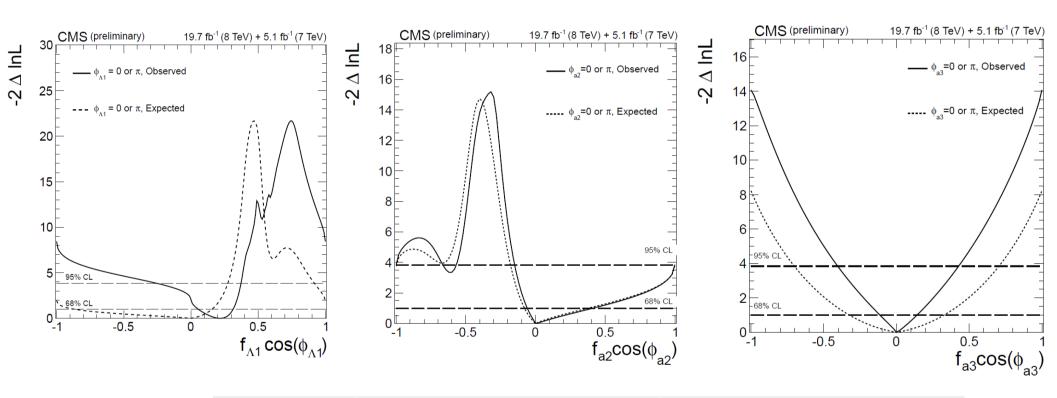
→ No CP-odd contribution observed, in agreement with the SM theory.

$$f_{a3}^{WW} = \frac{|a_3|^2 \sigma_3}{|a_1|^2 \sigma_1 + |a_2|^2 \sigma_2 + |a_3|^2 \sigma_3 + \sigma_4 / \Lambda_1^4}$$
; $\phi_{a3} = \arg\left(\frac{a_3}{a_1}\right)$

"Fraction of a CP-odd contribution to the total production cross section of the new boson"

Measurement of anomalous coupling parameters in $H \rightarrow 4I$:

Assuming coupling ratios a_2/a_1 and a_3/a_1 are real, $\phi_{\Lambda 1} = 0$ or π , and all other parameters are fixed to their SM values (plots with profiled parameters in the backup)



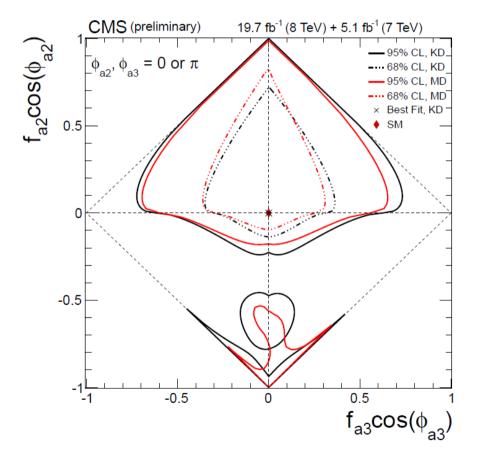
Allowed 95% CL intervals:

Parameter	Observed	Expected
$f_{_{\Lambda1}}\cos(\phi_{_{\Lambda1}})$	[-0.25,0.37]	[-1.00,0.27] & [0.92,1.00]
$f_{a2}\cos(\phi_{a2})$	[-0.66,-0.57] & [-0.15,1.00]	[-0.18,1.00]
$f_{a3}\cos(\phi_{a3})$	[-0.40,0.43]	[-0.70,0.70]

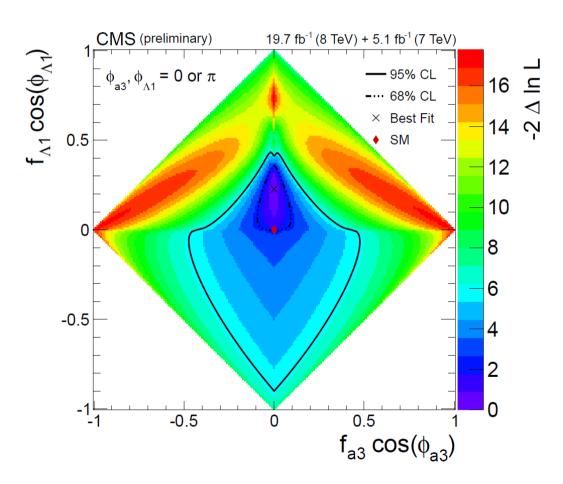
Probing 4I for the presence of 2 anomalous couplings simultaneously:

