Electroweak Baryogenesis

Kimmo Kainulainen,

- MSM does not explain BAU
- EWBG testable framework
- MSM: not possible
- MSSM: very likely not possible
- Other extensions: 2HDM, SSM,..
Baryon asymmetry

\[\Omega_b h^2 = 0.02205 \pm 0.00028 \]

P. Ade et al, ArXiv:1303.5076
(Planck 2013 Cosmological Parameters)

Because of Inflation, this cannot be initial condition.
Baryon asymmetry

\[\Omega_b h^2 = 0.02205 \pm 0.00028 \]

P. Ade et al, ArXiv:1303.5076 (Planck 2013 Cosmological Parameters)

Because of Inflation, this cannot be initial condition.

BICEP2:

\[T_{\text{BAU}} < 1.7 \times 10^{16} \left(\frac{r}{0.2} \right)^{1/4} \text{ GeV} \]

Fair amount of room to play. **EWBG == BG at EWPT,** at \(T \approx 100 \text{ GeV}, \) is the **lowest energy scale model**
EWBG in a nutshell

\begin{align*}
H & \sim 10^{-14} T_{100}^2 \text{GeV} \\
\Gamma & \sim 10^{-5} T_{100} \text{GeV}
\end{align*}
EWBG in a nutshell

1st order PT: at $T_c \sim 100$ GeV, true vacuum bubbles, $\langle H \rangle \neq 0$, form and start expanding into the false symmetric vacuum.

\[
V_{\text{eff}} = \frac{1}{2}(-\mu^2 + cT^2)\phi^2 - T\delta\phi^3 + \frac{1}{4}\lambda_{\text{eff}}\phi^4
\]
EWBG in a nutshell

1st order PT: at $T_c \sim 100$ GeV, true vacuum bubbles, $\langle H \rangle \neq 0$, form and start expanding into the false symmetric vacuum.

Particles interact with wall in CP violating way

$$V_{\text{eff}} = \frac{1}{2}(-\mu^2 + cT^2)\phi^2 - T\delta \phi^3 + \frac{1}{4}\lambda_{\text{eff}} \phi^4$$
EWBG in a nutshell

1st order PT: at $T_c \sim 100$ GeV, true vacuum bubbles, $\langle H \rangle \neq 0$, form and start expanding into the false symmetric vacuum.

Particles interact with wall in **CP violating** way

Baryon asymmetry forms inside the bubble

![Diagram of Veff](image)

$$V_{\text{eff}} = \frac{1}{2}(-\mu^2 + cT^2)\dot{\phi}^2 - T\delta\phi^3 + \frac{1}{4}\lambda_{\text{eff}}\phi^4$$

$$H \sim 10^{-14}T_{100}^2\text{GeV}$$

$$\Gamma \sim 10^{-5}T_{100}\text{GeV}$$
EWBG in a nutshell

1st order PT: at $T_c \sim 100$ GeV, true vacuum bubbles, $\langle H \rangle \neq 0$, form and start expanding into the false symmetric vacuum.

Particles interact with wall in **CP violating** way

Baryon asymmetry forms inside the bubble

\[V_{\text{eff}} = \frac{1}{2} (\mu^2 + cT^2) \phi^2 - T \delta \phi^3 + \frac{1}{4} \lambda_{\text{eff}} \phi^4 \]

IN MSM:

- Only **B-violation** (by sphalerons) is certainly present in the SM.
EWBG in a nutshell

1st order PT: at $T_c \sim 100$ GeV, true vacuum bubbles, $\langle H \rangle \neq 0$, form and start expanding into the false symmetric vacuum.

Particles interact with wall in CP violating way

Baryon asymmetry forms inside the bubble

$V_{\text{eff}} = \frac{1}{2}(-\mu^2 + cT^2)\phi^2 - T\delta \phi^3 + \frac{1}{4}\lambda_{\text{eff}} \phi^4$

IN MSM:

- Only B-violation (by sphalerons) is certainly present in the SM.
- CP in CKM, not sufficient
EWBG in a nutshell

1st order PT: at \(T_c \sim 100 \text{ GeV} \), true vacuum bubbles, \(\langle H \rangle \neq 0 \), form and start expanding into the false symmetric vacuum.

Particles interact with wall in \textbf{CP violating} way

Baryon asymmetry forms inside the bubble

\[
V_{\text{eff}} = \frac{1}{2}(-\mu^2 + cT^2)\phi^2 - T\delta\phi^3 + \frac{1}{4}\lambda_{\text{eff}}\phi^4
\]

IN MSM:

- Only \textbf{B-violation} (by sphalerons) is certainly present in the SM.
- \textbf{CP} in CKM, not sufficient
- 1st order PT, \textbf{not} present in SM;
EWPT in SM, no jump in the order parameter

PT in SM, is a cross-over with $T_c \approx 160$ GeV

M.d'Onofrio, K.Rummukainen, and A.Tranberg, arXiv:1404.3565
EWPT in SM, no jump in the order parameter

PT in SM, is a cross-over with

$$T_c \approx 160 \text{ GeV}$$

M.d’Onofrio, K.Rummukainen, and A.Tranberg, arXiv:1404.3565

Whereas for **EWBG** to work, we need a large jump in the order parameter (strong transition):

$$\left(\frac{v(T_c)}{T_c} \right)_{\text{Landau}} > 1$$

$${v^2}(t) = \langle H^2 \rangle (T)$$

![Graph showing $v^2(T) = \langle H^2 \rangle (T)$]
EWPT in SM, no jump in the order parameter

PT in SM, is a cross-over with

\[T_c \approx 160 \text{ GeV} \]

M.d’Onofrio, K.Rummukainen, and A.Tranberg, arXiv:1404.3565

Whereas for **EWBG** to work, we need a large jump in the order pm (strong transition):

\[
\left(\frac{v(T_c)}{T_c} \right)_{\text{Landau}} > 1
\]

Beyond SM: MSSM, NMSSM, 2HDM, NHDM, IHDM, SSM,...
Most efforts have been put to increase the effective cubic coupling by loop corrections.

