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Luminosity

 Fundamental relationships

N

Integrated luminosity

— Lint

Process cross section
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« Luminosity from beam parameters

Bunch current product
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LHC Run | — pp integrated luminosity

Delivered integrated luminosity (fb™1)

_ —o— ATLAS 5.626 fb™!
10° | —a- CMS6.136 fb~!
—o— LHCb 1.217 fb™!
10°} —o— ALICE 4.877 pb™' 5
PRELIMINARY

1

Mar Apr May Jun Jul Aug Sep Oct
Month in 2011

(generated 2012-06-21 00:39 including fill 2267)

« So far LHC delivered

Delivered integrated luminosity (fb™)

— about 30 fb! to ATLAS and CMS

— about 3 fb'to LHCb (low u)
— about 15 pb! to ALICE (af very low u)
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LHC 2012 RUN (4 TeV/beam)

—o— ATLAS 23.269 fb™' [

—— CMS 23.269 fb™!

—o— LHCb 2.192 fb™*

—o— ALICE 9.678 pb~!
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u is approx. number of
interactions per bunch crossing



Luminosity measurements

1. Direct bunch profile and intensity
measurements

— Van der Meer scan (VAM) |aiies antas ek baes
— Beam-Gas-Imaging (BGI) | e

2. Based on opfical theorem i s iz

— Forward scattering at very low angles
— Cross-calibration of luminosity detectors
— Challenging, program ongoing
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Luminosity calibration basics

g*u = Mean number of interactions per
BX seen by detector

Rinel _ My fr Huis|Tlh fr

[ —

Oinel Oinel Ouwvis

Cross section seen by detector

If beam densities factorize inx and y, i.e. p(x, y) = Px (x)py (y) ,then
L= frnyning Qu(par, pa2)Sy(py1; py2) i

where (), = / Pxl (:C)pwg (:C)d:l? is the beam overlap integral in x.

« Measuring the beam overlap integral yields the absolute
luminosity and thus o,
« Beam overlap integral can be measured in VAM scans or

with BGI (in case of BGI: crossing angle correction)
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VdM scan basics

- The key idea of the VdM scan is to relate R, (0)
the overlap integral to the rate integral [12]: , = fR (5> 15
XT

« Defining the convolved beam size X, as
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BGI basics

Beam-Gas imaging (pioneered by LHCb) [1]
Reconstruct interaction vertices of protons with residual gas
— Infer beam shape near interaction point (IP) and extrapolate to IP
Combination of Beam-Gas and Beam-Beam vertices
Simultaneous fit to individual beam and luminous region shapes yields beam overlap

integral and then luminosity
Beams do nof need to be moved (hence no beam-beam corrections, etc.)

Overall calibration uncertainty dominated by vertex resolution
Several important systematic uncertainties are independent from VdM scan analysis
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ALICE luminosity detectors

VO detector
— 32 scintillator tiles on each side of IP
« Coincidence counters
— 28<n<bland—-387<n<-1.7,

« TO detector

— 12 Cherenkov counters on each side of the IP
« Coincidence counters
— 46<1n<49and—-3.3<n <-=3.0

« /DC detector

— two calorimeters on opposite sides of the IP

— detect forward neutrons in p-Pb and Pb-Pb
collisions

- |n|>88
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ATLAS luminosity detectors

« LUCID
— Dedicated luminosity monitor (5.6 <| n | < 6.0)
— Cherenkov tubes
— Zero-counting and hit-counting algorithms

« Beam Condition Monitor (BCM)
— Designed as beam protection system
— Diamond-based sensor (| n |~ 4.2)
— Zero-counting algorithms

« Silicon detectors
— Track counting in Pixel and SCT

« Calorimeter currents (bunch-integrating)
— TileCal PMT currents
— LArHV currents: ECC, FCAal

08/11/14



CMS luminosity detectors .

Forward iron-quartz calorimeter (hit counting) for
online measurements

 Silicon Pixel detector used offline
— providing the most stable luminosity measurement
— Luminosity through Pixel Clusters Counting (PCC)
— Linear response till very high pileup

08/11/14
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LHCb luminosity detectors

« Vertex/track monitoring with vertex locator (VELO)
— VELO built around the IP and contained within vacuum
— VELO approaches the beam if safe conditions

— high precision in order to separate primary and secondary
vertices

—covers 1.6<n <49and—-33<n <-—1.6

‘ Beam

+ neon gas injection
system for BGI (SMOG)
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Bunch current measurements

« Currents are crucial input to VdM scan
analysis

— DC Beam Current Transformer (DCCT)
« total circulating charges

— Fast Beam Current Transformer (FBCT)
« fraction of charge in each bunch

— In 2010 uncertainty on bunch current

product (10%) dominated luminosity

uncertainty, due to major effort this
uncertainty is well below 0.5% today [13]

« Corrections for ghost and satellite
bunches

— Fill dependent, but typically < 1%

— Measured with various methods

» Synchrotron radiation by LDM (for satellite
bunches) [4]

« BGIin LHCb VELO with SMOG (for ghost
charge) [7]

08/11/14

Normalised counts
=)
|

62.5 -31.5 -12,

25 375 62.5

5 1
Time (ns)

2.5 I-+- beam 1 I I .
+ beam?2 H
_ LHCb HHH
0\0
£ gt
£ 1.5} H# +4t
g ++H+ +"++ *
g +H+ wht't
< +H‘+++ ++*"'+
= 1.0f PO
S ++++++++ uﬂ“#
6 “*“}“ et “*“*
A
U Dy from [7] 1
00:00 01:00 02:00 03:00 04:00
Time
12



