The Hunt for Heavy Neutrinos at the Z & H factory

Higgs boson mass cornered (LEP H, M_z etc +Tevatron m_t, M_w) Higgs Boson discovered (LHC) Englert and Higgs get Nobel Prize

SM is «complete»?

(c) Sfyrla

Is it the end?

many discussions on naturalness etc...

Is it the end?

Certainly not!

- -- Dark matter
- -- Baryon Asymmetry in Universe
- -- Neutrino masses

are experimental proofs that there is more to understand.

New Physics

New particles...

But Mere Is tverybody Nima

At higher masses -- or at smaller couplings?

PHYSICAL REVIEW D

some REFERENCES

PHYSICAL REVIEW D VOLUME 29, NUMBER 11 1 JUNE 1984 Extending limits on neutral heavy leptons PUBLISHED FOR SISSA BY ♠ SPRINGER PUBLISHED FOR SISSA BY

Michael Gronau*

Department of Physics, Syracuse University, Syracuse, New York 132

 ${\rm FLAVOUR} (267104) - {\rm ERC-23} \qquad {\rm TUM-HEP~850/12} \qquad {\rm SISSA~25/2012/EP} \qquad {\rm CFTP/12-013}$

arxiv:1208.3654

Higgs Decays in the Low Scale Type I See-Saw Model

C. Garcia $Celv^a$, A. Ibarra^a, E. Molinaro^b and S. T. Petcov^{c,d)} 1

theories of the electroweak strong interactions. At present and mixings with ordinary neutrinos of these leptons are v

The Role of Sterile Neutrinos in Cosmology and Astrophysics

Alexey Boyarsky*†, Oleg Ruchayskiy‡ and Mikhail Shaposhn

The ν MSM, Dark Matter and Neutrino Masses

Takehiko Asaka, Steve Blanchet, and Mikhail Shaposhnikov

Indiana de Théanie des Dhéanmènes Physiques,

Phys.Lett.B631:151-156,2005 CH-1015 Lausanne, Switzerland arXiv:hep-ph/0503065

talks by Maurizio Pierini (BSM), Manqi Ruan (Higgs) Roberto Tenchini (Top & Precision) tomorrow, posters tonight at Future accelerator session

First look at the physics case of TLEP

arxiv:1308.6176

The TLEP Design Study Working Group

M. Bicer, H. Duran Yildiz, I. Yildiz, C. Coignet, M. Delmastro, T. Alexopoulos, C. Grojean, S. Antusch, T. Sen, H.-J. He, K. Potamianos, S. Haug, A. A. Moreno, A. Heister, V. Sanz, G. Gomez-Ceballos, M. Klute, M. Zanetti, L.-T. Wang, M. Dam, C. Boehm, N. Glover, F. Krauss, A. Lenz, M. Syphers,

CERN-PPE/96-195

RECEIVED: September 23, 2013 ACCEPTED: December 25, 2013

18 December 1996

Search for Neutral Heavy Leptons Produced in Z Decays

DELPHI Collaboration

FCC design study and FCC-ee http://cern.ch/fcc-ee and presentations at FCC-ee physics workshop http://indico.cern.ch/event/313708/

Preprint typeset in JHEP style - HYPER VERSION

FERMILAB-PUB-08-086-T, NSF-KITP-08-54, MADPH-06-1466, DCPT/07/198, IPPP/07/99

The Search for Heavy Majorana Neutrinos

Anupama Atre 1,2 , Tao Han 2,3,4 , Silvia Pascoli 5 , Bin Zhang 4*

1 D . M. C. L. L. L. L. MOLOG D. D. EGG H. GOSTO H.G. L.

But at least 3 pieces are still missing

neutrinos have mass...

and this very probably implies new degrees of freedom

→ Right-Handed, Almost «Sterile» (*very* small couplings) Neutrinos completely unknown masses (meV to ZeV), nearly impossile to find. but could perhaps explain all: DM, BAU, v-masses