Need new light bosonic fields strongly coupled to Higgs:

$$\delta V_{\text{eff}} = - \sum_i \frac{T m_i^3(\phi, T)}{12\pi} + \ldots$$
EWBG with new loop corrections, MSSM

Most efforts have been put to increase the effective cubic coupling by loop corrections

Need new light bosonic fields strongly coupled to Higgs

\[\delta V_{\text{eff}} = - \sum_i \frac{T m_i^3(\phi, T)}{12\pi} + \ldots \]

=> Light Stop Scenario in the MSSM and NMSSM

[Carena, Quiros, Wagner (1996), ...]
EWBG with new loop corrections, MSSM

Most efforts have been put to increase the effective cubic coupling by loop corrections.

Need new **light bosonic** fields strongly coupled to Higgs

\[\delta V_{\text{eff}} = - \sum_i \frac{Tm_i^3(\phi, T)}{12\pi} + \ldots \]

\[\Rightarrow \text{Light Stop Scenario} \quad \text{in the MSSM and NMSSM} \]

[Carena, Quiros, Wagner (1996),...]

However, also Higgs mass mostly from

\[m_h \sim C \log \frac{m_{i_L} m_{i_R}}{M_w^2} \]
EWBG with new loop corrections, MSSM

Most efforts have been put to increase the effective cubic coupling by loop corrections

Need new light *bosonic* fields strongly coupled to Higgs

\[\delta V_{\text{eff}} = - \sum_i \frac{T m_i^3(\phi, T)}{12\pi} + \ldots \]

=> **Light Stop Scenario** in the MSSM and NMSSM

[Carena, Quiros, Wagner (1996), ...]

However, also Higgs mass mostly from

\[m_h \sim C \log \frac{m_{i, L} m_{i, R}}{M_W^2} \]

Tension: light \(t_R \) => very heavy \(t_L \)

Need LARGE SUSY \(m_Q \)
MSSM, latest results on PT strength

(Re)opening a BAU window in MSSM

RGE-improved potential: models metastable against color breaking

\[m_h \leq 127 \text{ GeV}, \quad m_{\tilde{t}_R} \leq 120 \text{ GeV} \]
MSSM, latest results on PT strength

(Re)opening a BAU window in MSSM

RGE-improved potential: models metastable against color breaking

\[m_h \leq 127 \text{ GeV}, \quad m_{\tilde t_R} \leq 120 \text{ GeV} \]

LHC: Tension with light stop-enhanced gg-fusion Higgs production ... needs to be balanced by an invisible DW to light neutralinos (<60 GeV) ...

M. Carena, G. Nardini, M. Quiros & C. Wagner, NPB812 (2013) 243

\[m_Q \leq 10^6 \text{ TeV} \]
MSSM, latest results on PT strength

(Re)opening a BAU window in MSSM

RGE-improved potential: models metastable against color breaking

\(m_h \leq 127 \) GeV, \(m_{\tilde{t}_R} \leq 120 \) GeV

LHC: Tension with light stop-enhanced gg-fusion Higgs production ... needs to be balanced by an invisible DW to light neutralinos (<60GeV) ...

M.Carena, G.Nardini, M.Quiros & C.Wagner, NPB812 (2013) 243

However, there is a recent lattice study:

Rummukainen Nardini and Laine ...

\[
\left(\frac{v}{T_c} \right)_{\text{latt}} = 1.117(5) \quad \left(\frac{v}{T_c} \right)_{\text{Landau}} = 0.9
\]
MSSM, latest results on PT strength

(Re)opening a BAU window in MSSM

RGE-improved potential: models metastable against color breaking

\[m_h \leq 127 \text{ GeV}, \quad m_{\tilde{t}_R} \leq 120 \text{ GeV} \]

LHC: Tension with light stop-enhanced gg-fusion Higgs production ... needs to be balanced by an invisible DW to light neutralinos (<60 GeV) ...
M.Carena, G.Nardini, M.Quiros & C.Wagner, NPB812 (2013) 243

\[m_{\tilde{t}} \approx 155 \text{ GeV} \]

However, there is a recent lattice study:
Rummukainen Nardini and Laine ...

\[\left(\frac{v}{T_c} \right)_{\text{latt}} = 1.117(5) \quad \left(\frac{v}{T_c} \right)_{\text{Landau}} = 0.9 \]
MSSM, latest results on PT strength

(Re)opening a BAU window in MSSM

RGE-improved potential: models metastable against color breaking

\[m_h \leq 127 \text{ GeV}, \quad m_{\tilde{t}_R} \leq 120 \text{ GeV} \]

LHC: Tension with light stop-enhanced gg-fusion Higgs production ... needs to be balanced by an invisible DW to light neutralinos (<60GeV) ...

M.Carena, G.Nardini, M.Quiros & C.Wagner, NPB812 (2013) 243

However, there is a recent lattice study:
Rummukainen Nardini and Laine ...

\[
\left(\frac{v}{T_c} \right)_{\text{latt}} = 1.117(5) \quad \left(\frac{v}{T_c} \right)_{\text{Landau}} = 0.9
\]

Still, looks awkward at best. Probably, or not working.
MSSM BAU generation

Chargino transport

\[\mathcal{M}_{\chi^\pm} = \begin{pmatrix} M_2 & gh_2 \\ gh_1 & \mu \end{pmatrix} \]

(maximal CP angles)

- These results depend on *guesstimated* wall shape and wall speed.

- There are some discrepancies in results depending on the method (QTT-formalism) used. (Some other methods promise larger asymmetries than SC.)