Luminosity uncertainties

* Only a selection of the most important systematic
uncertainties is listed in the following

Calibration uncertainties VdM scan

Scan curve model
Factorizability
Beam-Beam effects

Orbit drifts

BGI

Bunch shape model
(accounts for
factorizability)

Vertexing resolution

Detector alignment &
crossing angle

Reproducibility

Calibration transfer
uncertainties from low L
calibration to high £ physics

u-dependence

Radiation effects

Monitoring uncertainty Long-term stability

08/11/14
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Uncertainties: calibration

Choice of scan curve mode

Rate |Hz]
3
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Difference 2d—1d (%)

Uncertainties: non-factorizability

» Non-factorizability of beam densities could be tfracked down as the source for
significant inconsistencies in some VdM scans

— lIts effect on VdM scans is new territory and was first studied at LHC
« Two approaches to deal with the factorizability problem
— Accelerator experts prepare good beams which have approx. factorizable densities

— Experiments measure the non-factorizability and develop new methods to correct
for it (based on BGI, luminous-region evolution during scan)
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L;n: . correlations between experiments

« Assessment difficult since uncertainty accounting
and grouping varies among experiments

« Each uncertainty must be freated individually and
often there are arguments for both view points
(correlated vs uncorrelated)

* Preliminary (and noft finall) statement
— Cadlibrations done in different fills, mostly uncorrelated

— If VdM calibrations done in the same fill, fo some extend
correlated

08/11/14 16



Snapshot of luminosity uncertainties

Parts of table reproduced from [11]

| AucE | AT LHCb

Running period 2013 2011 2012 2012
Sqrt(s) [TeV] 5.02 7 8 8
Running mode Pb-p pP-p p-p p-p

In the process of
Reference [8] [9] [10] being made publicly

available

Absolute calibration method VdM VdM VdM VdM + BGI *
Ac, /0, [%] 2.8 1.53 2.3 1.12
u-dependence [%] 0.50 <0.1 0.17
Long-term stability [%] 0.70 1.0 0.22
?‘;I]atraction of luminosity backgrounds 1.0 0.20 0.5 0.13
Other luminosity-dependent effects [%] 0.25 0.5 -
Total luminosity uncertainty [%] 3.0 1.8 2.6 1.2

This snapshot represents a selection of the latest luminosity calibration results publicly
available

08/11/14 17
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Summary

VdM scans are the one & only luminosity-calibration method (so far)
for ALICE, ATLAS, CMS (and until recently for LHCb as well)

BGI pioneered by LHCb is a new contender in the game and looks
very promising

— Several important systematic uncertainties are independent from the ones
of a VdM scan

Beam-Beam effects and orbit drifts are non-negligible and need to
be taken into account
Bunch density factorization crucial for luminosity calibration

— New methods to monitor non-factorization and to correct for it
Redundancy is key for monitoring long-term stability of detectors
Integrated luminosity uncertainty for all experiments about 1-4 %

— Depending on beam condifions, rate environment, instrumental
capabilities, ..

— Do not expect much improvements on these numbers ..
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Future Challenges

« More difficult pile-up and radiation conditions at LHC will
impose new challenges to detector hardware and data
acquisition

— Long-term stability of luminosity detectors will need to be closely
monitored

« Preparation of good and factorizable beams for VAM scans
by accelerator colleagues

« Successful VAdM calibrations will rely on very close
collaboration between LHC experiments, beam
INnstrumentation experts and accelerator physicists

08/11/14
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Typical VdM scan at LHC

« Horizontal and vertical beam separation
— ~25 steps per scan plane, ~30 sec per separation step
« Dedicated machine setup for optimal conditions
— Reduced number of bunches
— Reduced bunch intensity
— Larger p*
« Combined effort from all experiments and LHC experts to achieve
maximum precision

«  VdM scans are time-consuming and need to be carefully planned
— Only two or three scan sessions per year

B Exam

W g,
Xy VX Xy Xy Xy

head-on head-on offset 148um  offset 295um head-on
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Optical theorem basics

1000 e

TOTEM for CMS and ALFA for ATLAS are able to
perform absolute luminosity measurements

b=18 GeV?, 6, =100mb |
p=0.15

do/dt [mb]
o
S

Based on Optical theorem e
— Measurements of the total rate in combination “1
with the t-dependence of the elastic cross section w b
(TOTEM) “
— Measurements of elastic scattering rates in the -

Coulomb interference region(ALFA)

1 S S R U S S RS
0 0.005 0.01 0.015 0.02 0.025 0.03

-t [GeV]

Requires dedicated LHC fills with special magnet settings
Roman pots far from the intferaction points (about 200 m)
Measurements at very low interaction rates

— Cross-calibration of dedicated luminosity detectors

— Extrapolation of calibration to typical physics conditions
intfroduces big uncertainties

Valuable cross check but at LHC not competitive to VdM
scans for integrated luminosity measurements
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Uncertainties: long-term stabllity
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« Long-term stability is monitored by the long-term
consistency of different luminosity detectors
— Redundancy is key
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Average cluster count per trigger

Uncertainties: detector-related
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Uncertainties: reproducibility
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« Consistency of calibration results among different bunches
and among scans is used to estimate uncertainties due to
unknown effects
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