Run 1 results on the scalar boson:
mass and couplings

Giovanni Petrucciani (CERN, CMS)
for the ATLAS & CMS collaborations
Introduction

• The discovery of a Higgs-like boson in 2012 has set new goals for the LHC experiments:
 – measure precisely the mass of the boson (the last free parameter in the Standard Model)
 – test if the particle is indeed a scalar boson → *topic of next talk*
 – test if its couplings are compatible with SM predictions (several BSM theories can contain Higgs-like particles)
 – search for rare or more challenging production or decay modes → *see talks in monday's BEH session*
Mass measurement

• The mass of the boson is directly accessible through the $H \rightarrow \gamma \gamma$ and $H \rightarrow 4\ell$ decays:
 – the kinematic of the decay is fully reconstructed
 – all final state objects can be precisely measured
 – theoretical issues negligible at the current precision

• Indeed, a mass measurement at 0.5% accuracy was available on the very day of the discovery!

• Improved analyses of the full Run 1 dataset have allowed gaining a factor 2 in precision
Analyses

• LHC experiments have released the final run 1 mass measurement papers in both final states:
 – CMS: 4ℓ and γγ papers [arXiv:1312.5353, 1407.0558], preliminary combination [HIG-14-009]

• Fundamental ingredient: excellent lepton and photon efficiency, resolution and energy scale calibration
 → see talks in monday’s LHC Run 1 legacy session
H → γγ analysis strategy

1. Fit narrow mass peak over smooth background
2. Enhance the sensitivity by categorizing events by purity and mass resolution.
Categorization

- **ATLAS**: dedicated event categorization for the mass measurement analysis:
 - Categorization by photon η and quality (unconverted vs converted), and by diphoton p_T (p_T rel. to trust axis)
- **CMS**: same analysis used for mass and couplings (and optimized for the latter)
 - Tagged categories for VBF, VH, ttH production modes: 7 topologies, based on jets, E_T^{miss}, leptons, b-tags
 - Untagged events categorized using a BDT classifier relying on photon p_T, η, purity, and $m(\gamma\gamma)$ resolution
- Larger variation of $m(\gamma\gamma)$ resolution in CMS categories compared to ATLAS ones
$H \rightarrow ZZ \rightarrow 4\ell$
H → ZZ → 4ℓ strategy

- Extremely clean signature, but challenging due to very low BR (10^{-4}) and soft lepton p_T spectrum
H → ZZ → 4ℓ strategy

• Extremely clean signature, but challenging due to very low BR (10^{-4}) and soft lepton p_T spectrum

• Fully reconstructed final state optimal for exploiting matrix element methods
 – Now included also in ATLAS analysis, combined in a BDT together with Higgs p_T and rapidity
Improving further 4ℓ mass

- In $\sim 75\%$ of the $H \to ZZ \to 4\ell$ events, one Z boson is on mass shell:
 - a kinematic fit of the Z decay improves the $m(4\ell)$ resolution event by event, and reduces the energy scale systematic.
 - used by ATLAS only, $\sim 15\%$ gain on $\sigma(m)$
Improving further 4ℓ mass

- In \sim75% of the $H \rightarrow ZZ \rightarrow 4\ell$ events, one Z boson is on mass shell:
 - a kinematic fit of the Z decay improves the $m(4\ell)$ resolution event by event, and reduces the energy scale systematic.
 - used by ATLAS only, \sim15% gain on $\sigma(m)$

- Lepton momentum resolution dependent on p_T, η, and quality (esp. for electrons)
 - m_H fit can be performed using the individual $m(4\ell)$ resolutions of each observed event
 - now used also by ATLAS (as cross-check)

- Identification of photons from final state radiation recovers signal tail at low $m(4\ell)$, and improves isolation efficiency
 - now implemented also in ATLAS analysis
Systematics: muon momentum scale

- Muon momentum scale calibrated and validated on Z, J/ψ, Υ decays
Systematics: muon momentum scale

- Muon momentum scale calibrated and validated on $Z, J/\psi, \Upsilon$ decays
- After calibration, the systematic uncertainty on m_H from the muon scale is negligible with respect to the statistical uncertainty:
 - ATLAS: 0.04%
 - CMS: 0.1% (conservative)
 (stat. uncertainty: \sim0.4%)
Systematics: electrons energy scale