Examples:

Likelihood scan contours:



2D likelihood scan values:



Assuming a_2/a_1 and a_3/a_1 ratios are real

Amplitudes constrained to be real

Measurement of anomalous coupling parameters combined for WW and 41:

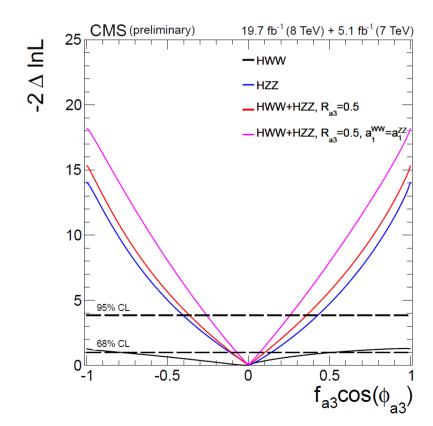
• General relation: $a_1^{WW} \neq a_1^{ZZ} \rightarrow a_i^{WW}/a_1^{WW} = r_{ai}^*(a_i^{ZZ}/a_1^{ZZ})$

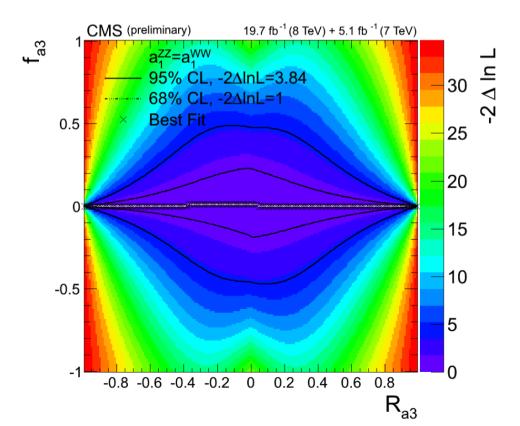
 $r_{ai} = \frac{a_i^{WW}/a_1^{WW}}{a_i^{ZZ}/a_1^{ZZ}}$

- Assuming custodial symmetry: $a_1^{WW} = a_1^{ZZ} \rightarrow a_i^{ZZ} = r_{ai}^* a_i^{WW}$
 - → stronger exclusions due to relation between WW and ZZ yields

$$R_{ai} = \frac{r_{ai}|r_{ai}|}{1 + r_{ai}^2}$$

Conditional combined scan of f_{a3} for $R_{ai}=0.5$ ($r_{ai}=1$): Conditional scan of f_{a3} vs. R_{a3} when $a_1^{WW}=a_1^{ZZ}$:





Summary

- Both ATLAS and CMS carried out various Spin/CP studies using the bosonic decay modes
- The SM CP-even scalar hypothesis is preferred over any other tested model:

CL. Exclusions:	J^{P}	ATLAS	CMS
	0-	97.8%	>99.9%
	1 ⁻	>99.9%	>99.9%
	1+	99.7%	>99.9%
2	$gg \rightarrow 2^{+/-}$	>99.9%	>99.9%
	$q\overline{q} o 2^{+/-}$	>99.9%	>99.9%

 CMS set limits on the anomalous couplings for spin-0 (here for H → 4l assuming coupling ratios are real):

Allowed 95% CL intervals:	Parameter	Observed	Expected	
	$f_{\Lambda 1} cos(\phi_{\Lambda 1})$	[-0.25,0.37]	[-1.00,0.27] & [0.92,1.00]	
	$f_{a2}\cos(\phi_{a2})$	[-0.66,-0.57] & [-0.15,1.00]	[-0.18,1.00]	
	$f_{a3}\cos(\phi_{a3})$	[-0.40,0.43]	[-0.70,0.70]	

→ All observations are compatible with the SM expectations J^P=0⁺

Backup

CMS models:

-10			
J^{p}	mode	production couplings	decay couplings
0_m^+	$gg \rightarrow X \rightarrow W^+W^-$	(any) $a_2^{(0)} \neq 0$	$a_1^{(0)} \neq 0$
0_h^+	$gg \rightarrow X \rightarrow W^+W^-$	(any) $a_2^{(0)} \neq 0$	$a_2^{(0)} \neq 0$
$0^+_{\Lambda 1}$	$gg \rightarrow X \rightarrow W^+W^-$	(any) $a_2^{(0)} \neq 0$	$\Lambda_1 \neq \infty$
0-	$gg \to X \to W^+W^-$	(any) $a_3^{(0)} \neq 0$	$a_3^{(0)} \neq 0$
1+	$q\bar{q} \rightarrow X \rightarrow W^+W^-$	$\rho_2^{(1)} \text{ or } \rho_1^{(1)} \neq 0$	$b_2 \neq 0$
1-	$q\bar{q} o X o W^+W^-$	$\rho_1^{(1)} \text{ or } \rho_2^{(1)} \neq 0$	$b_1 \neq 0$
2_m^+	$gg \to X \to W^+W^-$	$c_1 \neq 0$	$c_1 = c_5 \neq 0$
2_{h2}^{+}	$gg \to X \to W^+W^-$	$c_2 \neq 0$	$c_2 \neq 0$
2_{h3}^{+}	$gg \to X \to W^+W^-$	$c_3 \neq 0$	$c_3 \neq 0$ i
2_h^+	$gg \rightarrow X \rightarrow W^+W^-$	$c_4 \neq 0$	$c_4 \neq 0$
2_h^+ 2_h^+	$gg \to X \to W^+W^-$	$c_1 \neq 0$	$c_1 \ll c_5 \neq 0$
2_{h6}^{+}	$gg \to X \to W^+W^-$	$c_1 \neq 0$	$c_6 \neq 0$
2_{h7}^{+}	$gg \to X \to W^+W^-$	$c_1 \neq 0$	$c_7 \neq 0$
$2_h^{\frac{n}{2}}$	$gg \to X \to W^+W^-$	$c_8 \neq 0$	$c_8 \neq 0$
$2^{\frac{n}{h}}_{h9}$	$gg \to X \to W^+W^-$	$c_8 \neq 0$	$c_9 \neq 0$
$2_{h10}^{\frac{h}{10}}$	$gg \to X \to W^+W^-$	$c_8 \neq 0$	$c_{10} \neq 0$
2_{m}^{+}	$q\bar{q} \rightarrow X \rightarrow W^+W^-$	$\rho_1^{(2)} \text{ or } \rho_2^{(2)} \neq 0$	$c_1 = c_5 \neq 0$
2_{h2}^{+}	$q \bar q o X o W^+ W^-$	$\rho_1^{(2)} \text{ or } \rho_2^{(2)} \neq 0$	$c_2 \neq 0$
2_{h3}^{+}	$q\bar{q} \to X \to W^+W^-$	$\rho_1^{(2)} \text{ or } \rho_2^{(2)} \neq 0$	$c_3 \neq 0$
2_h^+	$q\bar{q} \to X \to W^+W^-$	$\rho_1^{(2)} \text{ or } \rho_2^{(2)} \neq 0$	$c_4 \neq 0$
2_b^+	$q \bar q o X o W^+ W^-$	$\rho_1^{(2)} \text{ or } \rho_2^{(2)} \neq 0$	$c_1 \ll c_5 \neq 0$
2_{h6}^{+}	$q \bar{q} \rightarrow X \rightarrow W^+ W^-$	$\rho_1^{(2)} \text{ or } \rho_2^{(2)} \neq 0$	$c_6 \neq 0$
2_{h7}^{+}	$q \bar q o X o W^+ W^-$	$\rho_1^{(2)} \text{ or } \rho_2^{(2)} \neq 0$	$c_7 \neq 0$
2_h^-	$q \bar{q} \rightarrow X \rightarrow W^+ W^-$	$\rho_1^{(2)} \text{ or } \rho_2^{(2)} \neq 0$	$c_8 \neq 0$
2_{h9}^{-}	$q\bar{q} \rightarrow X \rightarrow W^+W^-$	$\rho_{1}^{(2)}$ or $\rho_{2}^{(2)} \neq 0$	$c_9 \neq 0$
2_{h10}^{-}	$q\bar{q} \to X \to W^+W^-$	$ \rho_1^{(2)} \text{ or } \rho_2^{(2)} \neq 0 $	$c_{10} \neq 0$

