Comparison of collider and non-collider DM results

Norraphat SRIMANOBHAS (Chulalongkorn U., Thailand) on behalf of CMS and ATLAS Collaborations

Physics at LHC and beyond, 10 - 17 August 2014 Quy-Nhon, Vietnam

Contents

- Dark matter Direct / Indirect / Collider experiments
- Current dark matter interpretation
- Updated results from CMS and ATLAS, X + Missing Transverse Energy:
 - MonoJet
 - MonoTop
 - MonoW, Z
 - → Leptonic
 - → Hadronic
 - MonoPhoton
 - Top pairs
 - Higgs Portal
- Preparation for LHC Run2 / HL-LHC
- Summary

Dark matter

Searches for dark matter

Observe DM annihilation products

DM SM Needs independent verifications from various astrophysical and non-astrophysical experiments.

DM SM Needs

Dark Matter-nucleus scattering

Direct detectior

Collider

Current dark matter interpretations

▶ Limits are quoted in terms of the WIMP-Nucleon cross-section.

Direct detection

$$\sigma_n \sim \left(\frac{g_n g_\chi}{Q^2 - m_{Z'}^2} \right)^2 pprox \frac{g_n^2 g_\chi^2}{m_{Z'}^4} \left(1 + \frac{Q^2}{m_{Z'}^2} + \cdots \right)^2$$

Contact interaction if

$$m_{Z^{'}}\gg Q=\sqrt{2m_{n}E_{\mathrm{R}}}\approx 50~\mathrm{MeV}$$

Use of effective field theory (EFT) to place a limit on the contact interaction scale m_{eff}

 $\Lambda \equiv \frac{m_{Z'}}{\sqrt{g_q g_\chi}}$

FFT will be valid if $m_{Z'} \gg Q \sim {
m TeV}$

Dark Matter models @ Collider

Dirac fermion, 1008.1783

Dirac lerillon, 1000.1703		
D1	$\bar{\chi}\chi\bar{q}q$	m_q/M_*^3
D2 D3	$\bar{\chi}\gamma^5\chi\bar{q}q$	im_a/M_*^3
D3	$\bar{\chi}\chi\bar{q}\gamma^5q$	im_a/M_*^3
D4	$\bar{\chi} \gamma^5 \chi \bar{q} \gamma^5 q$	m_q/M_*^3
D4 D5	$\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}q$	$1/M_*^2$
D6	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{q}\gamma_{\mu}q$	$1/M_*^2$
D6 D7	$\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}\gamma^{5}q$	$1/M_*^2$
D8 D9 D10 D11	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{q}\gamma_{\mu}\gamma^{5}q$	$1/M_*^2$
D9	$\bar{\chi}\sigma^{\mu\nu}\chi\bar{q}\sigma_{\mu\nu}q$	$1/M_*^2$
D10	$\bar{\chi}\sigma_{\mu\nu}\gamma^5\chi\bar{q}\sigma_{\alpha\beta}q$	i/M_*^2
D11	$\bar{\chi}\chi G_{\mu\nu}G^{\mu\nu}$	$\alpha_s/4M_*^3$
D12	$\bar{\chi} \gamma^5 \chi G_{\mu\nu} G^{\mu\nu}$	$i\alpha_s/4M$
D12 D13	$\chi \chi G_{\mu\nu} G^{\mu\nu}$	$i\alpha_s/4M$
D14	$\bar{\chi} \gamma^5 \chi G_{\mu\nu} \tilde{G}^{\mu\nu}$	$\alpha_s/4M_*^3$

Majorana fermion, 1005.1286

M1	qq	$m_q/2M_*^3$
M2	qq	$im_q/2M_*^3$
M3	qq	$im_q/2M_{\bullet}^3$
M4	qq	$m_q/2M_{\bullet}^3$
M5	qq	1/2M ²
M6	qq	1/2M ²
M7	GG	$\alpha_s/8M_*^3$
M8	GG	$i\alpha_s/8M_*^3$
M9	GĞ	$\alpha_s/8M_*^3$
M10	GĞ	$i\alpha_s/8M_*^3$

