Search for New Physics in Boosted Topologies

Jim Cochran
Iowa State University
On behalf of the ATLAS & CMS Collaborations
August 11, 2014
• Challenges
• Techniques
 – Jet Grooming
 – Observables
 – Validation
• Selection of Results
 – CMS: VV → qq qq (jet jet)
 – ATLAS: ZV → llqq
 – CMS: WV → lνqq
 – ATLAS: tt resonance search
 – CMS: tH → bqqbb
• Summary & Outlook
• LHC Run II: $E_{\text{com}} = 13$-14 TeV
 – BSM theories predict resonances with mass \sim TeV
 – Many of these are expected to decay to dibosons, $t\bar{t}$, …
 – Due to high mass, these W,Z,t,H will be at very high p_T ($\gg m$)
 • and their decay products will be strongly boosted

 – Traditional reconstruction techniques relying on one-to-one jet-to-parton assignment will be inadequate
Techniques

• New techniques have been developed that reconstruct jets of a much larger radius
 – The internal structure can select such jets and can provide identification of the boosted objects

\[m_{\text{jet}} \sim m_W \sim 80 \text{ GeV} \]

\[+ \text{Dipolar structure} \]

\[m_{\text{jet}} \sim m_q \sim 0 \]

New observables: pruned jet mass, momentum balance \((\sqrt{y_f}) \), N-subjettiness \((\tau_N) \)
Jet Grooming

Reinterpretation of the jet to improve resolution of jet substructure measurements, reduce background and impact of underlying event & pile-up

Three related techniques:

- **Trimming**

 ![Trimming Diagram]

 Compares p_T (constituents) with p_T (jet) – removes soft components which are primarily from UI & PU

- **Filtering**

 ![Filtering Diagram]

 Remove constituents that are outside of subjets

- **Pruning**

 ![Pruning Diagram]

 Similar to trimming but occurs during jet reconstruction ⇒ does not require subjet reconstruction
Observables

- Single jet mass \(m_{\text{jet}} = \sqrt{E_{\text{jet}}^2 - p_{\text{jet}}^2} \)
 - Deduced from four-momentum sum of all jet constituents
 - Before and after any grooming
 - Can be reconstructed for any meaningful jet algorithm

- momentum balance \(\sqrt{y_f} = \min(p_{T}^{j1}, p_{T}^{j2}) \Delta R_{12} / m_{12} \)
 - Where \(p_{T}^{j1} \) and \(p_{T}^{j2} \) are the transverse momenta of the two leading subjets, \(\Delta R_{12} \) is their separation and \(m_{12} \) is their mass
 - To suppress jets from gluon radiation and splitting, \(\sqrt{y_f} > 0.45 \)

- \(N \)-subjettiness
 - Measures how well jets can be described assuming \(N \) sub-jets
 - Degree of alignment of jet constituents with \(N \) sub-jet axes
 - Sensitive to two- or three-prong decay versus gluon or quark jet
 - Highest signal efficiencies from \(N \)-subjettiness ratios \(\tau_{N+1}/\tau_{N} \) (\(\tau_{N+1/N} \) or \(\tau_{N+1,N} \))
 - For most analyses in this talk (\(W/Z \rightarrow qq \)) will use \(\tau_{2/1} \)
Validation (using SM processes)

Boosted single W

ATLAS

$\sqrt{s} = 7$ TeV, 4.6 fb$^{-1}$

$p_T > 320$ GeV, $|y| < 1.9$

$L > 0.15$

arXiv: 1407.0800v1
CMS: VV \rightarrow qq qq (1)

- Benchmark models
 - Randall-Sundrum Graviton ($G_{RS} \rightarrow WW/ZZ$)
 - Bulk Graviton ($G_{BULK} \rightarrow WW/ZZ$) [ATLAS refers to this as G^*]
 - Extended Gauge Model W' ($W' \rightarrow WZ$)

- Choose hadronic decay channel ($W/Z \rightarrow qq$)
 - Larger BR than fully- & semi-leptonic channels

- Must suppress (large) di-jet background
 - Use jet-substructure tagging techniques
 - Tag jets as W/Z-like or not

- Look for bump in the VV mass spectrum
Pruned-jet mass and N-subjettiness ratio τ_{21} provide excellent discrimination against di-jet background.

Each W/Z jet is classified as High Purity (HP) [$\tau_{21} \leq 0.5$] or Low Purity (LP) [$0.5 < \tau_{21} < 0.75$]. (HP, HP) events are classified as HP; (HP, LP) are classified as LP.
Di-jet mass spectrum shows no excess above background
- background obtained from fit to data with a smoothly falling function
- searched for peak on top of the background using maximum likelihood function
First limits on $G_{RS} \to WW$ and $W' \to WZ$ in the all-jets final state

$M(G_{RS}) > 1.2 \text{ TeV}$

$M(W') > 1.7 \text{ TeV}$

August 10-17, 2014
Rencontres du Vietnam 2014: Physics at LHC and beyond
• Benchmark models
 - Kaluza-Klein Graviton ($G^* \rightarrow ZZ$)
 - Extended Gauge Model W' ($W' \rightarrow WZ$)
[CMS refers to this as G_{BULK}]