Decay amplitudes for $X \rightarrow WW$

Spin-0:
$$A(H \to WW) = v^{-1} \left(\left[a_1 - e^{i\varphi_{\Lambda 1}} \frac{q_1^2 + q_2^2}{(\Lambda_1)^2} \right] m_W^2 \epsilon_1^* \epsilon_2^* + a_2 f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + a_3 f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu} \right)$$

$$\text{Spin-1:} \quad A(X_{J=1} \to VV) = b_1 \left[\left(\epsilon_1^* q \right) \left(\epsilon_2^* \epsilon_X \right) + \left(\epsilon_2^* q \right) \left(\epsilon_1^* \epsilon_X \right) \right] + b_2 \epsilon_{\alpha\mu\nu\beta} \epsilon_X^\alpha \epsilon_1^{*\mu} \epsilon_2^{*\nu} \tilde{q}^\beta$$

$$\begin{split} \text{Spin-2:} \quad & A(X_{J=2} \rightarrow V_1 V_2) = \Lambda^{-1} \left[2 c_1 t_{\mu\nu} f^{*1,\mu\alpha} f^{*2,\nu\alpha} + 2 c_2 t_{\mu\nu} \frac{q_\alpha q_\beta}{\Lambda^2} f^{*1,\mu\alpha} f^{*2,\nu,\beta} \right. \\ & \left. + c_3 \frac{\tilde{q}^\beta \tilde{q}^\alpha}{\Lambda^2} t_{\beta\nu} (f^{*1,\mu\nu} f^{*2}_{\mu\alpha} + f^{*2,\mu\nu} f^{*1}_{\mu\alpha}) + c_4 \frac{\tilde{q}^\nu \tilde{q}^\mu}{\Lambda^2} t_{\mu\nu} f^{*1,\alpha\beta} f^{*(2)}_{\alpha\beta} \right. \\ & \left. + m_V^2 \left(2 c_5 t_{\mu\nu} \epsilon_1^{*\mu} \epsilon_2^{*\nu} + 2 c_6 \frac{\tilde{q}^\mu q_\alpha}{\Lambda^2} t_{\mu\nu} \left(\epsilon_1^{*\nu} \epsilon_2^{*\alpha} - \epsilon_1^{*\alpha} \epsilon_2^{*\nu} \right) + c_7 \frac{\tilde{q}^\mu \tilde{q}^\nu}{\Lambda^2} t_{\mu\nu} \epsilon_1^{*\epsilon} \epsilon_2^{*} \right) \right. \\ & \left. + c_8 \frac{\tilde{q}^\mu \tilde{q}^\nu}{\Lambda^2} t_{\mu\nu} f^{*1,\alpha\beta} \tilde{f}^{*(2)}_{\alpha\beta} + c_9 t^{\mu\alpha} \tilde{q}_\alpha \epsilon_{\mu\nu\rho\sigma} \epsilon_1^{*\nu} \epsilon_2^{*\rho} q^\sigma \right. \\ & \left. + \frac{c_{10} t^{\mu\alpha} \tilde{q}_\alpha}{\Lambda^2} \epsilon_{\mu\nu\rho\sigma} q^\rho \tilde{q}^\sigma \left(\epsilon_1^{*\nu} (q \epsilon_2^*) + \epsilon_2^{*\nu} (q \epsilon_1^*) \right) \right] \,, \end{split}$$

Assuming exact chiral symmetry in the limit of vanishing fermion masses:

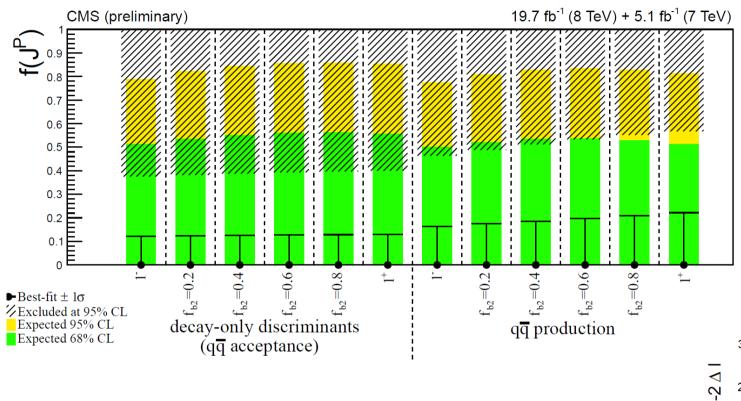
$$A(X_{J=0}f\bar{f}) = \frac{m_f}{v}\bar{u}_2 \left(\rho_1 + \rho_2\gamma_5\right) u_1$$