Real scalar, 1008.1783

R1	$\chi^2 \bar{q} q$	$m_q/2M_*^2$
R2	$\chi^2 \bar{q} \gamma^5 q$	$im_q/2M_*^2$
R3	$\chi^2 G_{\mu\nu} G^{\mu\nu}$	$\alpha_s/8M_*^2$
R4	$\chi^2 G_{\mu\nu} \tilde{G}^{\mu\nu}$	$i\alpha_s/8M_*^2$

Complex scalar, 1008.1783

C1	$\chi^{\dagger}\chi\bar{q}q$	m_q/M_*^2
C2	$\chi^{\dagger}\chi\bar{q}\gamma^{5}q$	im_q/M_*^2
C3	$\chi^{\dagger} \partial_{\mu} \chi \bar{q} \gamma^{\mu} q$	$1/M_*^2$
C4	$\chi^{\dagger} \partial_{\mu} \chi \bar{q} \gamma^{\mu} \gamma^{5} q$	$1/M_*^2$
C5	$\chi^{\dagger}\chi G_{\mu u}G^{\mu u}$	$\alpha_s/4M_*^2$
C1 C2 C3 C4 C5 C6	$\chi^{\dagger}\chi G_{\mu\nu} \tilde{G}^{\mu\nu}$	$i\alpha_s/4M_*^2$

X + Missing Transverse Energy

MonoJet

EXO-12-048: http://cds.cern.ch/record/1525585

Event selection

- ▶ MET > 250 GeV
- One energetic jet, $p_T > 110$ GeV, $|\eta| < 2.4$, and allow an additional jet ($p_T > 30$ GeV)
- Veto event if $j_3 p_T > 30 \text{ GeV}$
- Veto event if DeltaPhi(j₁,j₂)>2.5
- Veto event if they contain isolated electrons, isolated muons, or hadronic tau with pT > 10 GeV (20 GeV for tau)

MonoTop (top decays hadronically)

Event selectionB2G-12-022: http://cds.cern.ch/record/1668115

- Three jets, with j_1 , and $j_2 p_T > \frac{4}{5}$ 60 GeV and $j_3 p_T > 40$ GeV
- One jet is tagged b-jet
- Veto events with $j_4 p_T > 35$ GeV or isolated $e(\mu) p_T > 20(10)$ GeV
- $M(j_1j_2j_3) < 250 \text{ GeV}$
- MET> 350 GeV

Results

- Excellent agreement with data
- DM coupling set to 0.1 for q=u/d [arXiv:1106.199]
- Exclude scalar (vector) DM masses below 327 (655) GeV

MonoZ (Z decays leptonically)

PhysRevD.90.012004

Event selection

- Muon (Electron) P_T (E_T) >
 20 GeV, |η| < 2.5 (2.47)
- ▶ 76 < M(II) < 106
- ightharpoonup DeltaPhi(P_T(II),MET) > 2.5
- $|\eta^{||}| < 2.5$
- $P_T(II) MET)/P_T(II) < 0.5$

MonoW (W decays leptonically)

Dark Matter production with a W

- W recoiling against pair-produced DM
- Vector- and axial-vector couplings considered
- Interference effects parameterized by ξ (W+)

Event selection

- Muon (Electron) $P_T > 45$ (100) GeV
- \triangleright 0.4 < P_T/MET < 1.5
- DeltaPhi(lepton,MET) > 0.8*Pi

EXO-13-004: http://cds.cern.ch/record/1563245

MonoW (W decays leptonically)

Event selection

- Muon (Electron) $P_T > 45$ (125) GeV
- ▶ MET > 45 GeV (Muon), 125 GeV (Electron)
- ▶ M_T > 252 GeV

$$M_{\mathrm{T}} = \sqrt{2 \cdot p_{\mathrm{T}}^{\ell} \cdot E_{\mathrm{T}}^{\mathrm{miss}} \cdot (1 - \cos \Delta \phi_{\ell, \nu})}$$

MonoW, Z (W,Z decays hadronically)

