

Measurement of the luminosity at LHC

Gabriel Anders
CERN

On behalf of the ALICE, ATLAS, CMS and LHCb collaborations

August 11th, 2014 Physics at LHC and beyond (Quy Nhon, Vietnam)

Luminosity

Fundamental relationships

Integrated luminosity

$$N = L_{int} \sigma$$
Number of events Process cross section

$$L_{int} = \int \mathcal{L} dt$$
Instantaneous luminosity

Luminosity from beam parameters

Bunch current product
$$\mathcal{L} \propto f_r n_b n_1 n_2 \int \int \int \rho_1(x,y,z,t) \rho_2(x,y,z,t) \, dx dy dz dt$$

Number of bunches and revolution frequency

Spatial beam densities

LHC Run I – pp integrated luminosity

Only pp-luminosity shown here

(generated 2013-01-29 18:28 including fill 3453)

- So far LHC delivered
 - about 30 fb⁻¹ to ATLAS and CMS
 - about 3 fb⁻¹ to LHCb (low μ)
 - about 15 pb⁻¹ to ALICE (at very low μ)

 μ is approx. number of interactions per bunch crossing

Luminosity measurements

- 1. Direct bunch profile and intensity measurements
 - Van der Meer scan (VdM) ALICE, ATLAS, CMS, LHCb
 - Beam-Gas-Imaging (BGI) [LHCb]
- 2. Based on optical theorem ATLAS with ALFA, CMS with TOTEM
 - Forward scattering at very low angles
 - Cross-calibration of luminosity detectors
 - Challenging, program ongoing

Luminosity calibration basics

Mean number of inelastic interactions per BX

$$\mathcal{L} = \frac{R_{inel}}{\sigma_{inel}} = \frac{\mu n_b f_r}{\sigma_{inel}}$$

Inelastic cross section (not known precisely enough)

ε*μ = Mean number of interactions per

BX seen by detector

$$\sigma_{vis} n_b f_r$$

Cross section seen by detector

If beam densities factorize in x and y, i.e. $ho(x,y)=
ho_x(x)
ho_y(y)$,then

$$\mathcal{L} = f_r n_b \, n_1 n_2 \, \Omega_x(\rho_{x1},\rho_{x2}) \Omega_y(\rho_{y1},\rho_{y2}) \quad \text{\tiny (No crossing angle)}$$

where $\Omega_x = \int \rho_{x1}(x) \rho_{x2}(x) dx$ is the **beam overlap integral** in x.

- Measuring the beam overlap integral yields the absolute luminosity and thus σ_{vis}
- Beam overlap integral can be measured in VdM scans or with BGI (in case of BGI: crossing angle correction)

VdM scan basics

 The key idea of the VdM scan is to relate the overlap integral to the rate integral [12]:

$$\Omega_x = rac{R_{ate} ext{ measured}}{\int R_x(\delta) d\delta}$$
 Beam separation

• Defining the convolved beam size Σ_x as

$$\Sigma_x = \frac{1}{\sqrt{2\pi}} \, \frac{1}{\Omega_x}$$

the luminosity becomes

$$\mathcal{L} = \frac{n_b f_r n_1 n_2}{2\pi \sum_x \sum_y}$$

BGI basics

- Beam-Gas imaging (pioneered by LHCb) [1]
 - Reconstruct interaction vertices of protons with residual gas
 - Infer beam shape near interaction point (IP) and extrapolate to IP
- Combination of Beam-Gas and Beam-Beam vertices
 - Simultaneous fit to individual beam and luminous region shapes yields beam overlap integral and then luminosity
 - Beams do not need to be moved (hence no beam-beam corrections, etc.)
 - Overall calibration uncertainty dominated by vertex resolution
 - Several important systematic uncertainties are independent from VdM scan analysis

ALICE luminosity detectors [2]

V0 detector

- 32 scintillator tiles on each side of IP
 - Coincidence counters
- $-2.8 < \eta < 5.1$ and $-3.7 < \eta < -1.7$,

T0 detector

- 12 Cherenkov counters on each side of the IP
 - Coincidence counters
- $-4.6 < \eta < 4.9$ and $-3.3 < \eta < -3.0$

ZDC detector

- two calorimeters on opposite sides of the IP
- detect forward neutrons in p-Pb and Pb-Pb collisions
- $| \eta | > 8.8$

ATLAS luminosity detectors [3]