Similar results were found by

who also used SC method
MSSM, EDM constraints, *charginos*

In any case, *chargino transport* mechanism is clearly excluded by the electron EDM bound (2-loop EDMs):

![Electron EDM](image1)

![Neutron EDM](image2)

Ref. point: \(M_1 = 95\text{GeV}\)

\[|\mu| = 200\text{GeV},\]

\[\tan\beta = 10,\]

\[m_{\tilde{\chi}^0} = 300\text{GeV}\]

Y.Li, S.Profumo, and M.Ramsey-Musolf, PLB673 (2009) 95–100,
MSSM, EDM constraints, *charginos*

In any case, *chargino transport* mechanism is clearly excluded by the electron EDM bound (2-loop EDMs):

Electron EDM

Neutron EDM

Ref. point: \(M_1 = 95 \text{GeV} \)

\(|\mu| = 200 \text{GeV}, \tan\beta = 10, \quad m_\chi^0 = 300 \text{GeV}\)

2013 ACME-bound: \(d_e < 8.9 \times 10^{-29} \) \(\Rightarrow \quad \phi_{M_2} < 10^{-3}\)

ACME collaboration, Science 343 (2014) 6168, 269-272
MSSM, EDM constraints, *neutralinos*

Neutralino transport fares better against EDM constraints: but is already very constrained as well.

2013 ACME-bound

Y. Li, S. Profumo, and M. Ramsey-Musolf, PLB673 (2009) 95–100,

- **Note 1:** transport calculation likely overly optimistic.
- **Note 2:** very light bino (<60GeV) is at least not obviously in the cards…
Other possibilities, 2HDM, NHDM, IHDM, ...

2HDM:

\[
V = \frac{\lambda}{4} \left(H^\dagger_i H_i - \frac{v^2}{2} \right)^2 + m^2_i (S^\dagger_i S_i) + (m^2_i H^\dagger_i S_i + \text{h.c.}),
\]

\[
+ \lambda_1 (H^\dagger_i H_i) (S^\dagger_j S_j), + \lambda_2 (H^\dagger_i H_j) (S^\dagger_j S_i) + \left[\lambda_3 H^\dagger_i H^\dagger_j S_i S_j + \text{h.c.} \right],
\]

\[
+ \left[\lambda_4 H^\dagger_i S^\dagger_j S_i S_j + \lambda_5 S^\dagger_i H^\dagger_j H_i H_j + \text{h.c.} \right] + \lambda_6 (S^\dagger_i S_i)^2,
\]

\[
+ y_t \bar{t}_L (H^0 \delta_i + (\eta_U \delta t + \eta_U' V^*_t V_{bi})) S^0_i q^i_R
\]
Other possibilities, 2HDM, NHDM, IHDM, ...

2HDM:

\[
V = \frac{\lambda}{4} \left(H^\dagger_i H_i - \frac{v^2}{2} \right)^2 + m_1^2 (S^\dagger_i S_i) + (m_2^2 H^\dagger_i S_i + \text{h.c.}),
\]

\[
+ \lambda_1 (H^\dagger_i H_i) (S^\dagger_j S_j), + \lambda_2 (H^\dagger_i H_j) (S^\dagger_j S_i) + \left[\lambda_3 H^\dagger_i H^\dagger_j S_i S_j + \text{h.c.} \right],
\]

\[
+ \left[\lambda_4 H^\dagger_i S^\dagger_j S_i S_j + \lambda_5 S^\dagger_i H^\dagger_j H_i H_j + \text{h.c.} \right] + \lambda_6 (S^\dagger_i S_i)^2,
\]

\[
+ y_{tL} \left(H^{0*} \delta_{ti} + (\eta_U \delta_{ti} + \eta'_{U} V^{*}_{tb} V_{bi}) \right) S^{0*} q_R^i.
\]

Many new CP-violating phases
Other possibilities, 2HDM, NHDM, IHDM, ...

2HDM:

\[V = \frac{\lambda}{4} \left(H_{i}^{\dagger} H_{i} - \frac{v^{2}}{2} \right)^{2} + m_{1}^{2} (S_{i}^{\dagger} S_{i}) + (m_{2}^{2} H_{i}^{\dagger} S_{i} + \text{h.c.}) , \]

\[+ \lambda_{1} (H_{i}^{\dagger} H_{i}) (S_{j}^{\dagger} S_{j}) , + \lambda_{2} (H_{i}^{\dagger} H_{j}) (S_{j}^{\dagger} S_{i}) + \left[\lambda_{3} (H_{i}^{\dagger} H_{j}^{\dagger} S_{i} S_{j} + \text{h.c.}) , \right] , \]

\[+ \left[\lambda_{4} H_{i}^{\dagger} S_{i}^{\dagger} S_{j} + \lambda_{5} S_{i}^{\dagger} H_{j}^{\dagger} H_{i} H_{j} + \text{h.c.} \right] + \lambda_{6} (S_{i}^{\dagger} S_{i})^{2} , \]

\[+ y_{t} t_{L} (H_{0}^{0*} \delta_{ti} + (\eta_{U} t_{i}^{*} + \eta_{U}^{t} b_{i} V_{bi})) S_{0}^{0*} q_{R}^{i} \]

Many new CP-violating phases

MFV for new Yukawa’s to avoid **FCNC**

Other possibilities, 2HDM, NHDM, IHDM, ...

2HDM:

\[V = \frac{\lambda}{4} \left(H_i^\dagger H_j - \frac{v^2}{2} \right)^2 + m_1^2 (S_i^\dagger S_i) + (m_2^2 H_i^\dagger S_i + h.c.), \]

\[+ \lambda_1 (H_i^\dagger H_j) (S_j^\dagger S_j) + \lambda_2 (H_i^\dagger H_j) (S_i^\dagger S_i) + \left[\lambda_3 H_i^\dagger H_j S_i S_j + h.c. \right], \]

\[+ \left[\lambda_4 H_i^\dagger S_j^\dagger S_i S_j + \lambda_5 S_j^\dagger H_i^\dagger H_j S_j + h.c. \right] + \lambda_6 (S_i^\dagger S_i)^2, \]

\[+ y_t \tilde{t}_L (H_0^* \delta_{ti} + (\eta^L_{ti} \tilde{t}_i + \eta^R_{tb} V_{bi}) S_0^* q_R^i. \]

Many new CP-violating phases

MFV for new Yukawa’s to avoid FCNC

Comprehensive MCMC of the PM-space finds both strong EWPT and BAU, but points are rare: \(<1/10^4\).

J.Cline, KK, M.Trott, JHEP 1111 (2011) 089

![Histogram showing mass constraints and full constraints](image)
Other possibilities, 2HDM, NHDM, IHDM, ...