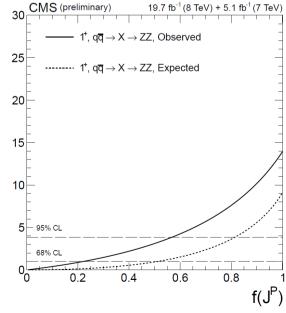
$$A(X_{J=1}f\bar{f}) = \epsilon^{\mu}\bar{u}_2 \left(\gamma_{\mu} \left(\rho_1^{(1)} + \rho_2^{(1)}\gamma_5\right) + \frac{m_f\tilde{q}_{\mu}}{\Lambda^2} \left(\rho_3^{(1)} + \rho_4^{(1)}\gamma_5\right)\right) u_1,$$

$$A(X_{J=2}f\bar{f}) = \frac{1}{\Lambda} t^{\mu\nu}\bar{u}_2 \left(\gamma_{\mu}\tilde{q}_{\nu} \left(\rho_1^{(2)} + \rho_2^{(2)}\gamma_5\right) + \frac{m_f\tilde{q}_{\mu}\tilde{q}_{\nu}}{\Lambda^2} \left(\rho_3^{(2)} + \rho_4^{(2)}\gamma_5\right)\right) u_1$$

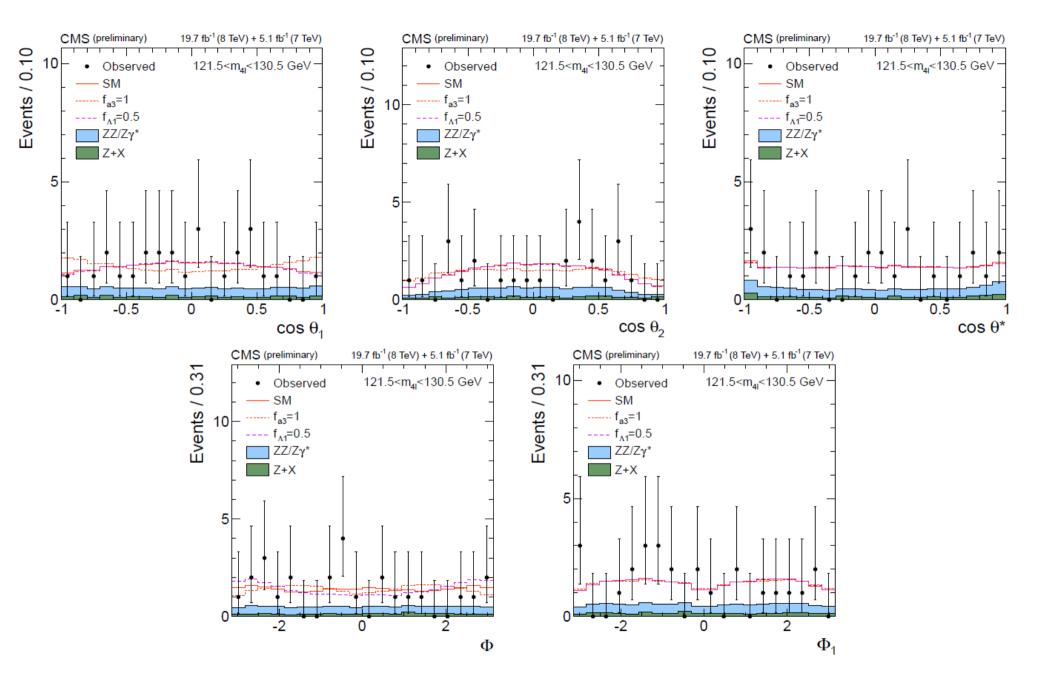
More CMS Results using $H \rightarrow 4I$ probing Spin-1:

Non-interfering states:





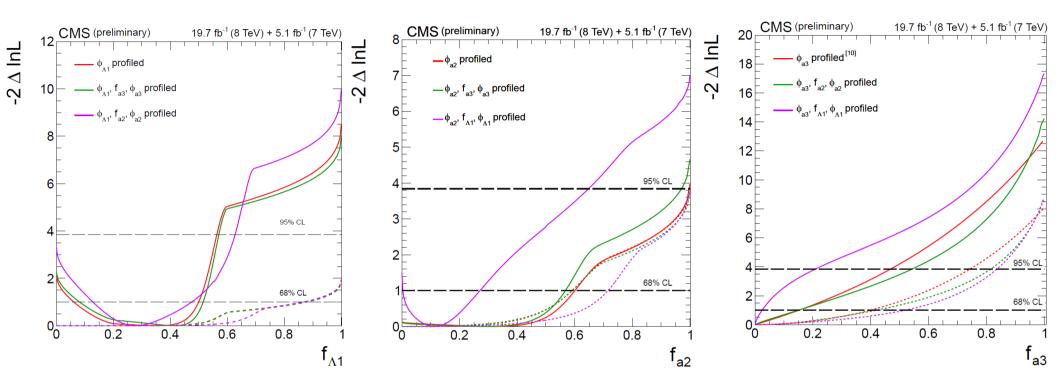
CMS H → **4l Angular Variables**



CMS combined results WW+ZZ:

J^P	J^P	Expected		
model	production	$(\mu=1)$	Obs. 0^+	Obs. J^P
1-	$q\bar{q} \to X$	3.3σ ($>4.0 \sigma$)	-1.3σ	$>$ 4.0 σ
1+	$q\bar{q} o X$	2.8σ (3.6σ)	-0.7σ	$+3.9\sigma$
2 _b ⁺	$gg \rightarrow X$	2.1σ (2.9 σ)	-1.5σ	$+3.9\sigma$
$2_{\rm h}^+$	$gg \rightarrow X$	3.9σ ($>4.0 \sigma$)	$+0.4\sigma$	$+3.6\sigma$
$2_{\rm h}^-$	$gg \rightarrow X$	$>$ 4.0 σ ($>$ 4.0 σ)	-0.1σ	$>$ 4.0 σ
2_{h2}^{+}	$gg \rightarrow X$	2.3σ (3.0σ)	-0.9σ	$+3.4\sigma$
2_{h3}^{+}	$gg \rightarrow X$	3.3σ (3.9σ)	-0.1σ	$+3.6\sigma$
2_{h6}^{+}	$gg \rightarrow X$	3.8σ ($>4.0 \sigma$)	-0.4σ	$>$ 4.0 σ
2_{h7}^{+}	$gg \rightarrow X$	$>$ 4.0 σ ($>$ 4.0 σ)	$+0.5\sigma$	$+3.9\sigma$
2_{h9}^{-}	$gg \rightarrow X$	2.4σ ($3.1~\sigma$)	-0.7σ	$+3.4\sigma$
2_{h10}^{-}	$gg \to X$	$>$ 4.0 σ ($>$ 4.0 σ)	$+0.1\sigma$	$>$ 4.0 σ
2 _b ⁺	$q\bar{q} \to X$	2.6σ (3.8σ)	-1.2σ	$>$ 4.0 σ
$2_{\rm h}^+$	$q\bar{q} \to X$	4.0σ ($>$ 4.0 σ)	$+0.5\sigma$	$+3.7\sigma$
$2_{\rm h}^-$	$q\bar{q} \to X$	$>$ 4.0 σ ($>$ 4.0 σ)	0.0σ	$>$ 4.0 σ
2_{h2}^{+}	$q\bar{q} \to X$	2.7σ (3.8σ)	-0.9σ	$>$ 4.0 σ
2_{h3}^{+}	$q\bar{q} \to X$	3.4σ ($>4.0 \sigma$)	-0.1σ	$+3.8\sigma$
2_{h6}^{+}	$q\bar{q} \to X$	3.9σ ($>4.0 \sigma$)	-0.3σ	$>$ 4.0 σ
2_{h7}^{+}	$q\bar{q} \to X$	$>$ 4.0 σ ($>$ 4.0 σ)	$+0.4\sigma$	$+4.0\sigma$
2 _{h9}	$q\bar{q} \to X$	2.7σ (3.3σ)	-0.4σ	$+3.2\sigma$
2 _{h10}	$q\bar{q} \to X$	$>$ 4.0 σ ($>$ 4.0 σ)	$+0.2\sigma$	$>$ 4.0 σ

Measurement of anomalous coupling parameters in H \rightarrow 4I:



Measurement of anomalous coupling parameters in H \rightarrow 4l and H \rightarrow WW combined:

