Status of and prospects for W mass and Z mass measurements

On behalf of the **CMS and ATLAS Collaborations**

Physics at LHC and beyond Qui-Nhon, Vietnam 10-17 August 2014

Motivation

The EW sector of the SM, relates M_W to α , G_E , and $\sin^2\theta_W$

Radiative corrections ∆r are dominated by Top and Higgs loops

- The relation between M_{top}, M_H and M_W
 provides a stringent test of the SM
- The comparison between the measured M_H and the predicted M_H is sensitive to new physics

Indirect determination of M_w (±8 MeV) is more precise than the experimental measurement

Status and prospects for W mass measurement

- Methodology for the M_w extraction
- The Tevatron experience on M_w
- Measurements of M_w and M_z at the LHC
- Theoretical uncertainties for M_w at the LHC
- ATLAS and CMS measurements to constrain uncertainties on M_w
- Prospect for M_w and M_z measurements at future colliders

Methodology for the W mass extraction

- Event selection: W leptonic decay $W \rightarrow I \nu$, I = e, μ
- The full kinematic of the W decay cannot be reconstructed, since the longitudinal momentum of the neutrino is unknown

Traditional analyses are based on a template fit extraction from observables sensitive to \mathbf{M}_{w}

Lepton transverse momentum	p_T^l
W transverse mass	$M_T = \sqrt{2 \cdot p_T^l p_T^{\nu} \cdot (1 - \cos \Delta \phi(l, \nu))}$
Neutrino transverse momentum (from hadronic recoil)	$p_T^ u$

More sophisticated analysis techniques suggest simultaneous measurements of W and Z observables TS2008-022 Eur. Phys. J. C69 (2010) 379-397

events to constraint both experimental and theory systematics

In the same spirit, a common strategy of

template fits analyses is to use $Z \rightarrow II$

Tevatron measurements of M_w - Methodology

Tevatron measurements of M_w - Results

 M_W extracted from p_T^{-1} , M_T , $p_T^{-\nu}$ in electron and muon channels $L = 2.2 \text{ fb}^{-1}$

$$M_W = 80.387 \pm 19 \text{ MeV}$$

Phys. Rev. D 89, 072003 (2014)

 M_{W} extracted from p_{T}^{-1} , M_{T} in electron channel $L = 4.3 (+1) \text{ fb}^{-1}$

$$M_W = 80.375 \pm 23 \text{ MeV}$$

Phys. Rev. D 89, 012005 (2014)

W mass measurement at the LHC

- The M_w measurement at the LHC follows a strategy similar to the Tevatron
- Important differences:
 - Higher pile-up environment → affect hadronic recoil calibration
 - Potentially larger theoretical uncertainties due to pp instead of pp collisions
 - W⁺ and W⁻ production is not symmetric → Require a charge dependent analysis

Most precise observables for the M_w extraction

p _T I	M_{T}
Observable does not depend on hadronic recoil, smaller experimental uncertainty	Depends on hadronic recoil measurement, expected larger experimental uncertainties
Larger theory uncertainty due to higher order QCD, $p_{\scriptscriptstyle T}^{\ \ W}$ modelling, PDF, W polarisation, charm mass	M _T is quite stable wrt perturbative QCD corrections, smaller PDF uncertainties, smaller non-perturbative QCD uncertainties

M_w extraction is likely to be limited by theoretical uncertainties

Final balance between theory and expuncertainties will depend on pile-up mitigation algorithms

Z mass measurement at the LHC

A first step towards the measurement of M_w at the LHC is the measurement of M_z

Test the methodology of the M_w extraction: \rightarrow Neglect one of the two leptons, extract $M_{_{7}}$ from $p_{_{T}}^{^{-1}}$ and hadronic recoil

The lepton energy scale is calibrated by comparing the reconstructed M_z to the LEP measurement of M_z

Electron calibration from $Z \rightarrow ee$ invariant mass

Theory systematics for M_w at the LHC

Why theory systematic uncertainties are crucial for the W mass measurement at the LHC?