PhysRevLett.112.041802

Event selection

- ▶ MET > 150 GeV
- At least, a CA1.2 jet with PT > 250 GeV, $|\eta|$ < 2.5, 50 < m_{jet} < 120
- Reject if there are more than one AK0.4 jet with PT > 40 GeV, $|\eta|$ < 4.5 which is not completely overlapping with CA1.2
- Reject if events contain electron, photon, or muon candidates

MonoPhoton

Event selection

- MET > 140 GeV
- One energetic photon, $p_T > 145$ GeV, < 1.4442
- Veto on jets, leptons, and pixel seeds (hit pattern in the pixel detector)
- DeltaPhi(photon,MET) > 2
- MinMET > 120 GeV, Prob(χ^2) (Reduce fake MET events)

EXO-12-047: http://cds.cern.ch/record/1702015

CMS Preliminary

Spin-dependent

Spin Dependent, Axial-vector operator

 M_{χ} [GeV/c²]

Top quark pair

B2G-14-004: http://cds.cern.ch/record/1749153

Event selection

- Select pairs of top quarks in the di-lepton channels
- Exactly two identified leptons, and at least two jets are selected.
- ► M(II) > 20 GeV and |M(II) 91 GeV| > 15 GeV
- ▶ MET > 320 GeV
- \blacktriangleright HT(j₁, j₂) < 400 GeV, HT(l₁, l₂) > 120 GeV, DeltaPhi(l₁, l₂) < 2

Higgs Portal to Dark Matter

arXiv:1404.1344v2

DM particles have the direct couplings to the SM Higgs sector, $H \rightarrow \chi \chi$

- Limits on branching fraction of Higgs to "invisible" particles used for limits on DM
- ▶ Can be scalar, vector or fermionic couplings
- Limits only up to DM mass $M_X < M_H/2$

mH=125GeV, and B(H→inv) < 0.51 at 90% CL, as a function of the DM mass.

VBF Hinv

- Develop for X + MET Triggers
- Object IDs for Run2
- Background estimations, and uncertainties (Reduce bkg uncertainties)
 - Challenging goal for HL-LHC (next slide)
- Experiments should firstly provide the model independent limits

ATL-PHYS-PUB-2014-007

Projection study (assume that EFT is valid)

arXiv:1404.8257

- Physics models
 - No one knows the correct theory to describe particle dark matter
 - EFT and its validity

• Look at limit on $\Lambda = \frac{m_{\text{med}}}{\sqrt{g_q g_\chi}}$

- Region I: EFT limit is good $m_{
 m med} \gtrsim 3 {
 m ~TeV}$
- Region II: EFT limit is too weak
- Region III: EFT limit is too strong $m_{\rm med} \lesssim 500~{
 m GeV}$

http://agenda.albanova.se/contributionDisplay.py?contribId=280&sessionId=254&confId=4115

 10^{3}

Ulrich Haisch, Felix Kahlhoefer, James Unwin

2012 (v1), last revised 2 Aug 2013 (this version, v2))

arXiv.org > hep-ph > arXiv:1401.1825 High Energy Physics - Phenomenology

Probing Light Nonthermal Dark Matter at the LHC

Bhaskar Dutta, Yu Gao, Teruki Kamon

(Submitted on 8 Jan 2014)

A workshop to further develop simplified models and effective field theory approaches to DM, taking stock of the final results of the 8 TeV LHC run, and to prepare for the next phase of data-taking at higher energies.

Summary

- Presented the collider based search results for Dark Matter at ATLAS and CMS detectors, and comparisons with direct, and indirect DM searches.
- Preparing for LHC Run2, HL-LHC
 - Model independent / Reduce the uncertainty of background prediction
 - Various models of DM production @ collider
- Since we don't know what is/are the particle DMs, their couplings, or masses, the powerful future collider can help us to scan the wide range of possibilities of DM productions.

Backup

Dark matter

Dark matter

Searches for dark matter

I. Direct Detection Experiments

- Dark Matter-nucleus scattering.
- Low mass DM particles not probed yet.
- Less sensitive to spin-dependent coupling.
- XENON-100, CDMS, CoGeNT
- 2. Indirect Detection Experiments
- Observe annihilation products.
- Low mass DM particles not accessible.
- Depends on DM density and annihilation model.
- Super-Kamiokande, IceCube, AMS-02
- 3. Collider Experiments
- Laboratory production of DM particles.
- Sensitive to huge mass range.
- Both spin-dependent and spin-independent couplings.
- Tevatron, LHC

Needs independent verifications from various astrophysical and non-astrophysical experiments.

