# Run 1 results on the scalar boson: mass and couplings

Giovanni Petrucciani (CERN, CMS) for the ATLAS & CMS collaborations

CÈRN



G. Petrucciani (CERN)



### Introduction

- The discovery of a Higgs-like boson in 2012 has set new goals for the LHC experiments:
  - measure precisely the mass of the boson (the last free parameter in the Standard Model)
  - test if the particle is indeed a scalar boson

#### $\rightarrow$ topic of next talk

- test if its couplings are compatible with SM predictions (several BSM theories can contain Higgs-like particles)
- search for rare or more challenging production or decay modes → see talks in monday's BEH session



G. Petrucciani (CERN)



### Mass measurement

• The mass of the boson is directly accessible through the H  $\rightarrow \gamma\gamma$  and H  $\rightarrow 4\ell$  decays:

- the kinematic of the decay is fully reconstructed

- all final state objects can be precisely measured
- theoretical issues negligible at the current precision
- Indeed, a mass measurement at 0.5% accuracy was available on the very day of the discovery!
- Improved analyses of the full Run 1 dataset have allowed gaining a factor 2 in precision



G. Petrucciani (CERN)



Analyses

• LHC experiments have released the final run 1 mass measurement papers in both final states:

- ATLAS: 4ℓ + γγ combined paper [ arXiv:1406.3827 ]

- CMS: 4ℓ and γγ papers [arXiv: 1312.5353, 1407.0558], preliminary combination [HIG-14-009]
- Fundamental ingredient: excellent lepton and photon efficiency, resolution and energy scale calibration
   *→ see talks in monday's LHC Run 1 legacy session*



G. Petrucciani (CERN)



 $H \rightarrow \gamma \gamma$  analysis strategy

- 1. Fit narrow mass peak over smooth background
- 2. Enhance the sensitivity by categorizing events by purity and mass resolution.





G. Petrucciani (CERN)



Categorization

- ATLAS: dedicated event categorization for the mass measurement analysis:
  - Categorization by photon η and quality (unconverted vs converted), and by diphoton p<sub>Tt</sub> (p<sub>T</sub> rel. to trust axis)
- CMS: same analysis used for mass and couplings (and optimized for the latter)
  - Tagged categories for VBF, VH, ttH production modes: 7 topologies, based on jets, E<sub>T</sub><sup>miss</sup>, leptons, b-tags
  - Untagged events categorized using a BDT classifier relying on photon  $p_T$ ,  $\eta$ , purity, and m( $\gamma\gamma$ ) resolution
- Larger variation of m(γγ) resolution in CMS categories compared to ATLAS ones





G. Petrucciani (CERN)



 $H \rightarrow ZZ \rightarrow 4\ell$ 





G. Petrucciani (CERN)

8

 $H \rightarrow ZZ \rightarrow 4\ell$  strategy



 Extremely clean signature, but challenging due to very low BR (10<sup>-4</sup>) and soft lepton p<sub>T</sub> spectrum









 $H \rightarrow ZZ \rightarrow 4\ell$  strategy

- Extremely clean signature, but challenging due to very low BR (10<sup>-4</sup>) and soft lepton p<sub>T</sub> spectrum
- Fully reconstructed final state optimal for exploiting matrix element methods
  - Now included also in ATLAS analysis, combined in a BDT together with Higgs p<sub>T</sub> and rapidity



9



G. Petrucciani (CERN)



# Improving further 4ℓ mass

- In ~75% of the H → ZZ → 4ℓ events, one Z boson is on mass shell:
  - a kinematic fit of the Z decay improves the m(4l) resolution event by event, and reduces the energy scale systematic.
  - used by ATLAS only, ~15% gain on  $\sigma(m)$







G. Petrucciani (CERN)



# Improving further 4ℓ mass

- In ~75% of the  $H \rightarrow ZZ \rightarrow 4\ell$  events, one Z boson is on mass shell:
  - a kinematic fit of the Z decay improves the m(4l) resolution event by event, and reduces the energy scale systematic.
  - used by ATLAS only, ~15% gain on  $\sigma(m)$
- Lepton momentum resolution dependent on  $p_T$ ,  $\eta$ , and quality (esp. for electrons)
  - m<sub>H</sub> fit can be performed using the individual m(4ℓ) resolutions of each observed event
  - now used also by ATLAS (as cross-check)
- Identification of photons from final state radiation recovers signal tail at low m(4ℓ), and improves isolation efficiency

now implemented also in ATLAS analysis



 $\sigma_{m_{4l}}/m_{4l}$ 



G. Petrucciani (CERN)



### Systematics: muon momentum scale





G. Petrucciani (CERN)



### Systematics: muon momentum scale

- Muon momentum scale calibrated and validated on Z, J/ψ, Y decays
- After calibration, the systematic uncertainty on m<sub>H</sub> from the muon scale is negligible with respect to the statistical uncertainty:
  - ATLAS: 0.04%
  - CMS: 0.1% (conservative)
    (stat. uncertainty: ~0.4%)