W production at the LHC is relatively cheap 7(8) TeV, 5(20) fb⁻¹ \rightarrow ~15(75)x10⁶ in W \rightarrow Iv (I = e, μ)

- Statistics is not an issue
 → expected ~6(2) MeV
 statistical uncertainty on M_w
- Main experimental systematic uncertainties
 - Lepton energy scale, resolution, efficiency
- hadronic recoil scale and resolution Estimates depend on the analysis strategy: between 5-15 MeV

Eur.Phys.J.C57:627-651,2008 TS2008-022

Theory uncertainties at the Tevatron: 10-15 MeV Expected similar or higher uncertainties at the LHC

Constrain M_w theory uncertainties at the LHC

ATLAS and CMS are performing measurements of alternative W, Z observables to control the theoretical models and reduce the uncertainties on the measurement of \mathbf{M}_{W}

Theory uncertainties	Measurements which can provide constraints to the theoretical models
p _T ^W modelling	p_T^{W}, p_T^{Z}
PDF	W asymmetry, Z rapidity, W + charm
\\/ nologization	Angular coefficients in W, Z
W polarization	production

p_T^W and p_T^Z modelling

Theory uncertainties at low W, Z p_T

- Factorization, renormalization, resummation or PS scales
- PDF, low x gluon PDF
- Non perturbative QCD parameters.
- Strong-interaction coupling $\alpha_s(M_z)$
- Heavy flavour masses, HF thresholds in the PDF

- Measurement of p_T^W is less precise in the low p_T region
- However it provides an important cross check

Constraining p_T^W and p_T^Z theory uncertainties

CDF W mass measurement

- RESBOS used to model p_T^{W,Z}
- Fit non-pQCD parameter $\mathbf{g_2}$ and $\alpha_{_{\! S}}$ to $\mathbf{p_{_{\! T}}}^{_{\! Z}}$ data
- Uncertainties propagated to M_w
 3, 9, 4, MeV for M_T, p_T^T, p_T^V

$$S = \left[g_1 - g_2 \log \left(\frac{\sqrt{\hat{s}}}{2Q_0}\right) - g_1 g_3 \log(100x_j x_k)\right] b^2$$

Phys. Rev. D 89, 072003 (2014)

ATLAS

- POWHEG+PYTHIA8 model
- Fit non-pQCD parameters primordial k_T and ISR cut-off to p_T^Z data

PDF uncertainties

PDF uncertainties on M_W extraction from M_T (DYNNLO) Phys.Rev.D83:113008,2011 arXiv:1309.1311

- Normalised distribution are essential to reduce PDF uncertainties
- PDF uncertainties are expected to be larger at the LHC than at the Tevatron, and different between W⁺ and W⁻
- Estimated small $\alpha_{_{\rm S}}$ and $m_{_{\rm C}}$ uncertainties
- pp collision → no symmetry between W⁺ and W⁻ lepton p_T due to u_v ≠ d_v and W polarization → Larger PDF uncertainties at LHC than Tevatron
- At the LHC, a charge-dependent separate analysis of W⁺ and W⁻ helps to reduce PDF uncertainties

Eur. Phys. J. C69 (2010) 379-397

PDF uncertainties

- Crucial to reduce the valence PDF uncertainty
- ATLAS and CMS have provided several measurements of W, Z inclusive and W+charm, which can constrain PDF uncertainties

arXiv:1312.6283

W, Z polarization

- Set of 8 observables: angular coefficients
 A_i → ratio of helicity cross sections
- A_i are functions of the leptons kinematic $A_i(p_T^{\parallel}, y^{\parallel}, M^{\parallel})$
- A_i coefficients can be calculated form MC sample with moments method

$$\langle m \rangle = \frac{\int d\sigma(p_T,y,\theta,\phi) \ m \ d\cos\theta \ d\phi}{\int d\sigma(p_T,y,\theta,\phi) \ d\cos\theta \ d\phi}$$

- A_i can be measured precisely for Z,
 the W measurement is more challenging
 - Related to boson polarization, V-A coupling
 - Provide insight into QCD and EW dynamics
 - Stringent test of predictions and MC generators
- A₀-A₄ coefficients measured at CDF
- Precise measurements at the LHC of A₀-A₇
 can discriminate between different predictions

Prospects for M_w at ILC and TLEP

M_w can be measured at e⁺e⁻ colliders through an energy scan of the WW production threshold

Near threshold, the WW cross section is proportional to the non-relativistic W velocity

$$\sigma(WW) \propto \beta_W$$

arXiv:1306.6352

ILC Giga-Z program

- Energy scan 160 to 170 GeV
- $\delta M_W = 6-7 \text{ MeV}$

JHEP 1401 (2014) 164

TLEP OkuW program

- $\delta M_{\rm W}$ = 0.5 MeV
 - → dominated by statistical uncertainty

Dominant theory uncertainties

- Initial state QED corrections
- Parametrization of cross section near threshold