Direct detection

COUPP

CDMS

(+ EDELWEISS, DAMA, EURECA, ZEPLIN, DEAP, ArDM, WARP, LUX, SIMPLE, PICASSO, DMTPC, DRIFT, KIMS, ...)

CRESST

Xenon

S.Worm

Indirect detection

S.Worm

Collider

minMET (monophoton)

MHT Minimization

A way to identify and reduce the fake met contribution, where you minimize the unclustered energy in the event by trying to re-distribute the energy back into the visible objects.

$$\begin{split} \mathbf{E}_{x,y}^{\hat{}} &= \mathbf{E}_{x,y}^{reco} + \sum_{i=objects} (p_{x,y}^{reco})_i - (p_{x,y}^{\hat{}})_i \\ \mathbf{E}_{T}^{2} &= \mathbf{E}_{x}^{2} + \mathbf{E}_{y}^{2} \\ \chi^{2} &= \sum_{i=objects} \left(\frac{(p_{T}^{reco})_i - (\hat{p}_{T})_i}{(\sigma_{p_{T}})_i} \right)^2 + \left(\frac{\mathbf{E}_{x}}{\sigma_{\hat{E}_{x}}} \right)^2 + \left(\frac{\mathbf{E}_{y}}{\sigma_{\hat{E}_{y}}} \right)^2. \end{split}$$

If the Met is intrinsic, balancing the object momenta wouldn't be easy and will result in high χ^2 .

The variables that give good discrimination are the $\text{Prob}(\chi^2)$ and the recalculated minimized Met.

BDT parameters, Z(bb)+H(inv)

Table 6: Input variables to the $Z(b\overline{b})H(inv)$ BDT.

Variable	
$p_{\mathrm{T}}^{\mathrm{j1}}, p_{\mathrm{T}}^{\mathrm{j2}}$ M_{jj} $p_{\mathrm{T}}^{\mathrm{jj}}$ $E_{\mathrm{T}}^{\mathrm{miss}}$	Transverse momentum of each Z boson daughter
M_{ij}	Dijet invariant mass
$p_{\mathrm{T}}^{\mathrm{jj}}$	Dijet transverse momentum
Emiss	Missing transverse energy
N_{aj}	Number of additional jets ($p_T > 25 \text{GeV}$ and $ \eta < 4.5$)
CSV _{max}	Value of CSV for the Z boson daughter with largest CSV value
CSV _{min}	Value of CSV for the Z boson daughter with second largest CSV value
$\Delta \phi(Z, H)$	Azimuthal angle between E_T^{miss} and dijet
$\Delta \eta_{\rm ii}$	Difference in η between Z daughters
ΔR_{ii}	Distance in η - ϕ between Z daughters
$\Delta \theta_{\mathrm{pull}}$	Color pull angle [62]
$\Delta \phi(E_{\rm T}^{\rm miss},j)$	Azimuthal angle between E_T^{miss} and the closest jet
CSV _{aj}	Maximum CSV of the additional jets in an event
$\Delta R(H, aj)$	Minimum distance between an additional jet and the Z boson candidate
m_{T}	Transverse mass of the ZH system

Compact Muon Solenoid (CMS)

Compact Muon Solenoid (CMS)

Dark matter

Dark matter

Searches for dark matter

I. Direct Detection Experiments

- Dark Matter-nucleus scattering.
- Low mass DM particles not probed yet.
- Less sensitive to spin-dependent coupling.
- XENON-100, CDMS, CoGeNT
- 2. Indirect Detection Experiments
- Observe annihilation products.
- Low mass DM particles not accessible.
- Depends on DM density and annihilation model.
- Super-Kamiokande, IceCube, AMS-02
- 3. Collider Experiments
- Laboratory production of DM particles.
- Sensitive to huge mass range.
- Both spin-dependent and spin-independent couplings.
- Tevatron, LHC

Needs independent verifications from various astrophysical and non-astrophysical experiments.