G. Petrucciani (CERN)



Rencontres du Vietnam 2014: Physics at LHC and beyond

### Systematics: electrons energy scale

- Similar approaches as for muons at Z peak, but more challenging at low p<sub>T</sub>:
  - smaller calibration samples of J/ψ, Y (due to trigger)
  - relative weight of calo & tracker changes with  $p_{\rm T}$
- Scale uncertainty on m(4e): 0.3% (CMS), 0.04% (ATLAS)
- Impact on m<sub>H</sub> reduced by the smaller weight of 4e and 2µ2e states wrt 4µ, 2e2µ in comb.
   also by Z1 refit for ATLAS



14



G. Petrucciani (CERN)



### Systematics: photons

- Energy scale calibrated on Z  $\rightarrow$  ee in data, then extrapolated to H  $\rightarrow$  yy using MC. Main challenges:
  - Linearity: harder  $p_T$  spectrum in H(125) vs Z(91.2)
  - Photon to electron differences in data vs MC: from uncertainties in material description, longitudinal calibration, shower modelling.
- The scale uncertainty drives the systematic on the  $m_H$  measurement in  $\gamma\gamma$  channel.
  - ATLAS vs CMS difference, due to more challenging response calibration for ATLAS detector (see backup)

| stat.    |          | syst.    | comb.    | _ ' |
|----------|----------|----------|----------|-----|
| ATLAS γγ | 0.42 GeV | 0.28 GeV | 0.50 GeV |     |
| СМЅ үү   | 0.31 GeV | 0.15 GeV | 0.35 GeV | ÷   |





G. Petrucciani (CERN)







G. Petrucciani (CERN)



### Testing compatibility with the SM

- Probing for the Higgs boson in many final states allows testing compatibility with the SM predictions, but:
  - sensitivity in many individual final states is limited
  - contributions from different production or decay modes hard to disentangle in some topologies (e.g. H+jets), making results harder to interpret in BSM models





G. Petrucciani (CERN)



Why couplings?

- Analyzing the combined data in terms of couplings helps overcoming these limitations:
  - harvests all information on the same coupling from both production and decay, in all experimental final states
  - allows direct comparison with BSM predictions without requiring theorists to simulate our experimental analyses





G. Petrucciani (CERN)



Input analyses



- Included in comb.(full 8 TeV dataset)
- = Full 8 TeV analyzed, but not yet in comb.

(\*) Not a dedicated category, but the di-jet discriminant can separate VH(V→jj) from ggH+jets and VBF

- CMS: preliminary combination [<u>HIG-14-009</u>], but all included inputs are now submitted as final run 1 papers
- ATLAS: preliminary combination [ATLAS-CONF-2014-009] of *in itinere* papers on WW, ZZ, γγ and preliminary bb, ττ
- Direct H $\rightarrow$ invis, Zy,  $\mu\mu$  searches exist but are not included



G. Petrucciani (CERN)



# Testing couplings

- Framework set within LHC Higgs XS WG [<u>CERN YR3</u>].
- Assume a single, narrow width, scalar boson:  $\sigma(xx \rightarrow H \rightarrow yy) = \sigma(xx) \times \Gamma_{yy} / \Gamma_{tot}$
- Parameterize deviations of  $\sigma$  and  $\Gamma$  from their SM values in terms of coupling modifiers  $\kappa_i$  (or ratios  $\lambda_{ij} := \kappa_i / \kappa_j$ ).