2HDM:

\[V = \frac{\lambda}{4} \left(H^{\dagger} i H_i - \frac{v^2}{2} \right)^2 + m_1^2 (S^{\dagger} i S_i) + (m_2^2 H^{\dagger} i S_i + \text{h.c.}), \]

\[+ \lambda_1 (H^{\dagger} i H_i) (S^{\dagger} j S_j), + \lambda_2 (H^{\dagger} i H_j) (S^{\dagger} j S_j) + \left[\lambda_3 H^{\dagger} i H^{\dagger} j S_i S_j + \text{h.c.} \right], \]

\[+ \left[\lambda_4 H^{\dagger} i S_i S_j + \lambda_5 S^{\dagger} i H^{\dagger} j H_i H_j + \text{h.c.} \right] + \lambda_6 (S^{\dagger} i S_i)^2, \]

\[+ y_t \bar{t}_L (H^{0*} \delta_{ti} + (\eta_U \tilde{U} i t_i + \eta_U' V_{tb} V_{bi}) S^{0*}) q_R^i. \]

Many new CP-violating phases

MFV for new Yukawa’s to avoid FCNC

Comprehensive MCMC of the PM-space finds both strong EWPT and BAU, but points are rare: \(<1/10^4\).

J.Cline, KK, M.Trott, JHEP 1111 (2011) 089

An even more detailed scan of different 2HDM’s was carried out in: G.C.Dorsch, S.J.Huber & J.M.No, JHEP 1310 (2013) 029.
Singlet model can give a strong PT at tree level!

\[V = V_{\text{MSM}} + \frac{1}{2} \mu_S^2 S^2 + \frac{1}{2} \lambda_{sh} S^2 |H|^2 + \frac{1}{4} \lambda_S S^4 \quad (\mu_S^2 < 0) \]

If \(\lambda_{hs} \) is large enough, there is a barrier between \(H = 0 \) and \(S = 0 \) vacua at \(T = 0 \).

Transition can proceed in **two steps**, \(0 \rightarrow S \rightarrow H \), and model can give a potential barrier at **tree-level** → strong phase transition.

J.R.Espinosa, T.Konstandin, F.Riva, NPB854 (2012) 592
Singlet model can give a strong PT at tree level!

\[V = V_{\text{MSM}} + \frac{1}{2} \mu_S^2 S^2 + \frac{1}{2} \lambda_{sh} S^2 |H|^2 + \frac{1}{4} \lambda_s S^4 \quad (\mu_S^2 < 0) \]

If \(\lambda_{hs} \) is large enough, there is a barrier between \(H = 0 \) and \(S = 0 \) vacua at \(T = 0 \).

Transition can proceed in two steps, \(0 \to S \to H \), and model can give a potential barrier at tree-level \(\to \) strong phase transition.

J.R.Espinosa, T.Konstandin, F.Riva, NPB854 (2012) 592

Get easily models satisfying \(v/T > 1 \)-limit with large enough lambda.

Thanks to Jim Cline
Singlet model can give a strong PT at tree level!

\[V = V_{\text{MSM}} + \frac{1}{2} \mu_S^2 S^2 + \frac{1}{2} \lambda_{sh} S^2 |H|^2 + \frac{1}{4} \lambda_S S^4 \quad (\mu_S^2 < 0) \]

If \(\lambda_{hs} \) is large enough, there is a barrier between \(H = 0 \) and \(S = 0 \) vacua at \(T = 0 \).

Transition can proceed in two steps, \(0 \to S \to H \), and model can give a potential barrier at tree-level → strong phase transition.

J.R. Espinosa, T. Konstandin, F. Riva, NPB854 (2012) 592

Get easily models satisfying \(v/T > 1 \)-limit with large enough lambda.

Can induce BAU generation such that eEDM and nEDM are not a problem.

Thanks to Jim Cline
Singlet model: **BAU and DM** (in form of singlet S)?

DM annihilation rate is proportional to same coupling that makes \(v/T \) large:

\[
\langle \nu \sigma_{\text{DM}} \rangle \sim \lambda_{sh}^2
\]
Singlet model: BAU and DM (in form of singlet S)?

DM annihilation rate is proportional to same coupling that makes $\frac{v}{T}$ large:

$$\langle v\sigma_{DM} \rangle \sim \lambda_{sh}^2$$

Large enough λ_{hs} gives subdominant DM

BAU acceptable $\frac{v}{T} > 1$ models

Figure 4: Distributions of parameters satisfying the constraints k_{uq8} and the nominal k_{uq9} and k_{vqt} and the nominal k_{wqy}. Top row shows input parameters, bottom two rows are derived. Dimensionful quantities are in GeV units and varied over the ranges $m_s = t$ to $v_0 / v_c = t$. Log 10 $v_c / w_c \Rightarrow k_t$, t_l produces models consistent with the constraint k_{wqy} as well as with the sphaleron washout bound k_{uq9} and the consistency requirement k_{uq8} and the invisible Higgs decay width k_{vqt} of previous sections. Distributions of various parameters in this set of models can be seen in figure w. One observes that the DM mass is typically in the range $8s_{tys}$ GeV for our choice $m < t$. Figure u illustrates that higher masses are correlated with larger values of m. v_c values fall in the range tw_s GeV and as T_c tends to be around ts_s GeV, strong phase transitions are found with v_c / T_c as high as v. x. The w_c distribution peaks at $w_c \sim tys$ GeV with $w_c < xss$ GeV and the relic density fraction f_{rel} tends to be st. s. st We show the scatter plot of accepted models in f_{rel} versus m_S in figure u and the same data in figure x as m_S versus $\cdot e \cdot f_{rel} \cdot SI$. q The cross section $\cdot e$ indicates the reach of the future XENON experiments to rule out a given model or to verify the existence of its associated DM particle. All direct DM bounds inevitably suffer from uncertainties in the local Galactic abundance and velocity distribution of the DM. We estimate the effect of these uncertainties on the latest XENONtss constraint following ref $[8v]$, which shows that the constraint derived from standard assumptions about the local DM distribution could.
Singlet model: **BAU and DM** (in form of singlet S)?