Direct detection

COUPP

CoGeNT

(+ EDELWEISS, DAMA, EURECA, ZEPLIN, DEAP, ArDM, WARP, LUX, SIMPLE, PICASSO, DMTPC, DRIFT, KIMS, ...)

CRESST

Xenon

S.Worm

Indirect detection

S.Worm

Collider

Current dark matter interpretation

▶ Limits are quoted in terms of the WIMP-Nucleon cross-section.

Direct detection

Contact interaction if

$$m_{Z^{'}}\gg Q=\sqrt{2m_{n}E_{\mathrm{R}}}\approx 50~\mathrm{MeV}$$

MCCABE, Christopher: http://agenda.albanova.se/contributionDisplay.py?contribId=280&sessionId=254&confld=4115

Use of effective field theory (EFT) to place a limit on the contact interaction scale $\Lambda \equiv \frac{m_{Z'}}{\sqrt{g_a g_Y}}$

FFT will be valid if $m_{Z'} \gg Q \sim {
m TeV}$

Dark Matter models

Dirac fermion, 1008.1783

	Dirac reminding rooters	, 00
D1	$\bar{\chi}\chi\bar{q}q$	m_q/M_*^3
D2	$\bar{\chi}\gamma^5\chi\bar{q}q$	im_a/M_*^3
D3	$\bar{\chi}\chi\bar{q}\gamma^5q$	im_q/M_*^3
D4	$\bar{\chi}\gamma^5\chi\bar{q}\gamma^5q$	m_q/M_*^3
D5	$\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}q$	$1/M_*^2$
D6	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{q}\gamma_{\mu}q$	$1/M_*^2$
D7	$\bar{\chi}\gamma^{\mu}\chi\bar{q}\gamma_{\mu}\gamma^{5}q$	$1/M_*^2$
D8	$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{q}\gamma_{\mu}\gamma^{5}q$	$1/M_*^2$
D9	$\bar{\chi}\sigma^{\mu\nu}\chi\bar{q}\sigma_{\mu\nu}q$	$1/M_*^2$
D10	$\bar{\chi}\sigma_{\mu\nu}\gamma^5\chi\bar{q}\sigma_{\alpha\beta}q$	i/M_*^2
D11	$\bar{\chi}\chi G_{\mu\nu}G^{\mu\nu}$	$\alpha_s/4M_*^3$
D12	$\bar{\chi} \gamma^5 \chi G_{\mu\nu} G^{\mu\nu}$	$i\alpha_s/4M_*^3$
D13	$\bar{\chi}\chi G_{\mu\nu}G^{\mu\nu}$	$i\alpha_s/4M_*^3$
D14	$\bar{\chi} \gamma^5 \chi G_{\mu\nu} \tilde{G}^{\mu\nu}$	$\alpha_s/4M_*^3$

Majorana fermion, 1005.1286

M1	qq	$m_q/2M_*^3$
M2	qq	$im_q/2M_*^3$
M3	qq	$im_q/2M_*^3$
M4	qq	$m_q/2M_*^3$
M5	qq	1/2M ²
M6	qq	1/2M ²
M7	GG	$\alpha_s/8M_*^3$
M8	GG	$i\alpha_s/8M_*^3$
M9	GĞ	$\alpha_s/8M_*^3$
M10	GĞ	$i\alpha_s/8M_*^3$

Real scalar, 1008.1783

R1	$\chi^2 \bar{q}q$	$m_q/2M_*^2$
R2	$\chi^2 \bar{q} \gamma^5 q$	$im_q/2M_*^2$
R3	$\chi^2 G_{\mu\nu} G^{\mu\nu}$	$\alpha_s/8M_*^2$
R4	$\chi^2 G_{\mu\nu} \tilde{G}^{\mu\nu}$	$i\alpha_s/8M_*^2$