Prospects for M₂ at TLEP

TeraZ program: 7 x 10¹¹ visible Z in one year of data taking at 91 GeV

M₂ extracted from Z lineshape

Statistical uncertainty: 5 keV

Systematic uncertainty: 100 keV

→ dominated by beam energy calibration

Dominant theory uncertainties

Initial state QED corrections ≤ 100 keV

- Additional lepton pairs ≤ 300 keV
- Lineshape parametrization ≤ 100 keV
 - → Need to revisit theory predictions

 173200 ± 900

Phys.Rept.427:257-454,2006

Factor of 20 improvement wrt LEP M₂ measurement

Quantity	Physics	Present	Measured	Statistical	Systematic	Key	Challenge
		precision	from	uncertainty	uncertainty		
m _Z (keV)	Input	91187500 ± 2100	Z Line shape scan	5 (6) keV	< 100 keV	E_{beam} calibration	QED corrections
Γ _Z (keV)	$\Delta \rho \text{ (not } \Delta \alpha_{had})$	2495200 ± 2300	Z Line shape scan	8 (10) keV	< 100 keV	E_{beam} calibration	QED corrections
R_{ℓ}	$\alpha_{\rm s}, \delta_{\rm b}$	20.767 ± 0.025	Z Peak	0.00010 (12)	< 0.001	Statistics	QED corrections
N_{ν}	PMNS Unitarity,	2.984 ± 0.008	Z Peak	0.00008 (10)	< 0.004		Bhabha scat.
N_{ν}	and sterile ν 's	2.92 ± 0.05	Zγ, 161 GeV	0.0010 (12)	< 0.001	Statistics	
$R_{\rm b}$	δ_{b}	0.21629 ± 0.00066	Z Peak	0.000003 (4)	< 0.000060	Statistics, small IP	Hemisphere correlations
A_{LR}	$\Delta \rho$, ϵ_3 , $\Delta \alpha_{had}$	0.1514 ± 0.0022	Z peak, polarized	0.000015 (18)	< 0.000015	4 bunch scheme, 2exp	Design experiment
mw (MeV)	$\Delta \rho$, ϵ_3 , ϵ_2 , $\Delta \alpha_{had}$	80385 ± 15	WW threshold scan	0.3 (0.4)MeV	< 0.5 MeV	E_{beam} , Statistics	QED corrections

Input

JHEP 1401 (2014) 164

 $m_{\text{top}} (\text{MeV})$

tt threshold scan

10 (12) MeV

< 10 MeV

Statistics

Theory interpretation

Summary

- The indirect determination of M_w from the global fit of the SM parameters calls for a target precision of 10 MeV on the measurement of M_w
- For the measurement of the W mass at the LHC it is necessary to control and reduce many sources of experimental and theoretical uncertainties
- A first step towards the measurement of M_w is the lepton calibration, and the validation of the analysis techniques through the measurement of M_z
- ATLAS and CMS have an extensive program of W, Z measurements which can help constraining many of the theoretical uncertainties
- Prospects at future e⁺e⁻ colliders ILC (TLEP) for approximately a factor of 2 (20) improvement on δM_W and δM_Z

BACKUP

W mass uncertainties at CDF

m_T fit uncertainties							
Source	$W o \mu \nu$	$W \rightarrow e v$	Common				
Lepton energy scale	7	10	5				
Lepton energy resolution	1	4	0				
Lepton efficiency	0	0	0				
Lepton tower removal	2	3	2				
Recoil scale	5	5	5				
Recoil resolution	7	7	7				
Backgrounds	3	4	0				
PDFs	10	10	10				
W boson p_T	3	3	3				
Photon radiation	4	4	4				
Statistical	16	19	0				
Total	23	26	15				

p_T^{ν} fit uncertainties							
Source	$W \rightarrow \mu \nu$ $W \rightarrow e \nu$ Correla						
Lepton energy scale	7	10	5				
Lepton energy resolution	1	7	0				
Lepton efficiency	2	3	0				
Lepton tower removal	4	6	4				
Recoil scale	2	2	2				
Recoil resolution	11	11	11				
Backgrounds	6	4	0				
PDFs	11	11	11				
W boson p_T	4	4	4				
Photon radiation	4	4	4				
Statistical	22	25	0				
Total	30	33	18				

p_T^{ℓ} fit uncertainties							
Source	$W o \mu \nu$	$W \rightarrow e v$	Common				
Lepton energy scale	7	10	5				
Lepton energy resolution	1	4	0				
Lepton efficiency	1	2	0				
Lepton tower removal	0	0	0				
Recoil scale	6	6	6				
Recoil resolution	5	5	5				
Backgrounds	5	3	0				
PDFs	9	9	9				
W boson p_T	9	9	9				
Photon radiation	4	4	4				
Statistical	18	21	0				
Total	25	28	16				