Electroweak eigenstates

$$\begin{array}{c|cccc} (e) & (\mu) & (\tau) & (e)_{R} & (\mu)_{R} & (\tau)_{R} & Q = -1 \\ \hline (v_{e})_{L} & (v_{\mu})_{L} & (v_{\tau})_{L} & (v_{e})_{R} & (v_{\mu})_{R} & (v_{\tau})_{R} & Q = 0 \end{array}$$

$$I = 1/2$$

$$I = 0$$

Right handed neutrinos are singlets no weak interaction no EM interaction no strong interaction

can't produce them can't detect them -- so what? --

$$m_D \nu_L \overline{\nu}_R \qquad \qquad \underset{m_D}{\underline{\overleftarrow{\nu}_L}} \nu_R \qquad \qquad \underset{m_D}{\underline{\overleftarrow{\nu}_R}} \qquad \qquad \underset{m_D}{\underline{\overleftarrow{\nu}_R}} \qquad \qquad \underset{m_D}{\underline{\overleftarrow{\nu}_L}} \vee \underline{\nu}_L$$

implies adding a right-handed neutrino (new particle)

No SM symmetry prevents adding then a term like

$$m_{\mathrm{M}} \overline{v_{\mathrm{R}}}^{\mathrm{c}} v_{\mathrm{R}}$$
 $\frac{(\overline{v})_{\mathrm{R}}}{m_{\mathrm{L}}} \times v_{\mathrm{L}}}{m_{\mathrm{L}}}$

and this simply means that a neutrino turns into a antineutrino (the charge conjugate of a right handed antineutrino is a left handed neutrino!)

It is perfectly conceivable ('natural'?) that both terms are present -> 'see-saw'

Mass eigenstates

See-saw in a general way:

$$\mathcal{L} = \frac{1}{2} (\bar{\nu}_L, \, \bar{N}_R^c) \begin{pmatrix} 0 & m_D \\ m_D^T & M_R \end{pmatrix} \begin{pmatrix} \nu_L^c \\ N_R \end{pmatrix}$$

 $M_R \neq 0$ $m_D \neq 0$ **Dirac + Majorana** mass terms

$$\tan 2\theta = \frac{2\,m_D}{M_R - 0}$$

$$m_{\nu} = \frac{1}{2} \left[(0 + M_R) - \sqrt{(0 - M_R)^2 + 4 m_D^2} \right] \simeq -m_D^2 / M_R$$

$$M = \frac{1}{2} \left[(0 + M_R) + \sqrt{(0 - M_R)^2 + 4 m_D^2} \right] \simeq M_R$$

$$M = \frac{1}{2} \left[(0 + M_R) + \sqrt{(0 - M_R)^2 + 4 m_D^2} \right]$$

general formula

if
$$m_D \ll M_R$$

$$M_R = 0$$

$$m_D \neq 0$$

$$Dirac only, (like e- vs e+):$$

$$m$$

$$V_L \quad V_R \quad \overline{V_R} \quad \overline{V_L}$$

$$I_{weak} = \frac{1}{2} \quad 0 \quad \frac{1}{2} \quad 0$$

$$4 \text{ states of equal masses}$$

$$Some have I=1/2 \text{ (active)}$$

$$Some have I=0 \text{ (sterile)}$$

 $M_R \neq 0$ see-saw $m_D \neq 0$ $I_{weak} = \begin{array}{ccc} \nu_L & N_R & \overline{\nu}_R & N_L \\ I_{weak} = \begin{array}{ccc} 1/2 & 0 & 1/2 & 0 \end{array}$ 4 states, 2 mass levels m1 have I=1/2 (~active) m2 have I=0 (~sterile)

There even exists a scenario that explains everything: the vMSM

Shaposhnikov et al

Manifestations of right handed neutrinos

one family see-saw:
$$\theta \approx (m_D/M)$$

$$m_v \approx \frac{m_D/V}{M}$$

$$m_{\rm N} \approx {
m M}$$

$$|\mathbf{U}|^2 \propto \theta^2 \approx m_v / m_N$$

$$v = vL\cos\theta - N^c_R\sin\theta$$

$$N = N_R \cos\theta + v_L^c \sin\theta$$

what is produced in W, Z decays is:

$$v_L = v \cos\theta + N \sin\theta$$

v = light mass eigenstate N = heavy mass eigenstate $\neq v_L$, active neutrino which couples to weak interand $\neq N_R$, which does'nt.

