Jets & Substructure: experiment Wahid Bhimji

THE UNIVERSITY of EDINBURGH

On behalf of the ATLAS and CMS collaborations

Physics at LHC and Beyond Quy Nhon, Vietnam 10th August 2014

Outline

- ATLAS and CMS jet inputs
- Jets and Jet Substructure: motivation and algorithms
- Recent performance results:
 - W boson tagging
 - Top tagging
- Other recent highlights

ATLAS and CMS Jet Inputs

ATLAS

- LAr electromagnetic and high resolution tile hadronic calorimeter
- Inputs to Jet Reconstruction
 - 3D topological clusters: seed cell with E_{cell} > 4σ and neighbours E_{cell} > 2σ
 - Noise suppression and calibration

CMS

- Fast and extremely high resolution
 ECAL with high (transverse) granularity
- Reduced material in front of ECAL and strong magnetic field
- Particle flow Reconstruction:
 - Link HCAL+ECAL clusters and tracks
 - If E_{cal} ~ p_{track} fit track and calo energy

Outline

- ATLAS and CMS jet inputs
- Jets and Jet Substructure: motivation and algorithms
- Recent performance results:
 - W boson tagging
 - Top tagging
- Other recent highlights

Jet Substructure: Motivation

- At LHC $\sqrt{s} \gg M_{EW} => high p_T boosted objects$
 - Also choose high- p_T region to reduce QCD backgrounds
 - Decay products merge into single fat jet
 - Need to look at substructure for tagging

E.g., Search for $t\overline{t}$ resonances

ATLAS-CONF-2013-052

Jet Substructure: Motivation

- At LHC $\sqrt{s} \gg M_{EW} => high p_T boosted objects$
 - Also choose high- p_{τ} region to reduce QCD backgrounds
 - Decay products merge into single fat jet
 - Need to look at substructure for tagging
- Also high-pileup conditions
 - Substructure grooming can remove soft contributions

Jets Substructure: Algorithms

Identify hard constituents via splitting, decomposition

For example (explored in ATLAS results here)

- BDRS aka Mass-drop Filtering:
 - Cambridge-Aachen (CA) R=1.2 Fat jet
 - Split with $\mu_{12} < 2/3$, $\forall y_f > 0.3$

- BDRS-A:
 - CA R=1.2
 - Split $\forall y_f > 0.2$

Jets Substructure: Algorithms

Improve resolution and pileup resistance via trimming, filtering,

pruning

Type 1 (Trimming) : If p_T (subjet i) / p_T (jet) < f_{cut} : discard subjet.

Type 2 : If N_{subjets} ≤ N_{min} : discard jet. Resulting jet is sum of subjets.

For example

- BDRS Filtered with $R_{\text{subjet}} = \min(0.3, R_{12}/2)$
- BDRS-A Filtered with $R_{\text{subjet}} = 0.3$

E.g. (explored in CMS results here)

Pruned CA R=0.8 jets

• $z_{cut} = 0.1$; $d_{cut} = 0.5 * m^{orig}/p_T^{orig}$

Jet Substructure: some variables

Also make use of substructure variables, for example

• Mass drop μ_{12} , Momentum Fraction Vy_f

N-subjettiness:

$$\tau_{N} = \frac{\sum_{k} p_{T,k} (\min\{\Delta R_{1,k}, \Delta R_{2,k}, ..., R_{N,k}\})^{\beta}}{\sum_{k} p_{T}(R_{0})^{\beta}}$$

- Sum over jet constituents (k)
- Small if jet consistent with N subjets hypothesis
- τ_2/τ_1 used to discriminate 2-body decays from W bosons
- Also Qjet volatility (v_{QJets}), jet width, jet charge, planar flow, correlation functions

Outline

- ATLAS and CMS jet inputs
- Jets and Jet Substructure: motivation and algorithms
- Recent performance results:
 - W boson tagging
 - Top tagging
- Other recent highlights

W boson tagging ATLAS

ATL-PHYS-PUB-2014-004

- Evaluate various algorithms in p_T ranges
 - Signal Monte-Carlo: Kaluza-Klein Graviton -> WW -> lvqq
 - Background: W+jets (Sherpa)
 - Main discriminant is jet mass (look for W peak):
 - Define window with 68% signal
- Also look at wide range of substructure variables and find optimum variable + alogorithm combinations.