LUCID

- Dedicated luminosity monitor (5.6 < $|\eta|$ < 6.0)
- Cherenkov tubes
- Zero-counting and hit-counting algorithms
- Beam Condition Monitor (BCM)
 - Designed as beam protection system
 - Diamond-based sensor ($|\eta| \sim 4.2$)
 - Zero-counting algorithms
- Silicon detectors
 - Track counting in Pixel and SCT
- Calorimeter currents (bunch-integrating)
 - TileCal PMT currents
 - LAr HV currents: ECC, FCal

CMS luminosity detectors [4]

- Forward iron-quartz calorimeter (hit counting) for online measurements
- Silicon Pixel detector used offline
 - providing the most stable luminosity measurement
 - Luminosity through Pixel Clusters Counting (PCC)
 - Linear response till very high pileup

LHCb luminosity detectors [5]

- Vertex/track monitoring with vertex locator (VELO)
 - VELO built around the IP and contained within vacuum
 - VELO approaches the beam if safe conditions
 - high precision in order to separate primary and secondary vertices
 - covers 1.6 < η < 4.9 and -3.3 < η < -1.6

+ neon gas injection system for BGI (SMOG)

Bunch current measurements

- Currents are crucial input to VdM scan analysis
 - DC Beam Current Transformer (DCCT)
 - total circulating charges
 - Fast Beam Current Transformer (FBCT)
 - fraction of charge in each bunch
 - In 2010 uncertainty on bunch current product (10%) dominated luminosity uncertainty, due to major effort this uncertainty is well below 0.5% today [13]

- Corrections for ghost and satellite bunches
 - Fill dependent, but typically < 1%
 - Measured with various methods
 - Synchrotron radiation by LDM (for satellite bunches) [6]
 - BGI in LHCb VELO with SMOG (for ghost charge) [7]

Luminosity uncertainties

 Only a selection of the most important systematic uncertainties is listed in the following

Calibration uncertainties	VdM scan	BGI		
	Scan curve model	Bunch shape model		
	Factorizability	(accounts for factorizability)		
	Beam-Beam effects	Vertexing resolution		
	Orbit drifts	Detector alignment & crossing angle		
	Reproducibility			
Calibration transfer uncertainties from low $\mathcal L$ calibration to high $\mathcal L$ physics	μ-dependence			
	Radiation effects			
Monitoring uncertainty	Long-term stability			

Uncertainties: calibration

Choice of scan curve model

Orbit drifts

Beam-beam effects

Beam-beam deflection

 Orbit shift dependent on beam separation

Dynamic β

 Beam sizes vary during VdM scan since beams exert focussing/ defocussing force on each other

Uncertainties: non-factorizability

- Non-factorizability of beam densities could be tracked down as the source for significant inconsistencies in some VdM scans
 - Its effect on VdM scans is new territory and was first studied at LHC
- Two approaches to deal with the factorizability problem
 - Accelerator experts prepare good beams which have approx. factorizable densities
 - Experiments measure the non-factorizability and develop new methods to correct for it (based on BGI, luminous-region evolution during scan)

Difference between factorizable and non-factorizable model

Monitoring the luminous region during VdM scans

L_{int} : correlations between experiments

- Assessment difficult since uncertainty accounting and grouping varies among experiments
- Each uncertainty must be treated individually and often there are arguments for both view points (correlated vs uncorrelated)
- Preliminary (and not final!) statement
 - Calibrations done in different fills, mostly uncorrelated
 - If VdM calibrations done in the same fill, to some extend correlated

Snapshot of luminosity uncertainties

Parts of table reproduced from [11]

	ALICE	ATLAS	CMS	LHCb	
Running period	2013	2011	2012	2012	
Sqrt(s) [TeV]	5.02	7	8	8	size
Running mode	Pb-p	р-р	р-р	р-р	ual in
Reference	[8]	[9]	[10]	In the process of being made publicly available	almost equal in
Absolute calibration method	VdM	VdM	VdM	VdM + BGI *	spou
$\Delta \sigma_{\text{vis}} / \sigma_{\text{vis}}$ [%]	2.8	1.53	2.3	1.12	meth
μ-dependence [%]	1.0	0.50	<0.1	0.17	both
Long-term stability [%]		0.70	1.0	0.22	es of
Subtraction of luminosity backgrounds [%]		0.20	0.5	0.13	*uncertainties of both methods
Other luminosity-dependent effects [%]		0.25	0.5	-	*un
Total luminosity uncertainty [%]	3.0	1.8	2.6	1.2	

This snapshot represents a selection of the latest luminosity calibration results publicly available

Summary

- VdM scans are the one & only luminosity-calibration method (so far) for ALICE, ATLAS, CMS (and until recently for LHCb as well)
- BGI pioneered by LHCb is a new contender in the game and looks very promising
 - Several important systematic uncertainties are independent from the ones of a VdM scan
- Beam-Beam effects and orbit drifts are non-negligible and need to be taken into account
- Bunch density factorization crucial for luminosity calibration
 - New methods to monitor non-factorization and to correct for it
- Redundancy is key for monitoring long-term stability of detectors
- Integrated luminosity uncertainty for all experiments about 1-4 %
 - Depending on beam conditions, rate environment, instrumental capabilities, ..
 - Do not expect much improvements on these numbers ..