- -- mixing with active neutrinos leads to various observable consequences
 - -- if very light (eV), possible effect on neutrino oscillations
 - -- if in keV region (dark matter), monochromatic photons from galaxies with $E=m_N/2$
- possibly measurable effects at High Energy
 If N is heavy it will decay in the detector (not invisible)
 - → PMNS matrix unitarity violation and deficit in Z «invisible» width
 - \rightarrow Higgs and Z visible exotic decays H $\rightarrow v_i \bar{N}_i$ and Z $\rightarrow v_i \bar{N}_i$, W-> I_i \bar{N}_i
 - \rightarrow also in charm and b decays via W*-> I_i \overline{N}_i
 - \rightarrow violation of unitarity and lepton universality in Z, W or τ decays
 - -- etc... etc...
- -- Couplings are small $(m_v/m_{
 m N})$ (but who knows?) and generally out of reach of hadron colliders (but this deserves to be revisited for detached vertices @LHC, HL-LHC, FCC-hh)

The minimal scenario vMSM is very beautiful but impossible to explore at the LHC (I believe this statement should be revisited!)

Non minimal scenarios (e.g. involving pair production or W_R N_R production) can be investigated

Figure 5: The 95% CL exclusion region in the (M_{W_R}, M_{N_t}) plane (left), and as a function of W_R boson mass with $M_N = \frac{1}{2} M_{W_R}$ (right) obtained combining the electron and muon channels. The signal cross section PDF uncertainties (red band surrounding the theoretical W_R -boson production cross section curve) are included for illustration purposes only.

(based on existing technologies)

Reconstruction of the HNL decays in the final states: $\mu^-\pi^+$, $\mu^-\rho^+$ & $e^-\pi^+$

Requires long decay volume, magnetic spectrometer, muon detector and electromagnetic calorimeter, preferably in surface building

• 10 m long magnetic spectrometer with 0.5 Tm dipole magnet and 4 low material tracking chambers

Proposal to search for Heavy Neutral Leptons at the SPS

(CERN-SPSC-2013-024 / SPSC-EOI-010)

Disclaimer: It is not a classical neutrino physics experiment

On behalf of:

- W. Bonivento^{1,2}, A. Boyarsky³, H. Dijkstra², U. Egede⁴, M. Ferro-Luzzi², B. Goddard², A. Golutvin⁴
- D. Gorbunov⁵, R. Jacobsson², J. Panman², M. Patel⁴, O. Ruchayskiy⁶, T. Ruf², N. Serra⁷, M. Shaposhnikov⁶
- D. Treille^{2 (‡)}

 $^{(\pm)}$ retired

⁷ 2014 Aug 15 Quy Nho

Muon filter

Tracking chambers

¹Sezione INFN di Cagliari, Cagliari, Italy ²European Organization for Nuclear Research (CERN), Geneva, Switzerland

³ Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, Niels Bohrweg 2, Leiden, The Netherlands

⁴Imperial College London, London, United Kingdom

Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN), Moscow, Russia

⁶Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland

⁷ Physik-Institut, Universität Zürich, Zürich, Switzerland

Back to the future

30 years later and with experience gained on LEP, LEP2 and the B factories we can propose a Z,W,H,t factory of many times the luminosity of LEP, ILC, CLIC

CERN is launching a 5 years international design study of Circular Colliders 100 TeV pp collider (FCC-hh) and high luminosity e+e- collider (FCC-ee)

IHEP in China is studying CEPC a 50-70 km ring with e+e- Higgs factory followed by HE pp.