• Similar approaches as for muons at Z peak, but more challenging at low \(p_T \):
 – smaller calibration samples of \(J/\psi, \Upsilon \) (due to trigger)
 – relative weight of calo & tracker changes with \(p_T \)
• Scale uncertainty on \(m(4e) \): 0.3% (CMS), 0.04% (ATLAS)
• Impact on \(m_H \) reduced by the smaller weight of 4e and 2\(\mu \)2e states wrt 4\(\mu \), 2e2\(\mu \) in comb.
 – also by Z1 refit for ATLAS
Systematics: photons

- Energy scale calibrated on $Z \rightarrow ee$ in data, then extrapolated to $H \rightarrow \gamma\gamma$ using MC. Main challenges:
 - Linearity: harder p_T spectrum in $H(125) \text{ vs } Z(91.2)$
 - Photon to electron differences in data vs MC: from uncertainties in material description, longitudinal calibration, shower modelling.

- The scale uncertainty drives the systematic on the m_H measurement in $\gamma\gamma$ channel.
 - ATLAS vs CMS difference, due to more challenging response calibration for ATLAS detector (see backup)

<table>
<thead>
<tr>
<th></th>
<th>stat.</th>
<th>syst.</th>
<th>comb.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATLAS $\gamma\gamma$</td>
<td>0.42 GeV</td>
<td>0.28 GeV</td>
<td>0.50 GeV</td>
</tr>
<tr>
<td>CMS $\gamma\gamma$</td>
<td>0.31 GeV</td>
<td>0.15 GeV</td>
<td>0.35 GeV</td>
</tr>
</tbody>
</table>
Results

\begin{center}
\begin{tabular}{|l|l|l|}
\hline
 & ATLAS fit ± stat. ± syst & CMS fit ± stat. ± syst \\
\hline
\gamma\gamma & 125.98 ± 0.42 ± 0.28 GeV & 124.70 ± 0.31 ± 0.15 GeV \\
\hline
4\ell & 124.51 ± 0.52 ± 0.06 GeV & 125.8 ± 0.4 ± 0.2 GeV \\
\hline
comb & 125.36 ± 0.37 ± 0.18 GeV & 125.03 ± 0.26 ± 0.14 GeV \\
\hline
\end{tabular}
\end{center}
Rencontres du Vietnam 2014:
Physics at LHC and beyond

G. Petrucciani
(CERN)

COUPLINGS

\[\lambda \text{ or } (g/2\nu)_{10} \]

\[\text{CERN preliminary} \]

\[9.7 \pm (0.1 \text{ stat}) \pm (0.1 \text{ sys}) \text{ TeV} \]

\[\text{EM Higgs} \]

\[95\% \text{ CL} \]

\[0.1 \text{ TeV} \]
Testing compatibility with the SM

- Probing for the Higgs boson in many final states allows testing compatibility with the SM predictions, but:
 - sensitivity in many individual final states is limited
 - contributions from different production or decay modes hard to disentangle in some topologies (e.g. H+jets), making results harder to interpret in BSM models
Why couplings?

• Analyzing the combined data in terms of couplings helps overcoming these limitations:
 – harvests all information on the same coupling from both production and decay, in all experimental final states
 – allows direct comparison with BSM predictions without requiring theorists to simulate our experimental analyses

\[ggH, \ H \rightarrow ZZ \]

\[VBF, \ H \rightarrow \gamma\gamma \]

\[ZH, \ H \rightarrow bb \]
Input analyses

<table>
<thead>
<tr>
<th>decay</th>
<th>production mode tags</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>incl.</td>
</tr>
<tr>
<td>WW</td>
<td></td>
</tr>
<tr>
<td>ZZ</td>
<td></td>
</tr>
<tr>
<td>γγ</td>
<td></td>
</tr>
<tr>
<td>bb</td>
<td></td>
</tr>
<tr>
<td>ττ</td>
<td></td>
</tr>
</tbody>
</table>

- CMS: preliminary combination [HIG-14-009], but all included inputs are now submitted as final run 1 papers
- ATLAS: preliminary combination [ATLAS-CONF-2014-009] of *in itinere* papers on WW, ZZ, γγ and preliminary bb, ττ
- Direct H→invis, Zγ, μμ searches exist but are not included

(*) Not a dedicated category, but the di-jet discriminant can separate VH(V→jj) from ggH+jets and VBF

= Included in comb. (full 8 TeV dataset)

= Full 8 TeV analyzed, but not yet in comb.
Testing couplings

- Framework set within LHC Higgs XS WG [CERN YR3].
- Assume a single, narrow width, scalar boson:
 \[\sigma(xx \rightarrow H \rightarrow yy) = \sigma(xx) \times \frac{\Gamma_{yy}}{\Gamma_{tot}} \]
- Parameterize deviations of \(\sigma \) and \(\Gamma \) from their SM values in terms of coupling modifiers \(\kappa_i \) (or ratios \(\lambda_{ij} := \frac{\kappa_i}{\kappa_j} \)).
Approximations and assumptions