# Approximations and assumptions

- We account for deviations only in expected yields, not in the kinematics of individual processes
- $\rightarrow$  limitation of experimental analyses and of used theory inputs
- We don't have higher order corrections in theory predictions except for the SM case ( $\kappa = 1$ )
- $\rightarrow$  limitation of theoretical predictions
- Assumptions are needed on unmeasured couplings, (e.g. same relative deviations for charm and top)
- $\rightarrow$  limitation of the hadron collider environment
- We assume no beyond SM Higgs production modes, and that backgrounds are only from SM





### General fits

- Full Run 1 dataset allows testing fairly general models, which can be constructed as following:
  - 1. Start introduce modifiers for tree-level couplings to W, Z, t, b,  $\tau$ :  $\kappa_W$ ,  $\kappa_Z$ ,  $\kappa_t$ ,  $\kappa_b$ ,  $\kappa_\tau$  (or use a common  $\kappa_V$ )
  - 2. Two choices for loop-level contributions (e.g.  $\sigma_{ggH}$ ,  $\Gamma_{\gamma\gamma}$ ):
    - A. Assume only SM particles in the loop: contribution can be computed in terms of  $\kappa_W$ ,  $\kappa_Z$ ,  $\kappa_t$ ,  $\kappa_b$ ,  $\kappa_\tau$







### General fits

- Full Run 1 dataset allows testing fairly general models, which can be constructed as following:
  - 1. Start introduce modifiers for tree-level couplings to W, Z, t, b,  $\tau$ :  $\kappa_W$ ,  $\kappa_Z$ ,  $\kappa_t$ ,  $\kappa_b$ ,  $\kappa_\tau$  (or use a common  $\kappa_V$ )
  - 2. Two choices for loop-level contributions (e.g.  $\sigma_{ggH}$ ,  $\Gamma_{\gamma\gamma}$ ):
    - A. Assume only SM particles in the loop: contribution can be computed in terms of  $\kappa_W$ ,  $\kappa_Z$ ,  $\kappa_t$ ,  $\kappa_b$ ,  $\kappa_\tau$
    - B. Be agnostic: introduce effective  $\kappa_{g}$ ,  $\kappa_{\gamma}$  parameters







### General fits

- Full Run 1 dataset allows testing fairly general models, which can be constructed as following:
  - 1. Start introduce modifiers for tree-level couplings to W, Z, t, b,  $\tau$ :  $\kappa_W$ ,  $\kappa_Z$ ,  $\kappa_t$ ,  $\kappa_b$ ,  $\kappa_\tau$  (or use a common  $\kappa_V$ )
  - 2. Two choices for loop-level contributions (e.g.  $\sigma_{ggH}$ ,  $\Gamma_{\gamma\gamma}$ ):
    - A. Assume only SM particles in the loop: contribution can be computed in terms of  $\kappa_W$ ,  $\kappa_Z$ ,  $\kappa_t$ ,  $\kappa_b$ ,  $\kappa_\tau$
    - B. Be agnostic: introduce effective  $\kappa_{g}$ ,  $\kappa_{\gamma}$  parameters
- An alternative paradigm is instead to parameterize everything in terms of coupling ratios  $\lambda_{XY}$ , except for one reference process setting the overall scale (by convention taken to be ggH, H  $\rightarrow$  ZZ)



G. Petrucciani (CERN)



κ<sub>z</sub>

### Vector bosons

- W and Z couplings tested at the 15-20% level.
- Good compatibility with SM predictions







G. Petrucciani (CERN)



### Bottom, Tau

#### Coupling probed at the 30-40% level

- Agreement with SM, with some preference for smaller к values
- Deviations on b couplings also affect strongly the yields in other modes through  $\Gamma_{bb}$  in  $\Gamma_{tot}$  at denominator
  - and cancellation  $\Gamma_{bb}/\Gamma_{tot}$  in makes VH $\rightarrow$ bb yield not so sensitive to  $\kappa_b$

#### CMS, tree & loop $\kappa$ 's: assume $\kappa > 0$





ATLAS, tree-level only  $\kappa$ 's: interference in  $\gamma\gamma$  and gg loops sensitive to sign of  $\kappa$ 





G. Petrucciani (CERN)



CMS CMS

Тор

- Can be probed directly via ttH production:

   → dedicated talk on ttH in monday's BEH session
- Also probed indirectly via loops in gluon fusion production and H  $\rightarrow \gamma\gamma$  partial decay width:
  - Requires the assumption of no BSM particles in loop

CMS, ttH only:  $\Delta \kappa / \kappa \sim 40-50\%$  ALAS, loop only:  $\Delta \kappa / \kappa \sim 30\%$  (ttH not in this combination)