W boson tagging ATLAS

- Measured performance of each optimal combination
 - Algorithms perform similarly particularly when 'groomer + tagger' performance are taken together (i.e. within mass window)
- Data/MC comparison using W bosons from semileptonic tt-bar sample
 - High-purity (~98%) selection using HepTopTagger
 - Good agreement for relevant variables

W boson tagging CMS

CMS PAS JME-13-006

- Use CA R=0.8 w/pruning
- Performance for Signal X->W_LW_L,
 Background: W + jets (MadGraph +Pythia6)

- Variety of variables:
 - And for N-subjetiness evaluate an alternative with one step optimization of exclusive k_{τ} axes

W boson tagging CMS

- Optimised τ_2/τ_1 is best performing variable
- Also look at a MVA
 - Offers little further improvement
- Data/MC Comparison in both W +jets and a semileptonic tt-bar
 - Decent agreement
- Form scale-factor for cut on τ_2/τ_1 (< 0.5) from data/MC efficiency in tt-bar sample (0.905 ± 0.08 (stat))

Outline

- ATLAS and CMS jet inputs
- Jets and Jet Substructure: motivation and algorithms
- Recent performance results:
 - W boson tagging
 - Top tagging
- Other recent highlights

Top Tagging CMS

CMS PAS JME-13-007

- Evaluate alternatives including CMSTopTagger
 - Two-stage decomposition of CA R=0.8 jets
- Add subjet b-tag and τ₃/τ₂ to form Combined tagger
 - Best for $p_T > 400 \text{ GeV/}c$
 - Low p_T top not contained in R=0.8 jet use *HEPTopTagger*
- η dependant scale-factors from data / MC efficiencies

Top Tagging ATLAS

- Previous studies evaluate range of taggers e.g. <u>ATLAS-CONF-2013-084</u>
- Focus here on <u>ATLAS-CONF-2014-003</u>
 on Shower Deconstruction:
- Input collection of CA R=0.2 subjets within Akt R=1.0 jet. Four-momenta $\{p\}_N = \{p_1,...,p_N\}$
- Different series of parton branchings that could build this gives shower histories {p,cⁱ}_N that are assigned to categories cⁱ
- Assign splitting probabilities.
 Form likelihood ratio:

$$\chi_{\text{SD}}(\{p\}_N) = \frac{P(\{p\}_N|S)}{P(\{p\}_N|B)} = \frac{\sum_{\text{histories}} P(\{p, c^j\}_N|S)}{\sum_{\text{histories}} P(\{p, c^j\}_N|B)}$$

One (of >1500) (signal) shower histories:

ATLAS Shower Deconstruction

- Performance measured using same samples as ATLAS-CONF-2013-084
 - Improved performance over range of efficiency
 - Not including systematics
- Data / MC comparison
 - Satisfactory agreement and stable with pileup

Outline

- ATLAS and CMS jet inputs
- Jets and Jet Substructure: motivation and algorithms
- Recent performance results:
 - W boson tagging
 - Top tagging
- Other recent highlights

Quark-gluon tagging
 CMS-JME-13-002
 ATLAS arXiv:1405.6583

Fragmentation Function
$$p_{\mathrm{T}}D = \frac{\sqrt{\sum_{i}p_{\mathrm{T},i}^{2}}}{\sum_{i}p_{\mathrm{T},i}}$$

- Quark-gluon tagging <u>CMS-JME-13-002</u> ATLAS arXiv:1405.6583
- b-tagging in boosted jets
 CMS-PAS-BTV-13-001
- Jet pull performance ATLAS-CONF-2014-048
- Pile-up jet id/subtraction
 CMS-PAS-JME-13-005
 ATLAS High Mu

- Quark-gluon tagging
 CMS-JME-13-002
 ATLAS arXiv:1405.6583
- b-tagging in boosted jets
 CMS-PAS-BTV-13-001
- Jet pull performance
 ATLAS-CONF-2014-048
- Pile-up jet id/subtraction
 CMS-PAS-JME-13-005
 ATLAS High Mu
- Physics e.g.Cross-section of high p_T vector bosons: ATLAS CERN-PH-EP-2014-123

Jet Mass [GeV] $\sigma_{W+Z} = 8.5 \pm 0.8 ~({\rm stat.}) \pm 1.5 ~({\rm syst.}) ~{\rm pb}.$

- Quark-gluon tagging <u>CMS-JME-13-002</u> <u>ATLAS arXiv:1405.6583</u>
- b-tagging in boosted jets
 CMS-PAS-BTV-13-001
- Jet pull performance
 ATLAS-CONF-2014-048
- Pile-up jet id/subtraction
 CMS-PAS-JME-13-005
 ATLAS High Mu
- Physics e.g.Cross-section of high p_T vector bosons: ATLAS CERN-PH-EP-2014-123

And Boost2014 next week!

Conclusions

- Jet substructure offers powerful techniques, essential for analyses at LHC Run 2 and beyond
 - Tagging to unveil composition of boosted objects, grooming for resolution and pileup resistance
- Considerable recent activity in validating and optimising these techniques at the LHC
 - Building optimum taggers with scale-factors
- Now need to finalise methods for scale-factors and uncertainties – ready to use for Run 2 physics!