- We account for deviations only in expected yields, not in the kinematics of individual processes
 - limitation of experimental analyses and of used theory inputs
- We don’t have higher order corrections in theory predictions except for the SM case ($\kappa = 1$)
 - limitation of theoretical predictions
- Assumptions are needed on unmeasured couplings, (e.g. same relative deviations for charm and top)
 - limitation of the hadron collider environment
- We assume no beyond SM Higgs production modes, and that backgrounds are only from SM
General fits

- Full Run 1 dataset allows testing fairly general models, which can be constructed as following:
 1. Start introduce modifiers for tree-level couplings to W, Z, t, b, τ: κ_W, κ_Z, κ_t, κ_b, κ_{τ} (or use a common κ_V)
 2. Two choices for loop-level contributions (e.g. σ_{ggH}, $\Gamma_{\gamma\gamma}$):
 A. Assume only SM particles in the loop: contribution can be computed in terms of κ_W, κ_Z, κ_t, κ_b, κ_{τ}
General fits

• Full Run 1 dataset allows testing fairly general models, which can be constructed as following:
 1. Start introduce modifiers for tree-level couplings to $\mathcal{W}, \mathcal{Z}, t, b, \tau$: $\kappa_\mathcal{W}, \kappa_\mathcal{Z}, \kappa_t, \kappa_b, \kappa_\tau$ (or use a common κ_V)
 2. Two choices for loop-level contributions (e.g. $\sigma_{ggH}, \Gamma_{\gamma\gamma}$):
 A. Assume only SM particles in the loop: contribution can be computed in terms of $\kappa_\mathcal{W}, \kappa_\mathcal{Z}, \kappa_t, \kappa_b, \kappa_\tau$
 B. Be agnostic: introduce effective κ_g, κ_γ parameters
General fits

• Full Run 1 dataset allows testing fairly general models, which can be constructed as following:
 1. Start introduce modifiers for tree-level couplings to \(W, Z, t, b, \tau \): \(K_W, K_Z, K_t, K_b, K_\tau \) (or use a common \(K_V \))
 2. Two choices for loop-level contributions (e.g. \(\sigma_{ggH}, \Gamma_{\gamma\gamma} \)):
 A. Assume only SM particles in the loop: contribution can be computed in terms of \(K_W, K_Z, K_t, K_b, K_\tau \)
 B. Be agnostic: introduce effective \(K_g, K_\gamma \) parameters

• An alternative paradigm is instead to parameterize everything in terms of coupling ratios \(\lambda_{XY} \), except for one reference process setting the overall scale (by convention taken to be \(ggH, H \to ZZ \))
Vector bosons

- W and Z couplings tested at the 15-20% level.
- Good compatibility with SM predictions

CMS, tree & loop κ's, $\kappa_W = \kappa_Z$

ATLAS, tree-level only κ's

- W and Z couplings tested at the 15-20% level.
- Good compatibility with SM predictions.
Bottom, Tau

- Coupling probed at the 30-40% level
 - Agreement with SM, with some preference for smaller κ values
- Deviations on b couplings also affect strongly the yields in other modes through Γ_{bb} in Γ_{tot} at denominator
 - and cancellation Γ_{bb}/Γ_{tot} in makes $VH\to bb$ yield not so sensitive to κ_b

ATLAS, tree-level only κ's: interference in $\gamma\gamma$ and gg loops sensitive to sign of κ

CMS, tree & loop κ's: assume $\kappa > 0$
Top

- Can be probed directly via $t\bar{t}H$ production:
 \rightarrow dedicated talk on $t\bar{t}H$ in Monday’s BEH session
- Also probed indirectly via loops in gluon fusion production and $H \rightarrow \gamma\gamma$ partial decay width:
 - Requires the assumption of no BSM particles in loop

CMS, $t\bar{t}H$ only:
$\Delta \kappa/\kappa \sim 40-50\%$

ALAS, loop only:
$\Delta \kappa/\kappa \sim 30\%$
($t\bar{t}H$ not in this combination)

CMS, loops & $t\bar{t}H$:
$\Delta \kappa/\kappa \sim 25\%$
Loop-induced couplings

- Effective couplings to gluons and photons are good probes for new physics beyond the SM:
 - Extra coloured particles can affect gluon fusion
 - Extra charged particles can affect $H \rightarrow \gamma \gamma$ decay
- BSM extensions like top partners give correlated deviations in the two