FCCee & CEPC

Goal performance of e+ e- colliders

NB: ideas for lumi upgrades: ILC arxiv:1308.3726 (not in TDR. Upgrade at 250GeV by reconfiguration after 500 GeV running; under discussion) FCC-ee (crab waist)

NEUTRINO COUNTING AT THE Z-PEAK AND RIGHT-HANDED NEUTRINOS

C. JARLSKOG

CERN, CH-1211 Geneva 23, Switzerland and Department of Physics, University of Stockholm, S-113 46 Stockholm, Sweden

Received 20 February 1990

We consider the implications of extending the minimal standard model, with n families of quarks and leptons, by introducing an arbitrary number of right-handed neutrinos, for neutrino-counting via the "invisible width" of the Z. It is shown that the effective number of neutrinos, $\langle n \rangle$, satisfies, the inequality $\langle n \rangle \leqslant n$, where $\langle n \rangle$ is defined by $\Gamma(Z \rightarrow neutrinos) \cong \langle n \rangle \Gamma_0$ and Γ_0 is the standard width for one massless neutrino. Thus, in the case of three families, the neutrino-counting can give a result which is less than three, if there are right-handed neutrinos.

Theorem.

In the standard model, with n left-handed lepton doublets and N-n right-handed neutrinos, the effective number of neutrinos, $\langle n \rangle$, defined by

$$\Gamma(Z \rightarrow \text{neutrinos}) \equiv \langle n \rangle \Gamma_0$$
,

where Γ_0 is the standard width for one massless neutrino, satisfies the inequality

Phys.Rept.427:257-454,2006

$$N_{v} = 2.984 \pm 0.008$$

-2σ:^)!!

This is determined from the Z line shape scan and dominated by the measurement of the hadronic cross-section at the Z peak maximum →

The dominant systematic error is the theoretical uncertainty on the Bhabha cross-section (0.06%) which represents an error of ± 0.0046 on N_{ν}

Improving on $N_{\rm v}$ by more than a factor 2 would require a large effort to improve on the Bhabha cross-section calculation!

Neutrino counting at TLEP

given the very high luminosity, the following measurement can be performed

$$N_{v} = \frac{\frac{\gamma Z(inv)}{\gamma Z \to ee, \mu\mu}}{\frac{\Gamma_{v}}{\Gamma e, \mu} (SM)}$$

The common γ tag allows cancellation of systematics due to photon selection, luminosity etc. The others are extremely well known due to the availability of O(10¹²) Z decays.

The full sensitivity to the number of neutrinos is restored, and the theory uncertainty on $\frac{\Gamma_{\rm v}}{\Gamma e}$ (SM) is very very small.

A good measurement can be made from the data accumulated at the WW threshold where σ (γ Z(inv)) ~4 pb for $|\cos\theta_{\gamma}|$ <0.95

A better point may be 105 GeV (20pb and higher luminosity) may allow ΔN_{ν} =0.0004? Alain Blondel RDV 2014 Aug 15 Quy Nhon LHC and Beyond

RHASnu's production in Z decays

Production:

$$BR (Z^{0} \to \nu_{m} \overline{\nu}) = BR (Z^{0} \to \nu \overline{\nu}) |U|^{2} \left(1 - \frac{m_{\nu_{m}}^{2}}{m_{Z^{0}}^{2}}\right)^{2} \left(1 + \frac{1}{2} \frac{m_{\nu_{m}}^{2}}{m_{Z^{0}}^{2}}\right)^{2}$$

multiply by 2 for anti neutrino and add contributions of 3 neutrino species (with different |U|2)

Decay

FIG. 2. Typical decays of a neutral heavy lepton via (a) charged current and (b) neutral current. Here the lepton l_i denotes e, μ , or τ .