Complex scalar, 1008.1783

C1	$\chi^{\dagger}\chi\bar{q}q$	m_q/M_*^2
C2	$\chi^{\dagger}\chi\bar{q}\gamma^{5}q$	im_q/M_*^2
C3	$\chi^{\dagger} \partial_{\mu} \chi \bar{q} \gamma^{\mu} q$	$1/M_*^2$
C4	$\chi^{\dagger} \partial_{\mu} \chi \bar{q} \gamma^{\mu} \gamma^{5} q$	$1/M_*^2$
C5	$\chi^{\dagger}\chi G_{\mu u}G^{\mu u}$	$\alpha_s/4M_*^2$
C1 C2 C3 C4 C5 C6	$\chi^{\dagger}\chi G_{\mu\nu} \tilde{G}^{\mu\nu}$	$i\alpha_s/4M_*^2$

X + Missing Transverse Energy

MonoJet

EXO-12-048: http://cds.cern.ch/record/1525585

Event selection

- ▶ MET > 400 GeV
- ▶ One energetic jet, $p_T > 110$ GeV, $|\eta| < 2.4$, and allow an additional jet ($p_T > 30$ GeV)
- Veto event if j₃ p_T > 30 GeV
- ▶ Veto event if DeltaPhi(j₁,j₂)>2.5
- Veto event if they contain isolated electrons, isolated muons, or hadronic tau with p_T > 10 GeV (20 GeV for tau)

MonoJet

Results

EXO-12-048: http://cds.cern.ch/record/1525585

$$\mathcal{O}_{AV} = \frac{(\bar{\chi}\gamma_{\mu}\gamma_{5}\chi)(\bar{q}\gamma^{\mu}\gamma_{5}q)}{\Lambda^{2}}$$

Vector operator spin independent (SI)

$$\mathcal{O}_V = rac{(ar{\chi}\gamma_\mu\chi)(ar{q}\gamma^\mu q)}{\Lambda^2}$$

Monojet

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO12048

Event display

Monojet

Results

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO12048

MonoTop (top decays hadronically)

B2G-12-022: http://cds.cern.ch/record/1668115

Event selection

- ▶ Three jets, with j_1 , and j_2 $p_T > 60$ GeV and j_3 $p_T > 40$ GeV
- One jet is tagged b-jet
- Veto events with $j_4 p_T > 35$ GeV or isolated $e(\mu) p_T > 20(10)$ GeV
- $M(j_1j_2j_3) < 250 \text{ GeV}$
- MET> 350 GeV

MonoTop (top decays hadronically)

Results

B2G-12-022: http://cds.cern.ch/record/1668115

- Excellent agreement with data
- DM coupling set to 0.1 for q=u/d [arXiv:1106.199]
- Exclude scalar (vector) DM masses below 327 (655) GeV

0	2				7 pb ⁻¹ at √s=8	-
9	1.8			Scalar	DM theory ox Br	-
n ×	1.6			expec	ted limit	
95% C.L. limit on $\sigma \times Br$ (pb)	1.4	1		observ	ved limit	4
TI C	1.2			expect	ted ± 1 σ limit	4
≡	1			expec	ted ± 2 σ limit	=
ن	0.8					
925	0.6		1			
	0.4		The same of the sa		***************************************	
	0.2					
	8	00	300	400	500	600

# of b tags	Zero CSVm b tag	One CSVm b tag
${f t} {ar t}$	$6\pm 0\pm 5$	$12 \pm 0 \pm 12$
W+jets	$18\pm 9\pm 7$	$3 \pm 1 \pm 2$
Z+jets	$103\pm 33\pm 9$	$11 \pm 10 \pm 1$
Single top	$2\pm 1\pm 1$	$1\pm1\pm1$
VV	$5\pm 0\pm 0$	$0 \pm 0 \pm 0$
QCD	6	1
sum	140±36	28±16
Data	143	30

PhysRevD.90.012004

Event selection

- Muon (Electron) P_T (E_T) > 20 GeV, $|\eta|$ < 2.5 (2.47)
- ▶ 76 < M(II) < 106
- ▶ DeltaPhi($P_T(II)$,MET) > 2.5
- $|\eta^{\parallel}| < 2.5$
- $(P_T(II) MET)/P_T(II) < 0.5$

PhysRevD.90.012004

EXO-13-004: http://cds.cern.ch/record/1563245

Dark Matter production with a W

- W recoiling against pair-produced DM
- Vector- and axial-vector couplings considered
- Interference effects parameterized by ξ (W+)

Event selection

- Muon (Electron) $P_T > 45$ (100) GeV
- \triangleright 0.4 < P_T/MET < 1.5
- DeltaPhi(lepton,MET) > 0.8*Pi

Results

EXO-13-004: http://cds.cern.ch/record/1563245

Axial-vector operator spin-dependent (SD)

Vector operator spin independent (SI)

- Muon (Electron) $P_T > 45$ (125) GeV
- MET > 45 GeV (Muon), 125 GeV (Electron)
- ▶ M_T > 252 GeV

$$M_{\mathrm{T}} = \sqrt{2 \cdot p_{\mathrm{T}}^{\ell} \cdot E_{\mathrm{T}}^{\mathrm{miss}} \cdot (1 - \cos \Delta \phi_{\ell, \nu})}$$

Results

arXiv:1407.7494

MonoW, Z (W,Z decays hadronically)

Data

Event selection

PhysRevLett.112.041802

- At least, a CA1.2 jet with PT > 250 GeV, $|\eta|$ < $2.5, 50 < m_{iet} < 120$
- ▶ Reject if there are more than one AK0.4 jet with PT > 40 GeV, $|\eta|$ < 4.5 which is not completely overlapping with CA1.2
- ▶ Reject if events contain electron, photon, or muon candidates

MonoW, Z (W,Z decays hadronically)

PhysRevLett.112.041802

MonoPhoton

Event selection

EXO-12-047: http://cds.cern.ch/record/1702015

- ▶ MET > 140 GeV
- ▶ One energetic photon, $p_T > 145$ GeV, $|\eta| < 1.4442$
- Veto on jets, leptons, and pixel seeds (hit pattern in the pixel detector)
- DeltaPhi(photon,MET) > 2
- MinMET > 120 GeV, Prob(χ^2) (Reduce fake MET events)

MonoPhoton

Results

EXO-12-047: http://cds.cern.ch/record/1702015

 $\mathcal{O}_V = rac{(ar{\chi}\gamma_\mu\chi)(ar{q}\gamma^\mu q)}{\Lambda^2}$

Axial-vector operator spin-dependent (SD)

$$\mathcal{O}_{AV} = rac{(ar{\chi}\gamma_{\mu}\gamma_{5}\chi)(ar{q}\gamma^{\mu}\gamma_{5}q)}{\Lambda^{2}}$$

Top quark pair

B2G-13-004: http://cds.cern.ch/record/1697173

Event selection

- ▶ Select pairs of top quarks in the di-lepton channels
- Exactly two identified leptons, and at least two jets are selected.
- ► M(II) > 20 GeV and |M(II) 91 GeV| > 15 GeV
- MET > 320 GeV
- $ightharpoonup HT(j_1, j_2) < 400 \text{ GeV, } HT(l_1, l_2) > 120 \text{ GeV, } DeltaPhi(l_1, l_2) < 2$

Top quark pair

B2G-13-004: http://cds.cern.ch/record/1697173

Results

Background Source	Yield
$tar{t}$	$0.87 \pm 0.18 \pm 0.27$
Single top	$0.48 \pm 0.46 \pm 0.09$
Di-boson	$0.32 \pm 0.09 \pm 0.05$
Drell-Yan	$0.19 \pm 0.14 \pm 0.03$
One Mis-ID lepton	$0.02 \pm 0.07 \pm 0.02$
Double Mis-ID leptons	$0.00 \pm 0.00 \pm 0.00$
Total Bkg	$1.89 \pm 0.53 \pm 0.39$
Data	1
Signal	$1.88 \pm 0.11 \pm 0.07$

M_{χ} (GeV)	M_{χ} (GeV) Signal efficiency (%)		$\sigma_{ m obs}^{ m lim}$
1	$1.28 \pm 0.09 \pm 0.04$	0.35	0.31
10	$1.45 \pm 0.10 \pm 0.05$	0.31	0.27
50	$1.65 \pm 0.11 \pm 0.05$	0.27	0.24
100	$1.96 \pm 0.12 \pm 0.06$	0.23	0.20
200	$2.31 \pm 0.12 \pm 0.05$	0.19	0.17
600	$3.45 \pm 0.17 \pm 0.09$	0.13	0.11
1000	$4.35 \pm 0.24 \pm 0.10$	0.10	0.09

DM particles have the direct couplings to the SM Higgs sector,

arXiv:1404.1344v2

$H \rightarrow \chi \chi$

- Limits on branching fraction of Higgs to "invisible" particles used for limits on DM
- ▶ Can be scalar, vector or fermionic couplings
- Limits only up to DM mass $M_X < M_H/2$

Event selection: VBF+H(inv)

- Veto events with an identified electron, or muon with $p_T > 10$ GeV.
- VBF tag jet pair, $p_{T,j1}$, $p_{T,j2} > 50$ GeV, $|\eta| < 4.7$, $\eta_j I$, $\eta_j 2 < 0$, $\Delta \eta_{jj} > 4.2$, and Mjj > I I 00 GeV
- MET > 130 GeV
- \blacktriangleright DeltaPhi(j₁,j₂)< 1.0
- Central jet veto (event that has an additional jet with $p_T > 30$ GeV and pseudorapidity between those of the two tag jets)

arXiv:1404.1344v2

Event selection: Z(II)+H(inv)

- Two well-identified, isolated leptons of the same flavor and opposite sign with $P_T > 20$ GeV, M(II) is within +/- 15 GeV of Z mass
- Veto event if there are two or more jets with $P_T > 30 \text{ GeV}$
- Veto event containing a bottomquark decay identified by either the presence of a soft-muon or by the CSV b-tagging algorithm
- MET > 120 GeV
- $\Delta \phi(\ell \ell, E_{\rm T}^{\rm miss}) > 2.7$
- $|E_{\rm T}^{\rm miss} p_{\rm T}^{\ell\ell}|/p_{\rm T}^{\ell\ell} < 0.25$

arXiv:1404.1344v2

Event selection: Z(bb)+H(inv)

Variable	Selection			
	Low $p_{\rm T}$	Intermediate p_T	High p_T	
$E_{\mathrm{T}}^{\mathrm{miss}}$	100-130 GeV	130-170 GeV	>170 GeV	
$p_{\mathrm{T}}^{\mathrm{j}1}$	>60 GeV	>60 GeV	>60 GeV	
$p_{\mathrm{T}}^{\mathrm{j2}}$	>30 GeV	>30 GeV	>30 GeV	
$p_{\mathrm{T}}^{\mathrm{jj}}$	>100 GeV	>130 GeV	>130 GeV	
M_{ii}	<250 GeV	<250 GeV	<250 GeV	
CŠV _{max}	>0.679	>0.679	>0.679	
CSV _{min}	>0.244	>0.244	>0.244	
N additional jets	<2	_	_	
N leptons	=0	=0	=0	
$\Delta \phi(\hat{Z}, H)$	>2.0 radians	>2.0 radians	>2.0 radians	
$\Delta \phi(E_{\rm T}^{\rm miss}, j)$	>0.7 radians	>0.7 radians	>0.5 radians	
$\Delta \phi(E_{\rm T}^{\rm miss}, E_{\rm T}^{\rm miss}_{\rm trk})$	<0.5 radians	<0.5 radians	<0.5 radians	
$E_{\rm T}^{\rm miss}$ significance	>3	not used	not used	

Results (Combine)

- ▶ Assuming the SM production cross section and acceptance. mH = 125 GeV
- ▶ 95% CL observed upper (expected) limit = 0.58 (0.44)
- ▶ 90% CL observed upper (expected) limit = 0.51 (0.38)

BDT output

Results

arXiv:1404.1344v2

Upper limits on the spin-independent DM-nucleon cross section in Higgs-portal models, derived for mH=125GeV, and B(H→inv) < 0.51 at 90% CL, as a function of the DM mass.