Extra Slides

And Beyond

From J.S.Marshall CHEF2013

- ILC exploring fine granularity particle flow calorimetry – hardware and software
- At CLIC energies expect to see merged jets

Physics Motivation-Boosted bosons

Happens for $p_t \gtrsim 2m/R$ $p_t \gtrsim 320$ GeV for $m=m_W$, R=0.5

CMS EXO-13-009

Jet Algorithms at LHC

- Partons in ATLAS/CMS produce dispersed hadrons - clustered together by jet algorithm
- Standard LHC choice uses distance parameter d_{ii} :

$$d_{ij} = \min(p_{\mathrm{T}_i^{2n}}, p_{\mathrm{T}_j^{2n}}) \Delta R_{ij}^2 / R^2$$

 $d_{iB} = p_{\mathrm{T}_i^{2n}},$

- n=-1 Anti-k_T used extensively at LHC, regular shaped jets, robust to pileup
- $n=1 k_T$ algorithm
- n=0 Cambridge-Aachen (CA) only angular info
- Can undo clustering to reveal hard structure

Cacciarl, Salam, Soyez JHEP 0804 (2008) 063

Boson Tagging

Type 1 (Trimming) : If p_T (subjet i) / p_T (jet) < f_{cut} : discard subjet. Type 2 : If $N_{subjets} \le N_{min}$: discard jet.

Resulting jet is sum of subjets.

Jet Substructure – some variables

Mass drop μ_{12} . Momentum Fraction Vy_f

N-subjettiness:

- $\tau_{N} = \frac{\sum_{k} p_{T,k} (\min\{\Delta R_{1,k}, \Delta R_{2,k}, ..., R_{N,k}\})^{\beta}}{\sum_{k} p_{T}(R_{0})^{\beta}}$
- Small if jet has N subjets
- τ2/τ1 used to discriminate 2-body decays from W bosons
- Qjet volatility

- $\omega_{ij}(\alpha) = \exp\left\{-\alpha \frac{\Delta R_{ij}^2 \Delta R_{\min}^2}{\Delta R^2}\right\},\,$
- Recluster with a weight $\omega_{ii}(\alpha)$
 - $v_{\text{QJets}} = \frac{\sqrt{\langle m^2 \rangle \langle m \rangle^2}}{\langle m \rangle}.$
- Measured a volatility v_{Olets}
- Also jet width, jet charge, planar flow, correlation functions

HEP Top Tagger details

HEP Top Tagger - W mass selection

Bi-dimensional distribution based on the ratio of subjet pairwise masses

Performance: top mass

ATLAS-CONF-2013-084

- CA R=1.5 Jets with HEPTopTagger (p_T > 200 GeV)
- Increases purity from 86% $t\bar{t}$ and single-top-quark processes before tagging to 98% in candidate mass window 140 < m_t < 200 GeV

Reconstructed tt-bar mass

ATLAS-CONF-2013-052

Reconstructed tt-bar mass

Top Tagging CMS

Performance of multiple techniques inc. CMS Top Tagger:

- Based on Kaplan et. al
 Phys. Rev. Lett. 101 (2008) 142001
- Input CA R=0.8 jets
- Primary decomposition: find 2 well separated subclusters with significant p_T fraction
- If succeeds then do secondary decomposition
- Form m_{jet}, N_{subjets}, m_{min} (min pairwise mass)
- Top tagged if m_{jet} ~ m_{top}
 N_{subjets}>2,m_{min} ~ m_W

CMS PAS JME-13-007

Secondary decomposition

CMS Boosted Top Event

Large-R Jet Calibration

ATLAS: JHEP09 (2013) 076

Jet energy scale calibration

- Correct calorimeter response to true jet energy as done for small-R jets on ATLAS <u>Eur. Phys. J. C 73 (2013) 2304</u>
- Derived from PYTHIA MC, no pileup correction

Jet mass calibration

• Mass response: mean of a Gaussian to core of reco jet mass/ true mass (m_{reco}/m_{true})

Quark-gluon tagging – more info

CMS-JME-13-002

- Likelihood based on:
 - Width of minor axis of jet ellipse
 - Fragmentation
 - Total Multiplicity
- Validated with Z+jets, dijets
- Systematics from 2-parameter smearing
- Also <u>ATLAS arXiv:1405.6583</u>

$$\sigma_2 = \left(\lambda_2 / \sum_i p_{\mathrm{T},i}^2\right)^{1/2}$$

- Quark-gluon tagging
 CMS-JME-13-002
 ATLAS arXiv:1405.6583
- b-tagging in boosted jets
 CMS-PAS-BTV-13-001

- Quark-gluon tagging <u>CMS-JME-13-002</u> <u>ATLAS arXiv:1405.6583</u>
- b-tagging in boosted jets
 CMS-PAS-BTV-13-001
- Jet pull performance ATLAS-CONF-2014-048