• Choose semi-leptonic decay channel ($Z \rightarrow ee/\mu\mu$)
 - Larger BR than fully leptonic
 - Less background than fully hadronic

• Three selection approaches depending on resonance mass
 - Merged [very high p_T] (one large-R jet)
 - High p_T resolved (two small-R jets)
 - Low p_T resolved (two small-R jets)
• Boosted leptonic Z decays
 – the leptons are boosted and interfere with each other’s isolation cones
 – solution: subtract the other lepton’s p_T from the isolation cone
 • Up to 50% gain in acceptance
• **Boosted Hadronic W/Z decays**

 - the two quarks merge into a single (fat) jet
 - Cut on mass of jet and momentum balance between subjets ($\sqrt{y_f}$) to reject background

![ATLAS: ZV → llqq (3)](image_url)
ATLAS: $ZV \rightarrow llqq (4)$

No significant deviations from SM expectations
ATLAS: ZV → llqq (5)

95% CL set using likelihood fit:

\[M(G^*) > 730 \text{ GeV} \]

\[M(W') > 1.6 \text{ TeV} \]

Significant improvement over previous limits
- 40% improvement due to luminosity increase \((7\rightarrow 20 \text{ fb}^{-1}) \)
- 40% improvement at high mass due to new (boosted) techniques(!)

CMS llqq result at end of next section
• Benchmark models
 [ATLAS refers to this as G*]
 – Bulk Graviton Model ($G_{\text{BULK}} \rightarrow WW$)
 – None used for $X \rightarrow WZ$

• Pursue both model-dependent & -independent limits

• Choose semi-leptonic decay channel ($W \rightarrow l\nu, Z \rightarrow qq$)
 – Larger BR than fully leptonic
 – Less background than fully hadronic

• Again use jet-substructure tagging techniques
 – Tag jets as W/Z-like or not
 – As with CMS VV $\rightarrow qq \, qq$ analysis, distinguish 2 V-jet categories
 • High Purity (HP) [$\tau_{21} < 0.5$]
 • Low Purity (LP) [$0.5 < \tau_{21} < 0.75$]
CMS: $WV \rightarrow l\nu qq$ (2)

- Require $65 < m_{\text{jet}} < 105$ GeV
- $p_T^{W\text{-jet}}$ and N-subjettiness ratio τ_{21} provide excellent discrimination against background
No excess beyond SM expectations was observed

With current luminosity, sensitivity is insufficient to set limits on the Bulk graviton models

For model-independent analysis

- reinterpret analysis as generalized search for $X \rightarrow WV$ with width Γ_X
- Resulting in 95% exclusion limits in the $M_X \times \Gamma_X$ plane
• Benchmark models
 – Topcolor [narrow width] (leptophobic $Z' \rightarrow \bar{t}t$)
 – Kaluza-Klein gluon in RS models [broad width] ($g_{KK} \rightarrow \bar{t}t$)
• Choose semi-leptonic decay channel ($\bar{t}t \rightarrow WbWb \rightarrow l\nu b\bar{b}q\bar{q}$)
 – Larger BR than fully leptonic
 – Less background than fully hadronic
• Jets are classified as either small radius ($R = 0.4$) or large ($R = 1$)
 – p_T (small-R jets) > 25 GeV
 – p_T (large-R jets) > 300 GeV
• $M(\bar{t}t)$ spectrum is tested for any excess beyond SM
• $\bar{t}t$ events are reconstructed in two modes
 – Resolved: Hadronic top identified as 2 or 3 small-R jets
 – Boosted: Hadronic top identified as 1 large-R jet
Combining both reconstruction modes, no excess is seen in the $M(t\bar{t})$ spectrum.
Resulting limits on cross section can be translated to limits on $M(Z')$ and $M(g_{KK})$

A narrow lepto-phobic topcolor Z' is excluded at the 95% CL for $0.5 < M(Z') < 1.8$ TeV

A broad Kaluza-Klein gluon is excluded at the 95% CL for $0.5 < M(g_{KK}) < 2.0$ TeV
CMS: $tH \rightarrow bqqb\bar{b}$ (1)

- Benchmark model
 - Vector-like T quarks (produced in pairs)
- T expected to be very heavy \Rightarrow very significant boost
- Based on previous tools, build top & Higgs jet taggers
 - which include subjet b-tagging
- Incorporate taggers into overall analysis
 - Optimization found best discrimination using H_T and m_H
• H_T and m_H are combined into a likelihood discriminant
• Events are categorized based on number of Higgs-jet tags (1 or 2)
• Comparison with data finds no excess beyond SM expectations

$$m(T) > 747 \text{ GeV}$$
Summary & Outlook

• ATLAS & CMS have developed new techniques to identify highly boosted Vector Bosons & top quark jets
 – robust in high pile-up environment
 – product of intense experiment/theory collaboration
 – still under very active development
 – ATLAS & CMS are converging on common choices/definitions

• They have used these tools to search for BSM signatures
 – I have shown only a few recent results

• Run II will have higher energy (⇒higher boost)
 – these techniques (& their descendents) are crucial and will play a major role in SM measurements & BSM searches/discoveries(!!)