A qualitative sketch of possible deviations in κ_g, κ_γ
Loop-induced couplings

- Effective couplings to gluons and photons are good probes for new physics beyond the SM:
 - Extra coloured particles can affect gluon fusion
 - Extra charged particles can affect $H \rightarrow \gamma\gamma$ decay
- BSM extensions like top partners give correlated deviations in the two

ATLAS & CMS: simplified model with only loop couplings floating

contours redrawn for clarity from
ATLAS CONF-HIGG-14-009
CMS PAS-HIG-14-009
Loop-induced couplings

- In more general fits, deviations in couplings to photons tested at 15-20%, gluons at 20–30%
- Hard to constrain correlated shift in $\sigma(ggH)$ and Γ_{tot} (e.g. from κ_b):
 - cancellation in $ggH \rightarrow VV$, $\gamma\gamma$ yields

CMS, κ_g and κ_γ from full tree+loop model

ATLAS, g/Z and γ/Z from full coupling ratio model
Probing BSM decays

- New physics can introduce new Higgs decay modes not detected at LHC.
 \[\Gamma_{\text{tot}} = \Gamma_{\text{SM}}(\kappa_i) + \Gamma_{\text{BSM}} \]
- A larger \(\Gamma_{\text{tot}} \) can be resolved from a deviation in the \(\kappa \)'s if we have some assumption.

\[\sigma(xx) \sim \kappa_x^2 \]
\[\Gamma_{yy} \sim \kappa_y^2 \]
\[\Gamma_{\text{tot}} = \kappa^2 \Gamma_{\text{SM}} + \Gamma_{\text{BSM}} \]

\[\sigma \cdot BR \sim \frac{\kappa^2 \cdot \kappa^2}{\kappa^2 \Gamma_{\text{SM}} + \Gamma_{\text{BSM}}} \]
Probing BSM decays

- New physics can introduce new Higgs decay modes not detected at LHC.
 \[\Gamma_{\text{tot}} = \Gamma_{\text{SM}}(\kappa_i) + \Gamma_{\text{BSM}} \]
- A larger \(\Gamma_{\text{tot}} \) can be resolved from a deviation in the \(\kappa \)'s if we have some assumption.
- Two scenarios considered:
 1. tree level couplings as in SM (assume new physics entering only in loops and decays)
 2. \(\kappa_V \leq 1 \) (EWSB motivated)
Overall picture

- Couplings to vector bosons and 3rd generation fermions probed at ATLAS & CMS with 15-50% precision
 - Fair compatibility with SM predictions overall
Conclusions

• Final LHC Run 1 mass measurements available:
 – already in the realm of precision measurements: discussing sub-per-mille systematics in calibrations
 – work ongoing on ATLAS+CMS mass combination

• For couplings, the books are still quite open:
 – Current constraints at 10-50%: still room for almost-but-not-quite-SM-like Higgs bosons
 – Expect some further improvement already on Run 1 data, e.g. from final ATLAS analyses
 – Improving these constraints will be one of the main goals for Run 2 and beyond (incl. future machines)
BACKUP
Systematics: photon differences

- Some reasons for the difference in systematics:
 - Larger uncertainty from non-linearity in ATLAS (0.1% vs 0.08%): LAr gain switch at energies between Z and H
 - ATLAS has ~0.1% extra systematics from the material in between the inner detector and the calorimeter
 - CMS homogeneous crystal calorimeter reduces impact of longitudinal calibration systematic (0.02% vs 0.1%)
 - CMS synchronous categorization of photons and electrons by shower compactness mitigates the effects of the uncertainty on the material budget:
 - calibrate unconverted photons with golden electrons
 - calibrate converted photons with showering electrons
Theoretical systematics

• For overall μ and for μ_{ggH} experimental uncertainties are comparable to theoretical uncertainties.

CMS $\mu = 1.00^{+0.09}_{-0.09} \text{(stat)}^{+0.08}_{-0.07} \text{(theo)}^{+0.07}_{-0.07} \text{(exp)}$

$\mu_{ggH} = 0.85^{+0.11}_{-0.09} \text{(stat)}^{+0.11}_{-0.08} \text{(theo)}^{+0.10}_{-0.09} \text{(exp)}$

ATLAS $\mu = 1.30^{+0.12}_{-0.12} \text{(stat)}^{+0.10}_{-0.08} \text{(theo)}^{+0.10}_{-0.08} \text{(exp)}$

• For the tests of couplings, experimental uncertainties are still expected to be dominant.