DM annihilation rate is proportional to same coupling that makes v/T large:

$$\langle v \sigma_{\text{DM}} \rangle \sim \lambda_{sh}^2$$

Large enough λ_{hs} gives **subdominant DM**

Subdominant DM would work as a **signal** for this BAU mechanism

Figure 4: Distributions of parameters satisfying the constraints $k_u < k_\text{q8}$ and the nominal DM direct detection bound k_w. Top row shows input parameters, bottom two rows are derived. Dimensionful quantities are in GeV units varied over the ranges $m = s_t$ to $v_0/v_c = t_s$. λ_{hs} produces $uuxss$ models consistent with the constraint k_w as well as with the sphaleron washout bound k_q9 and the consistency requirement k_8 and the invisible Higgs decay width k_ν. Distributions of various parameters in this set of models can be seen in figure wq. One observes that the DM mass is typically in the range $8s_t y GeV$ for our choice $m < t$. Figure u_8 illustrates that higher masses are correlated with larger values of m. v_c values fall in the range $tw_s GeV$ and as T_c tends to be around $ts_s GeV$ strong phase transitions are found with v_c/T_c as high as v_x. The w_c distribution peaks at $w_c ^\ast y GeV$ with $w_c < xss GeV$ and the relic density fraction f_{rel} tends to be s. stq We show the scatter plot of accepted models in f_{rel} versus m_S in figure u and the same data in figure x as m_S versus $\nu e f_{\text{rel}} e_{\text{SI}} q$ The cross section νe indicates the reach of the future XENON experiments to rule out a given model or to verify the existence of its associated DM particle. All direct DM bounds inevitably suffer from uncertainties in the local Galactic abundance and velocity distribution of the DM. We estimate the effect of these uncertainties on the latest XENONts constraint following ref $[8v]$.o which shows that the constraint derived from standard assumptions about the local DM distribution could

J.M. Cline, KK, JCAP 1301 (2013) 012
Singlet model: **BAU and DM** (in form of singlet S)?

DM annihilation rate is proportional to same coupling that makes v/T large:

$$\langle v\sigma_{\text{DM}} \rangle \sim \lambda_{sh}^2$$

Large enough λ_{hs} gives **subdominant DM**

Subdominant DM would work as a **signal** for this BAU mechanism

Recent LUX bound has all but excluded the **BAU-compatible** pm-space

J.M. Cline, KK, JCAP 1301 (2013) 012
Singlet model: **BAU and DM** (in form of singlet S)?

DM annihilation rate is proportional to same coupling that makes \(v/T \) large:

\[
\langle v\sigma_{\text{DM}} \rangle \sim \lambda_{sh}^2
\]

Large enough \(\lambda_{hs} \) gives **subdominant DM**

Subdominant DM would work as a **signal** for this BAU mechanism

Recent LUX bound has all but excluded the **BAU-compatible** pm-space

J.M. Cline, KK, JCAP 1301 (2013) 012
Singlet model: BAU or DM, ... extensions?

Blow-up of region $m_S < m_h/2$:

BAU-friendly models with subl. DM

Full (or subl.) DM-models without BAU

J.M.Cline, K.Kainulainen, P.Scott and C.Weniger, arXiv:1306.4710
Singlet model: BAU or DM, ... extensions?

Blow-up of region $m_S < m_h/2$: BAU-friendly models with subl. DM

Full (or subl.) DM-models without BAU

LHC bound on $h \rightarrow SS$ kills a lot of the former

J.M. Cline, K. Kainulainen, P. Scott and C. Weniger, arXiv:1306.4710
Singlet model: BAU or DM, ... extensions?

Blow-up of region $m_s < m_h/2$:

- **BAU-friendly models with subl. DM**
- **Full (or subl.) DM-models** without BAU

LHC bound on $h \to SS$
Kills a lot of the former

In a model with **two independent** singlets, one with a strong cross-coupling could fix BAU and the other with a weak one could be DM.

Or add new **independent doublets (with singlets...)** ... more complicated scalar sectors?

J.M. Cline, K. Kainulainen, P. Scott and C. Weniger, arXiv:1306.4710
Conclusions

EWBG continues to be interesting albeit ever more constrained by LHC and other lab data
Conclusions

EWBG continues to be interesting albeit ever more constrained by LHC and other lab data

Essentially all constraints come from *indirect* (loop) effects
Conclusions

EWBG continues to be interesting albeit ever more constrained by LHC and other lab data.

Essentially all constraints come from indirect (loop) effects.

MSSM: EWBG appears to be all but dead (NMSSM,…)

2HDM: possible, but also restricted in parameter space.

SSM:
- strong (2-stage) transition at tree level
- BAU or DM possible, but not both (with only one singlet)

Singlet effect is likely a part of a more complete working EWBG model.

Graph showing the history of baryogenesis papers from 1985 to 2010.
Supplementary slides...
EWBG, division of search tasks

To keep BA

$$\frac{\phi_c}{T_c} > 1$$

To make BA
EWBG, division of search tasks

To keep BA

\[
\frac{\phi_c}{T_c} > 1
\]

Equilibrium / Nonperturbative / Gauge issues

Out-of-equilibrium / quantum

Sphaleron rate in the unbroken phase

\[\text{Ambjorn et al., Moore; Rummukainen et al.,...}\]

To make BA
EWBG, division of search tasks

To keep BA

$$\frac{\phi_c}{T_c} > 1$$

Equilibrium / Nonperturbative / Gauge issues

Out-of-equilibrium / quantum

(\text{CP-even}) \text{ dynamics of the expanding wall}

\text{Parametrized} by v_w and $\phi(z)$

\text{Sphaleron rate in the unbroken phase}

To make BA
EWBG, division of search tasks

To keep BA

\[
\frac{\phi_c}{T_c} > 1
\]

CP-violating source in **transport eqs.**

- Thin wall: *quantum*
- Thick wall SC:

SC force

- Joyce, Prokopec, Turok, Cline, KK, Schmidt, Weinstock, Konstandin, ...
- Riotto, Carena, Quiros, Wagner, ...