CMS, loops & ttH: Δк/к ~ 25%







# Loop-induced couplings

- Effective couplings to gluons and photons are good probes for new physics beyond the SM:
  - Extra coloured particles can affect gluon fusion
  - Extra charged particles can affect  $H \rightarrow \gamma \gamma$  decay
- BSM extensions like top partners give correlated deviations in the two





G. Petrucciani (CERN)

### 30

# Loop-induced couplings

- Effective couplings to gluons and photons are good probes for new physics beyond the SM:
  - Extra coloured particles can affect gluon fusion
  - Extra charged particles can affect  $H \rightarrow \gamma \gamma$  decay
- BSM extensions like top partners give correlated deviations in the two





G. Petrucciani (CERN)



 $[\lambda_{WZ}, \lambda_{tg}, \lambda_{bZ}, \lambda_{\tau Z}, \lambda_{qZ}, \lambda_{zZ}, \lambda_$ 

Observed

SM expected

### Loop-induced couplings

01 المر(<sup>4</sup> -2 المر

TLAS Preliminary

√s = 7 TeV, ∫Ldt = 4.6-4.8 fb<sup>-1</sup>

Combined  $H \rightarrow \gamma \gamma, ZZ^*, WW^*, \tau \tau, b\overline{b}$ 

√s = 8 TeV, ∫Ldt = 20.3 fb<sup>-1</sup>

- In more general fits, deviations in couplings to photons tested at 15-20%, gluons at 20-30%
- Hard to constrain correlated shift in  $\sigma(ggH)$  and  $\Gamma_{tot}$  (e.g. from  $\kappa_{b}$ ):
  - cancellation in ggH  $\rightarrow$  VV,  $\gamma\gamma$  yields



#### ATLAS, g/Z and $\gamma$ /Z from full coupling ratio model



G. Petrucciani (CERN)



Probing BSM decays

 $\sigma(xx) \sim \kappa_x^2$ 

 $\Gamma_{tot} = \kappa^2 \Gamma_{SM} + \Gamma_{BSM}$ 

 $\sigma \cdot BR \sim \frac{\kappa^2 \cdot \kappa^2}{\kappa^2 \Gamma_{SM} + \Gamma_{BSM}}$ 

 $\Gamma_{yy} \sim \kappa_y^2$ 

- New physics can introduce new Higgs decay modes not detected at LHC.
- Γ<sub>tot</sub> = Γ<sub>SM</sub>(κ<sub>i</sub>) + Γ<sub>BSM</sub>
  A larger Γ<sub>tot</sub> can be resolved from a deviation in the κ's if we have some assumption.



G. Petrucciani (CERN)



# Probing BSM decays

- New physics can introduce new Higgs decay modes not detected at LHC.
  - $\Gamma_{tot} = \Gamma_{SM}(\kappa_i) + \Gamma_{BSM}$
- from a deviation in the  $\kappa$ 's if we have some assumption.
- Two scenarios considered:
  - 1. tree level couplings as in SM (assume new physics entering only in loops and decays) 2.  $\kappa_V \leq 1$  (EWSB motivated)

#### all tree-level $\kappa$ 's = 1





G. Petrucciani (CERN)



### Overall picture

- Couplings to vector bosons and 3<sup>rd</sup> generation fermions probed at ATLAS & CMS with 15-50% precision
  - Fair compatibility with SM predictions overall





G. Petrucciani (CERN)



### Conclusions

- Final LHC Run 1 mass measurements available:
  - already in the realm of precision measurements: discussing sub-per-mille systematics in calibrations
  - work ongoing on ATLAS+CMS mass combination
- For couplings, the books are still quite open:
  - Current constraints at 10-50%: still room for almost-but-not-quite-SM-like Higgs bosons
  - Expect some further improvement already on Run 1 data, e.g. from final ATLAS analyses
  - Improving these constraints will be one of the main goals for Run 2 and beyond (incl. future machines)





MS







### Systematics: photon differences

- Some reasons for the difference in systematics:
  - Larger uncertainty from non-linearity in ATLAS (0.1% vs 0.08%): LAr gain switch at energies between Z and H
  - ATLAS has ~0.1% extra systematics from the material in between the inner detector and the calorimeter
  - CMS homogeneous crystal calorimeter reduces impact of longitudinal calibration systematic (0.02% vs 0.1%)
  - CMS synchronous categorization of photons and electrons by shower compactness mitigates the effects of the uncertainty on the material budget:
    - calibrate unconverted photons with golden electrons
    - calibrate converted photons with showering electrons





# Theoretical systematics

- For overall  $\mu$  and for  $\mu_{ggH}$  experimental uncertainties are comparable to theoretical uncertainties.