Decay length:

$$L \approx \frac{3 \text{ cm}}{|U|^2 \left(m_{\nu_m} (\text{GeV}/c^2)\right)^6}$$

NB CC decay always leads to ≥ 2 charged tracks

Backgrounds : four fermion: $e+e- \rightarrow W^{*+} W^{*-} e+e- \rightarrow Z^{*}(vv) + (Z/\gamma)^{*}$

(FCC)

Order-of-magnitude extrapolation of existing limits

Search for heavy neutral leptons

Find: one event in 4x10⁶Z:

Fig. 3. Surviving event in the monojet search. It has an invariant mass of 300 MeV/ c^2 and a missing p_t of 6 GeV/c and is probably an $e^+e^- \rightarrow e^+e^-\nu\bar{\nu}$ interaction

Fig. 4. Efficiency of the monojet search (Sect. 3) and the acollinear jets search (Sect. 4). The full curve shows the efficiency of the two searches combined

Decay length

Interesting region $|U|^2 \sim 10^{-9}$ to 10^{-12} @ 50 GeV

heavy neutrino mass ~ M

a large part of the interesting region will lead to detached vertices
... → very strong reduction of background!

Exact reach domain will depend on detector size and details of displaced vertex efficiency & background

TLEP expected sensitivity to HNL (NH)

A.B, Elena Graverini, Nicola Serra, Misha Shaposhnikov

TLEP expected sensitivity to HNL (IH)

TLEP expected sensitivity to HNL (NH)

TLEP expected sensitivity to HNL (IH)

SHIP

TLEP expected sensitivity to HNL (IH)

 $N_z = 10^{13} 100 \mu m < L < 5 m$

- region of interest
- FCC-ee sensitivity

Conclusions

The quest for the «Right-Handed-Almost-Sterile-See-saw-partners neutrinos» (dextrinos? RHASnus? Heavy Neutral Leptons? Shaposhninos? heavinos?)

is not desperate at all

In particular it may lead to spectacular 'detached vertex' signatures in a beam dump experiment (SHIP) or in Z-> neutrino decays at a Tera-Z factory like FCC-ee

Join us: http://cern.ch/fcc-ee

SPARES

H-> vN

or

arxiv:1208.3654

Higgs Decays in the Low Scale Type I See-Saw Model

C. Garcia $Cely^a$, A. Ibarra^a, E. Molinaro^b and S. T. $Petcov^{c,d)}$ 1

Alain Blondel RDV 2014 Aug 15 Quy Nhon LHC and Beyond

$e+e-\rightarrow \gamma Z (\rightarrow v \bar{v})$

CERN-TH.5528/89

NEUTRINO COUNTING

G. Barbiellini¹, X. Berdugo², G. Bonvicini³, P. Colas⁴, L. Mirabito⁴, C. Dionisi⁵, D. Karlen⁶, F. Linde⁷, C. Luci⁸, C. Mana⁸, C. Matteuzzi⁹, O. Nicrosini¹⁰, R. Ragazzon¹, D. Schaile¹¹, F. Scuri¹ and L. Trentadue*), ¹²

in its original form (Karlen) the method only counts the 'single photon' events and is actually less sensitive than claimed. It has poorer statistics and requires running ~10 GeV above the Z pole. Systematics on photon selection are not small.

present result: $N_v = 2.92 \pm 0.05$

NEUTRINO COUNTING AT THE Z-PEAK AND RIGHT-HANDED NEUTRINOS

C. JARLSKOG

CERN, CH-1211 Geneva 23, Switzerland and Department of Physics, University of Stockholm, S-113 46 Stockholm, Sweden

Received 20 February 1990

We consider the implications of extending the minimal standard model, with n families of quarks and leptons, by introducing an arbitrary number of right-handed neutrinos, for neutrino-counting via the "invisible width" of the Z. It is shown that the effective number of neutrinos, $\langle n \rangle$, satisfies, the inequality $\langle n \rangle \leqslant n$, where $\langle n \rangle$ is defined by $\Gamma(Z \rightarrow neutrinos) \cong \langle n \rangle \Gamma_0$ and Γ_0 is the standard width for one massless neutrino. Thus, in the case of three families, the neutrino-counting can give a result which is less than three, if there are right-handed neutrinos.

Theorem.

In the standard model, with n left-handed lepton doublets and N-n right-handed neutrinos, the effective number of neutrinos, $\langle n \rangle$, defined by

$$\Gamma(Z \rightarrow \text{neutrinos}) \equiv \langle n \rangle \Gamma_0$$
,

where Γ_0 is the standard width for one massless neutrino, satisfies the inequality