Phys. Rev. D 89, 072003 (2014)

Uncertainties are given in MeV

W mass uncertainties at D0

Phys. Rev. D 89, 012005 (2014)

Source	Section	m_T	p_T^e	E_T
Experimental				
Electron Energy Scale	$\overline{\mathrm{VIIC4}}$	16	17	16
Electron Energy Resolution	$\overline{ m VIIC 5}$	2	2	3
Electron Shower Model	VC	4	6	7
Electron Energy Loss	$\nabla \mathbf{D}$	4	4	4
Recoil Model	VIID3	5	6	14
Electron Efficiencies	VIIB10	1	3	5
Backgrounds	VIII	2	2	2
\sum (Experimental)		18	20	24
W Production and Decay Model				
PDF	VIC	11	11	14
QED	$\overline{ ext{VIB}}$	7	7	9
Boson p_T	$\overline{\text{VIA}}$	2	5	2
\sum (Model)		13	14	17
Systematic Uncertainty (Experimental and Model)		22	24	29
W Boson Statistics	IX	13	14	15
Total Uncertainty		26	28	33

Uncertainties are given in MeV

PDF uncertainties on M_T

	CTEQ6.6		MSTW2008		NNPDF2.1		
	$m_W \pm \delta_{ m pdf}$	$ \langle \chi^2 \rangle $	$m_W \pm \delta_{ ext{pdf}}$	$ \langle \chi^2 \rangle $	$m_W \pm \delta_{ ext{pdf}}$	$ \langle \chi^2 \rangle $	$\delta_{ m pdf}^{ m tot}$
Tevatron, W^{\pm}	80.398 ± 0.004	1.42	80.398 ± 0.003	1.42	80.398 ± 0.003	1.30	4
LHC 7 TeV W^+	80.398 ± 0.004	1.22	80.404 ± 0.005	1.55	80.402 ± 0.003	1.35	8
LHC 7 TeV W^-	80.398 ± 0.004	1.22	80.400 ± 0.004	1.19	80.402 ± 0.004	1.78	6
LHC 14 TeV W^+	80.398 ± 0.003	1.34	80.402 ± 0.004	1.48	80.400 ± 0.003	1.41	6
LHC 14 TeV W^-	80.398 ± 0.004	1.44	80.404 ± 0.006	1.38	80.402 ± 0.004	1.57	8

Phys.Rev.D83:113008,2011

	Tevatron	LHC7W+	LHC7W-	LHC14W+	LHC14W-
$\alpha_s(m_Z) = 0.118$	80.398	80.400	80.398	80.402	80.400
$\alpha_s(m_Z) = 0.119 \text{ (ref)}$	80.398	80.402	80.402	80.400	80.402
$\alpha_s(m_Z) = 0.120$	80.398	80.400	80.398	80.402	80.402

Table 7: Central value of the fit of m_w obtained with NNPDF2.1, using PDF sets that differ by the $\alpha_s(m_Z)$ value, for different colliders and energies. The fit has been done on normalized distributions and using normalized templates, and the distributions have been generated at NLO-QCD with DYNNLO.

m_W (GeV)	Tevatron	LHC7W+	LHC7W-	LHC14W+	LHC14W-
$m_c = 1.414 \text{ (ref)}$	80.398	80.402	80.402	80.400	80.402
$m_c = 1.5$	80.398	80.400	80.398	80.398	80.399
$m_c = 1.6$	80.398	80.400	80.400	80.398	80.399
$m_c = 1.7$	80.396	80.400	80.400	80.396	80.398

Table 8: Central value of the fit of m_W obtained with NNPDF2.1 sets with different values of m_c for different colliders and energies. We include the default value in NNPDF2.1, $m_c^2 = 2 \text{ GeV}^2$ as well.