**CMS**  $\mu$  = 1.00  $^{+0.09}_{-0.09}$  (stat)  $^{+0.08}_{-0.07}$  (theo)  $^{+0.07}_{-0.07}$  (exp)  $\mu_{ggH} = 0.85 \,^{+0.11}_{-0.09}$  (stat)  $^{+0.11}_{-0.08}$  (theo)  $^{+0.10}_{-0.09}$  (exp)

**ATLAS**  $\mu = 1.30^{+0.12}_{-0.12}$ (stat) $^{+0.10}_{-0.08}$  (theo) $^{+0.10}_{-0.08}$ (exp)

- For the tests of couplings, experimental uncertainties are still expected to be dominant.
- Their evaluation and treatment, also for backgrounds and differential distributions, will be very important for analysis of Run 2 and beyond



G. Petrucciani (CERN)



Compatibility of 4l, yy

# Statistical compatibility two mass measurements evaluated by looking at $\Delta m = m(\gamma\gamma) - m(4\ell)$







# Probing custodial symmetry

- Couplings to W & Z closely related in SM and most BSM alternatives with a doublet field.
- Tested in many different ways, two examples here:
   CMS: from H → VV alone, in ggH-dominated final states
   ATLAS: from most general coupling fit







### $\ensuremath{\mathsf{m}_{\mathsf{H}}}$ combination & model independency

- An effort is made to make the mass measurement more model independent.
- In designing the analysis:
  - ATLAS: don't use tagged categories for mass measurement, both in H  $\rightarrow\gamma\gamma$  and H  $\rightarrow4\ell$
  - CMS H  $\rightarrow$  ZZ: don't use dijet category and  $p_T(H)$
- In parametrizing the signal in the combination:
  - Separately floating signal strengths for  $H \rightarrow 4\ell$  ,  $H \rightarrow \gamma\gamma$
  - CMS H $\rightarrow$ yy: float separately  $\mu$ (VBF,VH) vs  $\mu$ (ggH,ttH)
  - Both experiments checked independency of result on assumptions made on signal strengths.





# Signal and background modelling

- Both experiments rely on a parametric modelling for the Higgs boson signal shape:
  - Parameters determined from fitting MC samples, after applying all data/mc corrections & smearings
- Backgrounds modelled with arbitrary smooth functions: polynomials, exponentials, power laws
  - Studies to determine the biases from assumed bkg parameterization done with toy MC or fast sim.
  - ATLAS: include bias as extra systematic on signal yield
  - CMS: profile likelihood over the choice of bkg shape





### Minimal benchmark model

- Assume universal deviations in couplings to fermions ( $\kappa_f$ ) and to vector boson ( $\kappa_V$ )
- Shows consistency across the 5 decay channels



CERN

Rencontres du Vietnam 2014: Physics at LHC and beyond G. Petrucciani (CERN)



A #

# Untagged yy categories, 8 TeV



| ATLAS Category             | n <sub>Sig</sub> | $\sigma_{\rm eff}$ (GeV) |
|----------------------------|------------------|--------------------------|
| unconv central high $p_T$  | 7.1              | 1.21                     |
| unconv central low $p_{T}$ | 59.3             | 1.35                     |
| unconv rest high $p_T$     | 10.4             | 1.36                     |
| unconv rest low $p_{T}$    | 96.2             | 1.53                     |
| conv central high $p_T$    | 4.5              | 1.35                     |
| conv central low $p_T$     | 37.2             | 1.52                     |
| conv rest high $p_T$       | 11.9             | 1.64                     |
| conv rest low $p_{T}$      | 107              | 1.88                     |
| unconv transition          | 26.0             | 1.86                     |
| conv transition            | 42.1             | 2.41                     |

| CMS Category | n <sub>Sig</sub> | $\sigma_{eff}$ (GeV) |  |  |
|--------------|------------------|----------------------|--|--|
| Untag 0      | 6.0              | 1.05                 |  |  |
| Untag 1      | 50.8             | 1.19                 |  |  |
| Untag 2      | 117              | 1.46                 |  |  |
| Untag 3      | 153              | 2.04                 |  |  |
| Untag 4      | 121              | 2.62                 |  |  |

#### Notes:

- CMS numbers for  $m_H = 125$  GeV, ATLAS ones for  $m_H = 126$  GeV.
- ATLAS σ<sub>eff</sub> 5-10% better at 7 TeV; CMS instead ~5% worse at 7 TeV





#### CMS Simulation $H \rightarrow \gamma \gamma$ (m<sub>H</sub>=125 GeV/c<sup>2</sup>)





G. Petrucciani (CERN)



### Systematics on ATLAS $m_H$

| Systematic                                                                        | Uncertainty on $m_H$ [MeV] |
|-----------------------------------------------------------------------------------|----------------------------|
| LAr syst on material before presampler (barrel)                                   | 70                         |
| LAr syst on material after presampler (barrel)                                    | 20                         |
| LAr cell non-linearity (layer 2)                                                  | 60                         |
| LAr cell non-linearity (layer 1)                                                  | 30                         |
| LAr layer calibration (barrel)                                                    | 50                         |
| Lateral shower shape (conv)                                                       | 50                         |
| Lateral shower shape (unconv)                                                     | 40                         |
| Presampler energy scale (barrel)                                                  | 20                         |
| ID material model ( $ \eta  < 1.1$ )                                              | 50                         |
| $H \rightarrow \gamma \gamma$ background model (unconv rest low $p_{\text{Tt}}$ ) | 40                         |
| $Z \rightarrow ee$ calibration                                                    | 50                         |
| Primary vertex effect on mass scale                                               | 20                         |
| Muon momentum scale                                                               | 10                         |
| Remaining systematic uncertainties                                                | 70                         |
| Total                                                                             | 180                        |

Material before ECAL

G. Petrucciani



48





# Comparison of systematics on $m_{\gamma\gamma}$

| Name                           | ATLAS                                                                                                                                                     | $\mathrm{CMS}$                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $Z \rightarrow ee$ calibration | 0.04%                                                                                                                                                     | 0.04%                                                                                                                                                                                                                                                                                                                                                                                       |
| Material tracker               | $0.07\%~(5\%~{ m ID~unc})$                                                                                                                                | 0.06% (10-20% ID unc)                                                                                                                                                                                                                                                                                                                                                                       |
| Other material                 | 0.1%                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                           |
| Longitudinal cali              | 0.1%                                                                                                                                                      | 0.02%                                                                                                                                                                                                                                                                                                                                                                                       |
| Lateral shower share           | 0.06%                                                                                                                                                     | 0.0 <sup>CMS</sup>                                                                                                                                                                                                                                                                                                                                                                          |
| 1                              | 0.12% (MG/HG full effect)                                                                                                                                 | 0.08% (a                                                                                                                                                                                                                                                                                                                                                                                    |
|                                | 0.02%                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                           |
| Background                     | 0.04%                                                                                                                                                     | < 0.01%                                                                                                                                                                                                                                                                                                                                                                                     |
| Vertex                         | 0.03%                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                           |
|                                | 0.22%                                                                                                                                                     | 0.12%                                                                                                                                                                                                                                                                                                                                                                                       |
|                                | Name<br>$Z \rightarrow ee$ calibration<br>Material tracker<br>Other material<br>Longitudinal calibration<br>Lateral shower shared<br>Background<br>Vertex | Name       ATLAS $Z \rightarrow ee$ calibration       0.04%         Material tracker       0.07% (5% ID unc)         Other material       0.1%         Longitudinal calibration       0.1%         Lateral shower share       0.06%         Material tracker       0.12% (MG/HG full effect)         Material tracker       0.02%         Background       0.03%         Vertex       0.02% |