• Their evaluation and treatment, also for backgrounds and differential distributions, will be very important for analysis of Run 2 and beyond.
Compatibility of 4ℓ, $\gamma\gamma$

Statistical compatibility two mass measurements evaluated by looking at $\Delta m = m(\gamma\gamma) - m(4\ell)$

$\Delta m = +1.5 \pm 0.7^{(\text{stat})} \pm 0.3^{(\text{syst})}$ GeV (1.6σ)

$\Delta m = -0.9 \pm 0.6$ GeV (1.6σ)
Probing custodial symmetry

- Couplings to W & Z closely related in SM and most BSM alternatives with a doublet field.
- Tested in many different ways, two examples here:
 - CMS: from $H \rightarrow VV$ alone, in ggH-dominated final states
 - ATLAS: from most general coupling fit
m_H combination & model independency

- An effort is made to make the mass measurement more model independent.
- In designing the analysis:
 - ATLAS: don’t use tagged categories for mass measurement, both in H → γγ and H → 4ℓ
 - CMS H → ZZ: don’t use dijet category and p_T(H)
- In parametrizing the signal in the combination:
 - Separately floating signal strengths for H → 4ℓ, H → γγ
 - CMS H → γγ: float separately μ(VBF,VH) vs μ(ggH,ttH)
 - Both experiments checked independency of result on assumptions made on signal strengths.
Signal and background modelling

• Both experiments rely on a parametric modelling for the Higgs boson signal shape:
 – Parameters determined from fitting MC samples, after applying all data/mc corrections & smearings

• Backgrounds modelled with arbitrary smooth functions: polynomials, exponentials, power laws
 – Studies to determine the biases from assumed bkg parameterization done with toy MC or fast sim.
 – ATLAS: include bias as extra systematic on signal yield
 – CMS: profile likelihood over the choice of bkg shape
Minimal benchmark model

- Assume universal deviations in couplings to fermions (κ_f) and to vector boson (κ_V)
- Shows consistency across the 5 decay channels
Untagged $\gamma\gamma$ categories, 8 TeV

<table>
<thead>
<tr>
<th>ATLAS Category</th>
<th>n_{Sig}</th>
<th>σ_{eff} (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>unconv central high p_T</td>
<td>7.1</td>
<td>1.21</td>
</tr>
<tr>
<td>unconv central low p_T</td>
<td>59.3</td>
<td>1.35</td>
</tr>
<tr>
<td>unconv rest high p_T</td>
<td>10.4</td>
<td>1.36</td>
</tr>
<tr>
<td>unconv rest low p_T</td>
<td>96.2</td>
<td>1.53</td>
</tr>
<tr>
<td>conv central high p_T</td>
<td>4.5</td>
<td>1.35</td>
</tr>
<tr>
<td>conv central low p_T</td>
<td>37.2</td>
<td>1.52</td>
</tr>
<tr>
<td>conv rest high p_T</td>
<td>11.9</td>
<td>1.64</td>
</tr>
<tr>
<td>conv rest low p_T</td>
<td>107</td>
<td>1.88</td>
</tr>
<tr>
<td>unconv transition</td>
<td>26.0</td>
<td>1.86</td>
</tr>
<tr>
<td>conv transition</td>
<td>42.1</td>
<td>2.41</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CMS Category</th>
<th>n_{Sig}</th>
<th>σ_{eff} (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Untag 0</td>
<td>6.0</td>
<td>1.05</td>
</tr>
<tr>
<td>Untag 1</td>
<td>50.8</td>
<td>1.19</td>
</tr>
<tr>
<td>Untag 2</td>
<td>117</td>
<td>1.46</td>
</tr>
<tr>
<td>Untag 3</td>
<td>153</td>
<td>2.04</td>
</tr>
<tr>
<td>Untag 4</td>
<td>121</td>
<td>2.62</td>
</tr>
</tbody>
</table>

Notes:

- CMS numbers for $m_H = 125$ GeV, ATLAS ones for $m_H = 126$ GeV.
- ATLAS σ_{eff} 5-10% better at 7 TeV; CMS instead ~5% worse at 7 TeV.
The p_{Tt} variable

The thrust axis

$$\hat{t} = \frac{\vec{p}_{\gamma^1} - \vec{p}_{\gamma^2}}{|\vec{p}_{\gamma^1} - \vec{p}_{\gamma^2}|}$$