Mass insertion

- Kajantie et al., Prokopec & Moore, John & Smith Espinosa, Konstandin, No & Servant (2010), ...

Espinosa, Konstandin, No & Servant (2010),

Sphaleron rate in the unbroken phase

- Ambjorn et al, Moore; Rummukainen et al, ...

To make BA
EWBG, division of search tasks

To keep BA

Sphaleron rate in the broken phase

Kuzmin, Rubakov & Shaposhkin, Arnold & McLerran, ... Moore; Rummukainen et al;

\[\frac{\phi_c}{T_c} > 1 \]

CP-violating source in transport eqs.

- Thin wall: quantum
- Thick wall SC:

SC force

Joyce, Prokopec, Turok, Cline, KK, Schmidt, Weinstock, Konstandin, ...

Mass insertion

Riotto, Carena, Quiros, Wagner, ...

(CP-even) dynamics of the expanding wall

Parametrized by \(v_w \) and \(\phi(z) \)

Kajantie et al, Prokopec & Moore, John & Smith Espinosa, Konstandin, No & Servant (2010), ...

Sphaleron rate in the unbroken phase

Ambjorn et al, ... Moore; Rummukainen et al, ...

To make BA
EWBG, division of search tasks

To keep BA

Sphaleron rate in the broken phase ... must be small

Kuzmin, Rubakov & Shaposhnikov, Arnold & McLerran, ... Moore; Rummukainen et al;

\[V_{\text{eff}} \text{ in Landau gauge} \]

\[\frac{\phi_c}{T_c} > 1 \]

H.H. Patel, M.J. Ramsey-Musolf, C. Wainwright, S. Profumo
M. Garny and T. Konstandin, JHEP1207 (2012) 189, ...

CP-violating source in transport eqs.

- Thin wall: *quantum*
- Thick wall SC:
 - SC force: Joyce, Prokopec, Turok, Cline, KK, Schmidt, Weinstock, Konstandin, ...
 - Mass insertion: Riotto, Carena, Quiros, Wagner, ...

(CP-even) dynamics of the expanding wall

Parametrized by \(\nu_w \) and \(\phi(\tau) \)

Kajantie et al, Prokopec & Moore, John & Smith
Espinosa, Konstandin, No & Servant (2010), ...

Sphaleron rate in the unbroken phase

Ambjorn et al, ... Moore; Rummukainen et al, ...

To make BA
EWBG, division of search tasks

To keep BA

Sphaleron rate in the broken phase ... must be small

Kuzmin, Rubakov & Shaposhnikov, Arnold & McLerran, ... Moore; Rummukainen et al;

- V_{eff} in Landau gauge
 \[
 \frac{\phi_c}{T_c} > 1
 \]
- Dim. reduction to a 3D-Higgs-gauge theory simulated in Lattice

CP-violating source in transport eqs.

- Thin wall: quantum
- Thick wall SC:
 - SC force
 - Mass insertion

Dynamics of the expanding wall

Parametrized by v_w and $\phi(z)$

Sphaleron rate in the unbroken phase

Ambjornt etal, ... Moore; Rummukainen et al, ...
EWBG, division of search tasks

To keep BA

Sphaleron rate in the broken phase ... must be small

Kuzmin, Rubakov & Shaposhnikov, Arnold & McLerran, ... Moore; Rummukainen et al;

- \(V_{\text{eff}} \) in Landau gauge
 \[
 \frac{\phi_c}{T_c} > 1
 \]
- Dim. reduction to a 3D-Higgs-gauge theory simulated in Lattice

K.Kajantie, M.Laine, K.Rummukainen and M.E.Shaposhnikov,
NPB458 (1996) 90; NPB466 (1996) 189;
PRL77, 2887 (1996)....

2-loop \(V_{\text{eff}} \) in LG

\(~\text{OK}\)

M.Laine, G.Nardini and K.Rummukainen,
JCAP 1301 (2013) 011...

CP-violating source in transport eqs.

- Thin wall: *quantum*
- Thick wall SC:

 - SC force
 - Mass insertion
 - (CP-even) dynamics of the expanding wall

 Parametrized by \(v_w \) and \(\phi(z) \)

Kajantie et al, Prokopec & Moore, John & Smith
Espinosa, Konstandin, No & Servant (2010),...

Sphaleron rate in the unbroken phase

Ambjorn et al, ... Moore; Rummukainen et al, ...

To make BA
BAU generation, QM reflection or SC force

Thick wall limit: SC force

\(\ell_{w} = 10 - 30 \, T^{-1} \)

\[
(\partial_t + v_g \cdot \partial_x + F \cdot \partial_p)f_i = C[f_i, f_j, \ldots].
\]

\[
v_g = \frac{p_0}{\omega} \left(1 + s_{CP} \frac{s|m|^2\theta'}{2p_0^2\omega} \right)
\]

\[
F = -\frac{|m||m'|}{\omega} + s_{CP} \frac{s(|m|^2\theta')'}{2\omega^2}.
\]
BAU generation, QM reflection or SC force

Thick wall limit: SC force
\(\ell_w = 10 - 30 \, T^{-1} \)

\[
(\partial_t + v_g \cdot \partial_x + \mathbf{F} \cdot \partial_p) f_i = C[f_i, f_j, \ldots].
\]

\[
v_g = \frac{p_0}{\omega} \left(1 + s_{\text{CP}} \frac{s|m|^2 \theta'}{2p_0^2 \omega} \right)
\]

\[
F = -\frac{|m||m'|}{\omega} + s_{\text{CP}} \frac{s(|m|^2 \theta')'}{2\omega^2}.
\]

\[\text{CP-force}\]
BAU generation, QM reflection or SC force

Thick wall limit: SC force
\(\ell_w = 10 - 30 T^{-1} \)

\[
(\partial_t + v_g \cdot \partial_x + F \cdot \partial_p) f_i = C[f_i, f_j, \ldots].
\]

\[
v_g = \frac{p_0}{\omega} \left(1 + s_{\text{CP}} \frac{s|m|^2}{2p_0^2 \omega} \right)
\]

\[
F = -\frac{|m||m'|}{\omega} + s_{\text{CP}} \frac{s(|m|^2\theta')}{2\omega^2}.
\]