\_

\_

Total

0.23

0.28

0.24

CMS



| Source of upcontainty              |              |                             |              |                      | Uncertainty in                   |                     |               |              |                      |        |
|------------------------------------|--------------|-----------------------------|--------------|----------------------|----------------------------------|---------------------|---------------|--------------|----------------------|--------|
| Source of uncertainty              |              |                             |              |                      | $\widehat{m}_{\mathrm{H}}$ (GeV) |                     |               |              |                      |        |
| Imperfect sim                      | ulatio       | on of e                     | lectro       | n-pho                | ton d                            | ifferer             | nces          | 0.10         |                      |        |
| Linearity of th                    | ne ene       | ergy so                     | ale          | -                    |                                  |                     |               | 0.10         |                      |        |
| Energy scale                       | calibra      | ation a                     | nd re        | solutio              | on                               |                     |               |              | 0.05                 |        |
| Other                              |              |                             |              |                      |                                  |                     |               |              | 0.04                 |        |
| All systematic                     | c unce       | ertaint                     | ies in       | the sig              | mal r                            | nodel               |               |              | 0.15                 |        |
| Statistical                        |              |                             |              |                      |                                  | 0.31                |               |              |                      |        |
| Total CMS_35                       |              |                             |              |                      |                                  |                     | 35            |              |                      |        |
| ATLAS                              |              |                             |              | ħ                    |                                  |                     |               |              |                      |        |
|                                    |              | τ                           | Inconverted  | 1                    |                                  |                     |               | Converted    |                      |        |
|                                    | Cer          | ntral                       | R            | est                  | Trans.                           | Cer                 | ntral         | R            | est                  | Trans. |
| Class                              | low $p_{Tt}$ | high <i>p</i> <sub>Tt</sub> | low $p_{Tt}$ | high p <sub>Tt</sub> |                                  | low p <sub>Tt</sub> | high $p_{Tt}$ | low $p_{Tt}$ | high $p_{\text{Tt}}$ |        |
| $Z \rightarrow e^+e^-$ calibration | 0.02         | 0.03                        | 0.04         | 0.04                 | 0.11                             | 0.02                | 0.02          | 0.05         | 0.05                 | 0.11   |
| LAr cell non-linearity             | 0.12         | 0.19                        | 0.09         | 0.16                 | 0.39                             | 0.09                | 0.19          | 0.06         | 0.14                 | 0.29   |
| Layer calibration                  | 0.13         | 0.16                        | 0.11         | 0.13                 | 0.13                             | 0.07                | 0.10          | 0.05         | 0.07                 | 0.07   |
| ID material                        | 0.06         | 0.06                        | 0.08         | 0.08                 | 0.10                             | 0.05                | 0.05          | 0.06         | 0.06                 | 0.06   |
| Other material                     | 0.07         | 0.08                        | 0.14         | 0.15                 | 0.35                             | 0.04                | 0.04          | 0.07         | 0.08                 | 0.20   |
| Conversion reconstruction          | 0.02         | 0.02                        | 0.03         | 0.03                 | 0.05                             | 0.03                | 0.02          | 0.05         | 0.04                 | 0.06   |
| Lateral shower shape               | 0.04         | 0.04                        | 0.07         | 0.07                 | 0.06                             | 0.09                | 0.09          | 0.18         | 0.19                 | 0.16   |
| Background modeling                | 0.10         | 0.06                        | 0.05         | 0.11                 | 0.16                             | 0.13                | 0.06          | 0.14         | 0.18                 | 0.20   |
| Vertex measurement                 |              |                             |              |                      | 0.                               | 03                  |               |              |                      |        |

0.30

0.59

0.21

0.25

0.27

0.33

0.47





# $H \rightarrow \gamma \gamma$ signal models (inclusive)

• The CMS signal model has narrower core, larger tails compared to ATLAS one



same X axis scale in the two plots





# CMS myy: cross-checks

|          | û                             | $\widehat{m}_{\mathrm{H}}$ (GeV) |
|----------|-------------------------------|----------------------------------|
| 7 TeV    | $2.22^{+0.62}_{-0.55}$        | 124.2                            |
| 8 TeV    | $0.90\substack{+0.26\\-0.23}$ | 124.9                            |
| Combined | $1.14_{-0.23}^{+0.26}$        | 124.7                            |

|                              | Expected                      | Observed               | m(H)  |
|------------------------------|-------------------------------|------------------------|-------|
| Main analysis                | $1.00^{+0.24}_{-0.22}$        | $1.14_{-0.23}^{+0.26}$ | 124.7 |
| Cut-based analysis           | $1.00\substack{+0.26\\-0.24}$ | $1.29^{+0.29}_{-0.26}$ | 124.6 |
| Sideband bkg. model analysis | $1.00^{+0.25}_{-0.22}$        | $1.06^{+0.26}_{-0.23}$ | 124.7 |