ATLAS Simulation Preliminary

$\sqrt{s} = 7$ TeV

Entries / 5 GeV (normalized to unity)
CMS Simulation \(H \rightarrow \gamma\gamma \) (\(m_H = 125 \text{ GeV}/c^2 \))

- Untagged 0: 8.0 total expected signal
- Untagged 1: 50.5 total expected signal
- Untagged 2: 117.2 total expected signal
- Untagged 3: 153.1 total expected signal
- Untagged 4: 121.4 total expected signal
- Dijet Tag 0: 4.5 total expected signal
- Dijet Tag 1: 5.6 total expected signal
- Dijet Tag 2: 13.7 total expected signal
- VH Lepton Tight: 1.4 total expected signal
- VH Lepton Loose: 0.9 total expected signal
- VH MET Tag: 1.8 total expected signal
- VH Dijet Tag: 1.6 total expected signal
- ttH Leptonic Tag: 0.5 total expected signal
- ttH Multijet Tag: 0.6 total expected signal

- Signal Fraction (%)
- Width (GeV)
- \(S/(S+B) \) in ± \(\sigma_{\text{eff}} \)
Systematics on ATLAS m_H

<table>
<thead>
<tr>
<th>Systematic</th>
<th>Uncertainty on m_H [MeV]</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAr syst on material before presampler (barrel)</td>
<td>70</td>
</tr>
<tr>
<td>LAr syst on material after presampler (barrel)</td>
<td>20</td>
</tr>
<tr>
<td>LAr cell non-linearity (layer 2)</td>
<td>60</td>
</tr>
<tr>
<td>LAr cell non-linearity (layer 1)</td>
<td>30</td>
</tr>
<tr>
<td>LAr layer calibration (barrel)</td>
<td>50</td>
</tr>
<tr>
<td>Lateral shower shape (conv)</td>
<td>50</td>
</tr>
<tr>
<td>Lateral shower shape (unconv)</td>
<td>40</td>
</tr>
<tr>
<td>Presampler energy scale (barrel)</td>
<td>20</td>
</tr>
<tr>
<td>ID material model ($</td>
<td>\eta</td>
</tr>
<tr>
<td>$H \rightarrow \gamma\gamma$ background model (unconv rest low p_T)</td>
<td>40</td>
</tr>
<tr>
<td>$Z \rightarrow ee$ calibration</td>
<td>50</td>
</tr>
<tr>
<td>Primary vertex effect on mass scale</td>
<td>20</td>
</tr>
<tr>
<td>Muon momentum scale</td>
<td>10</td>
</tr>
<tr>
<td>Remaining systematic uncertainties</td>
<td>70</td>
</tr>
<tr>
<td>Total</td>
<td>180</td>
</tr>
</tbody>
</table>
Material before ECAL

Inner Tracker + Services

All
Comparison of systematics on $m_{\gamma\gamma}$

<table>
<thead>
<tr>
<th>Source</th>
<th>Name</th>
<th>ATLAS</th>
<th>CMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>In situ calib</td>
<td>$Z \rightarrow ee$ calibration</td>
<td>0.04%</td>
<td>0.04%</td>
</tr>
<tr>
<td>e/γ diff</td>
<td>Material tracker</td>
<td>0.07% (5% ID unc)</td>
<td>0.06% (10-20% ID unc)</td>
</tr>
<tr>
<td></td>
<td>Other material</td>
<td>0.1%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Longitudinal calib</td>
<td>0.1%</td>
<td>0.02%</td>
</tr>
<tr>
<td></td>
<td>Lateral shower shape</td>
<td>0.06%</td>
<td>0.07%</td>
</tr>
<tr>
<td>Linearity</td>
<td></td>
<td>0.12% (MG/HG full effect)</td>
<td>0.08% (after corr)</td>
</tr>
<tr>
<td>Conversion classification</td>
<td></td>
<td>0.02%</td>
<td>-</td>
</tr>
<tr>
<td>Analysis</td>
<td>Background</td>
<td>0.04%</td>
<td>< 0.01%</td>
</tr>
<tr>
<td></td>
<td>Vertex</td>
<td>0.03%</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>0.22%</td>
<td>0.12%</td>
</tr>
</tbody>
</table>
Source of uncertainty

<table>
<thead>
<tr>
<th>Source of uncertainty</th>
<th>Uncertainty in \hat{m}_H (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imperfect simulation of electron-photon differences</td>
<td>0.10</td>
</tr>
<tr>
<td>Linearity of the energy scale</td>
<td>0.10</td>
</tr>
<tr>
<td>Energy scale calibration and resolution</td>
<td>0.05</td>
</tr>
<tr>
<td>Other</td>
<td>0.04</td>
</tr>
<tr>
<td>All systematic uncertainties in the signal model</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Statistical Total