Future Challenges

- More difficult pile-up and radiation conditions at LHC will impose new challenges to detector hardware and data acquisition
 - Long-term stability of luminosity detectors will need to be closely monitored
- Preparation of good and factorizable beams for VdM scans by accelerator colleagues
- Successful VdM calibrations will rely on very close collaboration between LHC experiments, beam instrumentation experts and accelerator physicists

References

- [1] M. Ferro-Luzzi, Proposal for an absolute luminosity determination in colliding beam experiments using vertex detection of beam-gas interactions, Nucl. Instr. Meth. A 553 (2005) 388–399
- [2] The ALICE Collaboration, "The ALICE experiment at the CERN LHC," Journal of Instrumentation, vol. 3, no. 08, p. \$08002, 2008.
- [3] The ATLAS Collaboration, "The ATLAS Experiment at the CERN Large Hadron Collider," Journal of Instrumentation, vol. 3, no. 08, p. \$08003, 2008.
- [4] The CMS Collaboration, "The CMS experiment at the CERN LHC," Journal of Instrumentation, vol. 3, no. 08, p. \$08004, 2008.
- [5] The LHCb Collaboration, "The LHCb Detector at the LHC," Journal of Instrumentation, vol. 3, no. 08, p. \$08005, 2008.
- [6] A. Boccardi, et al., LHC Luminosity calibration using the Longitudinal Density Monitor, CERN-ATS-Note-2013-034 TECH, https://cds.cern.ch/record/1556087
- [7] C. Barschel, Precision Luminosity Measurement at LHCb with Beam-gas Imaging, CERN-THESIS-2013-301.
- [8] The ALICE Collaboration, Measurement of visible cross sections in proton-lead collisions at sqrt(s) = 5.02 TeV in van der Meer scans with the ALICE detector, arXiv:1405.1849, version 1
- [9] ATLAS Collaboration, Improved Luminosity Determination in pp Collisions at sqrt(s)=7 TeV Using the ATLAS Detector at the LHC, Eur. Phys. J. C73 (2013) 2518.
- [10] CMS Collaboration, CMS Luminosity Based on Pixel Cluster Counting Summer 2013 Update, CMS-PAS-LUM-13-001, 2013.
- [11] P. Grafstrom and W. Kozanecki, Luminosity Determination at Proton Colliders, submitted to Progress in Particle & Nuclear Physics
- [12] S. Van der Meer, "Calibration of the Effective Beam Height in the ISR," Tech. Rep. CERN-ISR-PO-68-31, CERN, Geneva, 1968.
- [13] Notes of the Bunch Current Normalization Working Group (BCNWG notes), http://lpc.web.cern.ch/lpc/bcnwg.htm

Backup

Typical VdM scan at LHC

- Horizontal and vertical beam separation
 - ~25 steps per scan plane, ~30 sec per separation step
- Dedicated machine setup for optimal conditions
 - Reduced number of bunches
 - Reduced bunch intensity
 - Larger β*
- Combined effort from all experiments and LHC experts to achieve maximum precision
- VdM scans are time-consuming and need to be carefully planned
 - Only two or three scan sessions per year

Optical theorem basics

- TOTEM for CMS and ALFA for ATLAS are able to perform absolute luminosity measurements
- Based on Optical theorem
 - Measurements of the total rate in combination with the t-dependence of the elastic cross section (TOTEM)
 - Measurements of elastic scattering rates in the Coulomb interference region(ALFA)

- Requires dedicated LHC fills with special magnet settings
- Roman pots far from the interaction points (about 200 m)
- Measurements at very low interaction rates
 - Cross-calibration of dedicated luminosity detectors
 - Extrapolation of calibration to typical physics conditions introduces big uncertainties
- Valuable cross check but at LHC not competitive to VdM scans for integrated luminosity measurements

Uncertainties: long-term stability

- Long-term stability is monitored by the long-term consistency of different luminosity detectors
 - Redundancy is key

Uncertainties: detector-related

Uncertainties: reproducibility

Bunch-by-bunch consistency

Scan-to-scan consistency

 Consistency of calibration results among different bunches and among scans is used to estimate uncertainties due to unknown effects