# ATLAS $H \rightarrow \gamma\gamma$ cross-checks

 Mass re-measured splitting datasets in categories to test for possible biases





| 2               | 1 |
|-----------------|---|
| AIN             |   |
| $(\Lambda^{n})$ |   |
| 11              |   |
| 7 1             |   |









| Category                             | n <sub>sig</sub> | FWHM [GeV]      | $\sigma_{ m eff}$ [GeV] | $b \text{ in } \pm \sigma_{\text{eff90}}$ | s/b [%] | $s/\sqrt{b}$ |  |  |  |
|--------------------------------------|------------------|-----------------|-------------------------|-------------------------------------------|---------|--------------|--|--|--|
| $\sqrt{s}=8$ TeV                     |                  |                 |                         |                                           |         |              |  |  |  |
| Inclusive                            | 402.             | 3.69            | 1.67                    | 10670                                     | 3.39    | 3.50         |  |  |  |
| Unconv. central low $p_{\text{Tt}}$  | 59.3             | 3.13            | 1.35                    | 801                                       | 6.66    | 1.88         |  |  |  |
| Unconv. central high $p_{Tt}$        | 7.1              | 2.81            | 1.21                    | 26.0                                      | 24.6    | 1.26         |  |  |  |
| Unconv. rest low $p_{\text{Tt}}$     | 96.2             | 3.49            | 1.53                    | 2624                                      | 3.30    | 1.69         |  |  |  |
| Unconv. rest high $p_{\text{Tt}}$    | 10.4             | 3.11            | 1.36                    | 93.9                                      | 9.95    | 0.96         |  |  |  |
| Unconv. transition                   | 26.0             | 4.24            | 1.86                    | 910                                       | 2.57    | 0.78         |  |  |  |
| Conv. central low $p_{\text{Tt}}$    | 37.2             | 3.47            | 1.52                    | 589                                       | 5.69    | 1.38         |  |  |  |
| Conv. central high $p_{\text{Tt}}$   | 4.5              | 3.07            | 1.35                    | 20.9                                      | 19.4    | 0.88         |  |  |  |
| Conv. rest low $p_{\text{Tt}}$       | 107.2            | 4.23            | 1.88                    | 3834                                      | 2.52    | 1.56         |  |  |  |
| Conv. rest high $p_{\text{Tt}}$      | 11.9             | 3.71            | 1.64                    | 144.2                                     | 7.44    | 0.89         |  |  |  |
| Conv. transition                     | 42.1             | 5.31            | 2.41                    | 1977                                      | 1.92    | 0.85         |  |  |  |
|                                      |                  | $\sqrt{s}=7$ Te | eV                      |                                           |         |              |  |  |  |
| Inclusive                            | 73.9             | 3.38            | 1.54                    | 1752                                      | 3.80    | 1.59         |  |  |  |
| Unconv. central low $p_{Tt}$         | 10.8             | 2.89            | 1.24                    | 128                                       | 7.55    | 0.85         |  |  |  |
| Unconv. central high $p_{\text{Tt}}$ | 1.2              | 2.59            | 1.11                    | 3.7                                       | 30.0    | 0.58         |  |  |  |
| Unconv. rest low $p_{Tt}$            | 16.5             | 3.09            | 1.35                    | 363                                       | 4.08    | 0.78         |  |  |  |
| Unconv. rest high $p_{\text{Tt}}$    | 1.8              | 2.78            | 1.21                    | 13.6                                      | 11.6    | 0.43         |  |  |  |
| Unconv. transition                   | 4.5              | 3.65            | 1.61                    | 125                                       | 3.21    | 0.36         |  |  |  |
| Conv. central low $p_{Tt}$           | 7.1              | 3.28            | 1.44                    | 105                                       | 6.06    | 0.62         |  |  |  |
| Conv. central high $p_{\text{Tt}}$   | 0.8              | 2.87            | 1.25                    | 3.5                                       | 21.6    | 0.40         |  |  |  |
| Conv. rest low $p_{\text{Tt}}$       | 21.0             | 3.93            | 1.75                    | 695                                       | 2.72    | 0.72         |  |  |  |
| Conv. rest high $p_{\text{Tt}}$      | 2.2              | 3.43            | 1.51                    | 24.7                                      | 7.98    | 0.40         |  |  |  |
| Conv. transition                     | 8.1              | 4.81            | 2.23                    | 365                                       | 2.00    | 0.38         |  |  |  |



#### ATLAS Calibration scheme