<table>
<thead>
<tr>
<th></th>
<th>Uncertainty in \hat{m}_H (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistical</td>
<td>0.31</td>
</tr>
<tr>
<td>Total</td>
<td>0.35</td>
</tr>
</tbody>
</table>

ATLAS

<table>
<thead>
<tr>
<th>Class</th>
<th>Central p_T</th>
<th>Unconverted p_T</th>
<th>Converted p_T</th>
<th>Trans. p_T</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z\to e^+e^-$ calibration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LAr cell non-linearity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Layer calibration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ID material</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other material</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conversion reconstruction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lateral shower shape</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Background modeling</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vertex measurement</td>
<td></td>
<td></td>
<td></td>
<td>0.03</td>
</tr>
<tr>
<td>Total</td>
<td>0.23</td>
<td>0.28</td>
<td>0.24</td>
<td>0.30</td>
</tr>
</tbody>
</table>

Note: The values are given in units of GeV and are based on the ATLAS experiment's analysis of the $Z\to e^+e^-$ channel.
H → γγ signal models (inclusive)

- The CMS signal model has narrower core, larger tails compared to ATLAS one

Graphs:
- CMS Unpublished
- Simulation
- Parametric model
- σ_{eff} = 1.87 GeV
- FWHM = 3.10 GeV
- ATLAS Simulation
 - √s = 8 TeV
 - H → γγ, m_H = 125 GeV
 - Inclusive
 - FWHM = 3.69 GeV

Note: Same X axis scale in the two plots.
CMS m\(\gamma\gamma\): cross-checks

<table>
<thead>
<tr>
<th></th>
<th>(\hat{\mu})</th>
<th>(\hat{m}_H) (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 TeV</td>
<td>2.22(^{+0.62}_{-0.55})</td>
<td>124.2</td>
</tr>
<tr>
<td>8 TeV</td>
<td>0.90(^{+0.26}_{-0.23})</td>
<td>124.9</td>
</tr>
<tr>
<td>Combined</td>
<td>1.14(^{+0.26}_{-0.23})</td>
<td>124.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analysis</th>
<th>Expected</th>
<th>Observed</th>
<th>(m(H))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main analysis</td>
<td>1.00(^{+0.24}_{-0.22})</td>
<td>1.14(^{+0.26}_{-0.23})</td>
<td>124.7</td>
</tr>
<tr>
<td>Cut-based analysis</td>
<td>1.00(^{+0.26}_{-0.24})</td>
<td>1.29(^{+0.29}_{-0.26})</td>
<td>124.6</td>
</tr>
<tr>
<td>Sideband bkg. model analysis</td>
<td>1.00(^{+0.25}_{-0.22})</td>
<td>1.06(^{+0.26}_{-0.23})</td>
<td>124.7</td>
</tr>
</tbody>
</table>
ATLAS $H \rightarrow \gamma\gamma$ cross-checks

- Mass re-measured splitting datasets in categories to test for possible biases

\[\int L dt = 4.5 \text{ fb}^{-1} \ \ \ \ \ \int L dt = 20.3 \text{ fb}^{-1} \ \ \ s = 7 \text{ TeV} \ \ \ s = 8 \text{ TeV} \]