KK, T. Prokopec, M.G. Schmidt and S. Weinstock, JHEP 0106, 031 (2001);
PRD66 (2002) 043502. T. Prokopec, M.G. Schmidt and S. Weinstock,

T. Konstandin, T. Prokopec and M.G. Schmidt, NPB716 (2005) 373; NPB738 (2006) 1

BAU generation, QM reflection or SC force

Thick wall limit: SC force
\[\ell_w = 10 - 30 T^{-1} \]

\[|m(z)|, k_0 \]

\[v_g(p) \neq \bar{v}_g(p) \]

\[(\partial_t + v_g \cdot \partial_x + F \cdot \partial_p) f_i = C[f_i, f_j, \ldots]. \]

\[v_g = \frac{p_0}{\omega} \left(1 + s_{CP} \frac{|m|^2 \theta'}{2 p_0^2 \omega} \right) \]

\[F = -\frac{|m||m'|}{\omega} + s_{CP} \frac{s(|m|^2 \theta')'}{2 \omega^2}. \]

Thin wall limit: quantum reflection
\[\ell_w = \text{few} T^{-1} \]

KK, T.Prokopec, M.G.Schmidt and S.Weinstein, JHEP 0106, 031 (2001);
PRD66 (2002) 043502. T.Prokopec, M.G.Schmidt and S.Weinstein,
T.Konstandin, T.Prokopec and M.G.Schmidt, NPB716 (2005) 373; NPB738 (2006) 1
BAU generation, QM reflection or SC force

Thick wall limit: SC force
\(\ell_w = 10 - 30 \, T^{-1} \)

Thin wall limit: quantum reflection
\(\ell_w = \text{few} \, T^{-1} \)

Collisionless case:
\[
(i \delta_u - m^1 P_L - m P_R) \psi(u) = 0.
\]

Complex mass (matrix) \(\Rightarrow \) CP

KK, T. Prokopec, M.G. Schmidt and S. Weinstock, JHEP 0106, 031 (2001);
PRD66 (2002) 043502. T. Prokopec, M.G. Schmidt and S. Weinstock,
T. Konstandin, T. Prokopec and M.G. Schmidt, NPB716 (2005) 373; NPB738 (2006) 1
BAU generation, QM reflection or SC force

Thick wall limit: SC force

\[\ell_w = 10 - 30 \ T^{-1} \]

\[v_g(p) \neq \bar{v}_g(p) \]

\[(\partial_t + v_g \cdot \partial_x + F \cdot \partial_p)f_i = C[f_i, f_j, \ldots]. \]

\[v_g = \frac{p_0}{\omega} \left(1 + s_{\text{CP}} \frac{s|m|^2\theta'}{2p_0^2\omega} \right) \]

\[F = -\frac{|m|m'}{\omega} + s_{\text{CP}} \frac{s(|m|^2\theta')'}{2\omega^2}. \]

Thin wall limit: quantum reflection

\[\ell_w = \text{few} \ T^{-1} \]

Collisionless case:

\[\left(i \partial_u - m^I P_L - m P_R \right) \psi(u) = 0. \]

Complex mass (matrix) \(\Rightarrow \) CP

Sufficient CP-violation in the MSM CKM-matrix?

G.R.Farrar and M.E.Shaposhnikov, PRL70, 2833 (1993); PRD (199...)

T.Konstandin, T.Prokopec and M.G.Schmidt, NPB716 (2005) 373; NPB738 (2006) 1
BAU generation, QM reflection or SC force

Thick wall limit: SC force
\[\ell_w = 10 - 30 \, T^{-1} \]

\[(\partial_t + v_g \cdot \partial_x + F \cdot \partial_p) f_i = C[f_i, f_j, \ldots]. \]

\[v_g = \frac{p_0}{\omega} \left(1 + s c_p \frac{s m^2 \theta'}{2 p_0^2 \omega} \right) \]

\[F = -\frac{|m| |m'|}{\omega} + s c_p \frac{s (|m|^2 \theta')'}{2 \omega^2}. \]

Thin wall limit: quantum reflection
\[\ell_w = \text{few} \, T^{-1} \]

Collisionless case:
\[\left(i \theta - m^T P_L - m P_R \right) \psi(u) = 0. \]

Complex mass (matrix) \(\Rightarrow \) CP

Sufficient CP-violation in the MSM CKM-matrix?
G.R.Farrar and M.E.Shaposhnikov, PRL70, 2833 (1993); PRD (199...)

NO
BAU generation, QM reflection or SC force

Thick wall limit: SC force
\(\ell_w = 10 - 30 \, T^{-1} \)

\[
(\partial_t + v_g \cdot \partial_x + F \cdot \partial_p) f_i = C[f_i, f_j, \ldots].
\]

\[
v_g = \frac{p_0}{\omega} \left(1 + sc_p \frac{s|m|^2\theta'}{2p_0^2\omega} \right)
\]

\[
F = -\frac{|m||m'|}{\omega} + sc_p \frac{s(|m|^2\theta')'}{2\omega^2}.
\]

Thin wall limit: quantum reflection
\(\ell_w = \text{few} \, T^{-1} \)

Collisionless case:
\[
\left(i \frac{\partial}{\partial u} - m^+ P_L - m P_R \right) \psi(u) = 0.
\]

Sufficient CP-violation in the MSM CKM-matrix?
G.R.Farrar and M.E.Shaposhnikov, PRL70, 2833 (1993); PRD (199...)