- Converted vs unconverted
- High vs low pile-up
- Barrel vs endcaps
<table>
<thead>
<tr>
<th>Category</th>
<th>n_{sig}</th>
<th>FWHM [GeV]</th>
<th>σ_{eff} [GeV]</th>
<th>b in $\pm\sigma_{\text{eff}90}$</th>
<th>s/b [%]</th>
<th>s/\sqrt{b}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\sqrt{s}=8$ TeV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inclusive</td>
<td>402.</td>
<td>3.69</td>
<td>1.67</td>
<td>10670</td>
<td>3.39</td>
<td>3.50</td>
</tr>
<tr>
<td>Unconv. central low p_{Tt}</td>
<td>59.3</td>
<td>3.13</td>
<td>1.35</td>
<td>801</td>
<td>6.66</td>
<td>1.88</td>
</tr>
<tr>
<td>Unconv. central high p_{Tt}</td>
<td>7.1</td>
<td>2.81</td>
<td>1.21</td>
<td>26.0</td>
<td>24.6</td>
<td>1.26</td>
</tr>
<tr>
<td>Unconv. rest low p_{Tt}</td>
<td>96.2</td>
<td>3.49</td>
<td>1.53</td>
<td>2624</td>
<td>3.30</td>
<td>1.69</td>
</tr>
<tr>
<td>Unconv. rest high p_{Tt}</td>
<td>10.4</td>
<td>3.11</td>
<td>1.36</td>
<td>93.9</td>
<td>9.95</td>
<td>0.96</td>
</tr>
<tr>
<td>Unconv. transition</td>
<td>26.0</td>
<td>4.24</td>
<td>1.86</td>
<td>910</td>
<td>2.57</td>
<td>0.78</td>
</tr>
<tr>
<td>Conv. central low p_{Tt}</td>
<td>37.2</td>
<td>3.47</td>
<td>1.52</td>
<td>589</td>
<td>5.69</td>
<td>1.38</td>
</tr>
<tr>
<td>Conv. central high p_{Tt}</td>
<td>4.5</td>
<td>3.07</td>
<td>1.35</td>
<td>20.9</td>
<td>19.4</td>
<td>0.88</td>
</tr>
<tr>
<td>Conv. rest low p_{Tt}</td>
<td>107.2</td>
<td>4.23</td>
<td>1.88</td>
<td>3834</td>
<td>2.52</td>
<td>1.56</td>
</tr>
<tr>
<td>Conv. rest high p_{Tt}</td>
<td>11.9</td>
<td>3.71</td>
<td>1.64</td>
<td>144.2</td>
<td>7.44</td>
<td>0.89</td>
</tr>
<tr>
<td>Conv. transition</td>
<td>42.1</td>
<td>5.31</td>
<td>2.41</td>
<td>1977</td>
<td>1.92</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td>$\sqrt{s}=7$ TeV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inclusive</td>
<td>73.9</td>
<td>3.38</td>
<td>1.54</td>
<td>1752</td>
<td>3.80</td>
<td>1.59</td>
</tr>
<tr>
<td>Unconv. central low p_{Tt}</td>
<td>10.8</td>
<td>2.89</td>
<td>1.24</td>
<td>128</td>
<td>7.55</td>
<td>0.85</td>
</tr>
<tr>
<td>Unconv. central high p_{Tt}</td>
<td>1.2</td>
<td>2.59</td>
<td>1.11</td>
<td>3.7</td>
<td>30.0</td>
<td>0.58</td>
</tr>
<tr>
<td>Unconv. rest low p_{Tt}</td>
<td>16.5</td>
<td>3.09</td>
<td>1.35</td>
<td>363</td>
<td>4.08</td>
<td>0.78</td>
</tr>
<tr>
<td>Unconv. rest high p_{Tt}</td>
<td>1.8</td>
<td>2.78</td>
<td>1.21</td>
<td>13.6</td>
<td>11.6</td>
<td>0.43</td>
</tr>
<tr>
<td>Unconv. transition</td>
<td>4.5</td>
<td>3.65</td>
<td>1.61</td>
<td>125</td>
<td>3.21</td>
<td>0.36</td>
</tr>
<tr>
<td>Conv. central low p_{Tt}</td>
<td>7.1</td>
<td>3.28</td>
<td>1.44</td>
<td>105</td>
<td>6.06</td>
<td>0.62</td>
</tr>
<tr>
<td>Conv. central high p_{Tt}</td>
<td>0.8</td>
<td>2.87</td>
<td>1.25</td>
<td>3.5</td>
<td>21.6</td>
<td>0.40</td>
</tr>
<tr>
<td>Conv. rest low p_{Tt}</td>
<td>21.0</td>
<td>3.93</td>
<td>1.75</td>
<td>695</td>
<td>2.72</td>
<td>0.72</td>
</tr>
<tr>
<td>Conv. rest high p_{Tt}</td>
<td>2.2</td>
<td>3.43</td>
<td>1.51</td>
<td>24.7</td>
<td>7.98</td>
<td>0.40</td>
</tr>
<tr>
<td>Conv. transition</td>
<td>8.1</td>
<td>4.81</td>
<td>2.23</td>
<td>365</td>
<td>2.00</td>
<td>0.38</td>
</tr>
</tbody>
</table>
ATLAS Calibration scheme

SIMULATION

1. training of MVA e/γ calibration

EM cluster energy

2. equalization of uniformity response
 - HV
 - IMW
 - Gain
 - E₀
 - E₁/E₂

3. equalization of longitudinal layer response

MC-based e/γ response calibration

4. e/γ energy

DATA

5. Z→ee data-driven resolution smearing and scale calibration

calibrated e/γ energy

6. J/ψ→ee Z→eeγ data-driven scale validation