NO

But the QKE’s used not sufficiently sophisticated

M.Joyce, T.Prokopec, N.Turok, PRD53 2958 (1996); PRL75 1695 (1995);

KK, T.Prokopec, M.G.Schmidt and S.Weinstock, JHEP 0106, 031 (2001);
PRD66 (2002) 043502. T.Prokopec, M.G.Schmidt and S.Weinstock,
T.Konstandin, T.Prokopec and M.G.Schmidt, NPB716 (2005) 373; NPB738 (2006) 1
BAU generation, QM reflection or SC force

Thick wall limit: SC force
\(\ell_w = 10 - 30 \, T^{-1} \)

\[
|m(z)|, k_0
\begin{align*}
\left(\partial_t + v_g \cdot \partial_x + F \cdot \partial_p \right) f_i &= C[f_i, f_j, \ldots]. \\
v_g &= \frac{p_0}{\omega} \left(1 + s_{CP} \frac{s|m|^2\theta'}{2p_0^2 \omega} \right) \\
F &= -\frac{|m|m'|}{\omega} + s_{CP} \frac{s(|m|^2\theta')'}{2\omega^2}.
\end{align*}
\]

Thin wall limit: quantum reflection
\(\ell_w = \text{few} \, T^{-1} \)

Collisionless case:
\[
\left(i \delta_u - m^\dagger P_L - mP_R \right) \psi(u) = 0.
\]

Complex mass (matrix) => CP

Sufficient CP-violation in the MSM CKM-matrix?
G.R.Farrar and M.E.Shaposhnikov, PRL70, 2833 (1993); PRD (199...)

NO

But the QKE’s used not sufficiently sophisticated
Singlet model: BAU-generation

DM stability => Z_2 symmetry: \(\langle S \rangle_{T=0} = 0 \)

Source of CP violation eg Dim-6 operator
(If not DM could take Dim-5 as well) J.R.Espinosa, et al

\[
y_t \bar{Q}_L H \left(1 + \frac{\eta}{\Lambda^2} S^2 \right) t_R + h.c.
\]

\[
m_t(z) = \frac{y_t}{\sqrt{2}} h(z) \left(1 + i \frac{S^2(z)}{\Lambda^2} \right) \quad (\eta \equiv i)
\]

BAU from top transport
Singlet model: BAU-generation

DM stability => Z$_2$ symmetry: \(<S>_{T=0} = 0\)

Source of CP violation eg Dim-6 operator
(If not DM could take Dim-5 as well) J.R.Espinosa, et al

\[
y_t \bar{Q}_L H \left(1 + \frac{\eta}{\Lambda^2} S^2 \right) t_R + \text{h.c.}
\]

\[
m_t(z) = \frac{y_t}{\sqrt{2}} h(z) \left(1 + i \frac{S^2(z)}{\Lambda^2} \right) (\eta \equiv i)
\]

BAU from top transport

Large BAU much more frequent than in 2HDM
Singlet model: BAU-generation

DM stability => \(Z_2 \) symmetry: \(\langle S \rangle_{T=0} = 0 \)

Source of CP violation eg Dim-6 operator
(If not DM could take Dim-5 as well) J.R.Espinosa, et al

\[
y_t \bar{Q}_L H \left(1 + \frac{\eta}{\Lambda^2} S^2 \right) t_R + \text{h.c.}
\]

\[
m_t(z) = \frac{y_t}{\sqrt{2}} h(z) \left(1 + i \frac{S^2(z)}{\Lambda^2} \right) \quad (\eta \equiv i)
\]

BAU from top transport

Large BAU much more frequent than in 2HDM

\[
\frac{\eta_B}{\eta_{B,\text{obs}}} \quad \text{or} \quad \left(\frac{\Lambda}{1 \text{ TeV}} \right)^2 \quad \eta_B = \eta_{B,\text{obs}}
\]
Quantum transport methods

Singlet model would be more appealing if one could do without the new dim-5 or dim-6 operators for CP-violation.

Could the MSM CKM CP-phase be enough?
To make sure needs more sophisticated methods.
Quantum transport methods

Singlet model would be more appealing if one could do without the new dim-5 or dim-6 operators for CP-violation.

Could the MSM CKM CP-phase be enough? To make sure needs more sophisticated methods.

A suitable method (cQPA) in fact exists:

In planar symmetric problem, the information about reflection coherence condenses to a set of new shell functions => Extended Boltzmann type eqns.
Quantum transport methods

Singlet model would be more appealing if one could do without the new dim-5 or dim-6 operators for CP-violation.

Could the MSM CKM CP-phase be enough?

To make sure needs **more sophisticated methods.**

A suitable method (cQPA) in fact exists:

In planar symmetric problem, the **information about reflection coherence condenses to a set of new shell functions**

=> Extended **Boltzmann type eqns.**

Tested already in **homogeneous problems**

C.Fiedler, M.Herranen, KK & P.M.Rahkila, JHEP 1202 (2012) 080.

\[
\partial_t \bar{S}_{ij}^\leq = -i[H_{\text{eff}}, \bar{S}_{ij}^\leq] + \gamma^0 \langle C_{ij} + C_{ij}^\dagger \rangle \gamma^0
\]

\[
\bar{S}_{ij}^\leq = \sum_{h\pm} P_h P_{i\pm} \gamma^0 \left(P_{j\pm} f_{ijh\pm}^m + P_{j\mp} f_{ijh\mp}^c \right)
\]
Quantum transport methods

Singlet model would be more appealing if one could do without the new dim-5 or dim-6 operators for CP-violation.

Could the MSM CKM CP-phase be enough?
To make sure needs more sophisticated methods.

A suitable method (cQPA) in fact exists:

In planar symmetric problem, the information about reflection coherence condenses to a set of new shell functions

=> Extended Boltzmann type eqns.

Tested already in homogeneous problems

M.Herranen, KK & P.M Rahkila,
JHEP 1012 (2010) 072; JHEP 1202 (2012) 065
C.Fiedler, M.Herranen, KK & P.M Rahkila,

Application to EWBG toy model ongoing: M.Herranen, KK, P.M.Rakhila, H.Jukkala

\[
\partial_t \bar{S}_{ij}^{<} = -i[H_{\text{eff}}, S^{<}]_{ij} + \gamma^0 \langle C_{ij} + C_{ij}^\dagger \rangle \gamma^0
\]

\[
\bar{S}_{ij}^{<} = \sum_{h\pm} P_h P_{i\pm} \gamma^0 \left(P_{j\pm} f_{ijh\pm}^m + P_{j\pm} f_{ijh\pm}^c \right)
\]

M.Herranen, KK, P.M.Rahkila NPB810 (2009) 389