Status of and prospects for W mass and Z mass measurements On behalf of the **CMS and ATLAS Collaborations** Physics at LHC and beyond Qui-Nhon, Vietnam 10-17 August 2014 ### **Motivation** The EW sector of the SM, relates M_W to α , G_E , and $\sin^2\theta_W$ Radiative corrections ∆r are dominated by Top and Higgs loops - The relation between M_{top}, M_H and M_W provides a stringent test of the SM - The comparison between the measured M_H and the predicted M_H is sensitive to new physics Indirect determination of M_w (±8 MeV) is more precise than the experimental measurement ### Status and prospects for W mass measurement - Methodology for the M_w extraction - The Tevatron experience on M_w - Measurements of M_w and M_z at the LHC - Theoretical uncertainties for M_w at the LHC - ATLAS and CMS measurements to constrain uncertainties on M_w - Prospect for M_w and M_z measurements at future colliders ### Methodology for the W mass extraction - Event selection: W leptonic decay $W \rightarrow I \nu$, I = e, μ - The full kinematic of the W decay cannot be reconstructed, since the longitudinal momentum of the neutrino is unknown Traditional analyses are based on a template fit extraction from observables sensitive to \mathbf{M}_{w} | Lepton transverse momentum | p_T^l | |---|---| | W transverse mass | $M_T = \sqrt{2 \cdot p_T^l p_T^{\nu} \cdot (1 - \cos \Delta \phi(l, \nu))}$ | | Neutrino transverse momentum (from hadronic recoil) | $p_T^ u$ | More sophisticated analysis techniques suggest simultaneous measurements of W and Z observables TS2008-022 Eur. Phys. J. C69 (2010) 379-397 events to constraint both experimental and theory systematics In the same spirit, a common strategy of template fits analyses is to use $Z \rightarrow II$ ## Tevatron measurements of M_w - Methodology ## Tevatron measurements of M_w - Results M_W extracted from p_T^{-1} , M_T , $p_T^{-\nu}$ in electron and muon channels $L = 2.2 \text{ fb}^{-1}$ $$M_W = 80.387 \pm 19 \text{ MeV}$$ Phys. Rev. D 89, 072003 (2014) M_{W} extracted from p_{T}^{-1} , M_{T} in electron channel $L = 4.3 (+1) \text{ fb}^{-1}$ $$M_W = 80.375 \pm 23 \text{ MeV}$$ Phys. Rev. D 89, 012005 (2014) ### W mass measurement at the LHC - The M_w measurement at the LHC follows a strategy similar to the Tevatron - Important differences: - Higher pile-up environment → affect hadronic recoil calibration - Potentially larger theoretical uncertainties due to pp instead of pp collisions - W⁺ and W⁻ production is not symmetric → Require a charge dependent analysis Most precise observables for the M_w extraction | p _T I | M_{T} | |--|--| | Observable does not depend on hadronic recoil, smaller experimental uncertainty | Depends on hadronic recoil measurement, expected larger experimental uncertainties | | Larger theory uncertainty due to higher order QCD, $p_{\scriptscriptstyle T}^{\ \ W}$ modelling, PDF, W polarisation, charm mass | M _T is quite stable wrt perturbative QCD corrections, smaller PDF uncertainties, smaller non-perturbative QCD uncertainties | M_w extraction is likely to be limited by theoretical uncertainties Final balance between theory and expuncertainties will depend on pile-up mitigation algorithms ### Z mass measurement at the LHC A first step towards the measurement of M_w at the LHC is the measurement of M_z Test the methodology of the M_w extraction: \rightarrow Neglect one of the two leptons, extract $M_{_{7}}$ from $p_{_{T}}^{^{-1}}$ and hadronic recoil The lepton energy scale is calibrated by comparing the reconstructed M_z to the LEP measurement of M_z Electron calibration from $Z \rightarrow ee$ invariant mass ## Theory systematics for M_w at the LHC Why theory systematic uncertainties are crucial for the W mass measurement at the LHC? W production at the LHC is relatively cheap 7(8) TeV, 5(20) fb⁻¹ \rightarrow ~15(75)x10⁶ in W \rightarrow Iv (I = e, μ) - Statistics is not an issue → expected ~6(2) MeV statistical uncertainty on M_w - Main experimental systematic uncertainties - Lepton energy scale, resolution, efficiency - hadronic recoil scale and resolution Estimates depend on the analysis strategy: between 5-15 MeV Eur.Phys.J.C57:627-651,2008 TS2008-022 Theory uncertainties at the Tevatron: 10-15 MeV Expected similar or higher uncertainties at the LHC ## Constrain M_w theory uncertainties at the LHC ATLAS and CMS are performing measurements of alternative W, Z observables to control the theoretical models and reduce the uncertainties on the measurement of \mathbf{M}_{W} | Theory uncertainties | Measurements which can provide constraints to the theoretical models | |---------------------------------------|--| | p _T ^W modelling | p_T^{W}, p_T^{Z} | | PDF | W asymmetry, Z rapidity, W + charm | | \\/ nologization | Angular coefficients in W, Z | | W polarization | production | ## p_T^W and p_T^Z modelling Theory uncertainties at low W, Z p_T - Factorization, renormalization, resummation or PS scales - PDF, low x gluon PDF - Non perturbative QCD parameters. - Strong-interaction coupling $\alpha_s(M_z)$ - Heavy flavour masses, HF thresholds in the PDF - Measurement of p_T^W is less precise in the low p_T region - However it provides an important cross check ## Constraining p_T^W and p_T^Z theory uncertainties #### CDF W mass measurement - RESBOS used to model p_T^{W,Z} - Fit non-pQCD parameter $\mathbf{g_2}$ and $\alpha_{_{\! S}}$ to $\mathbf{p_{_{\! T}}}^{_{\! Z}}$ data - Uncertainties propagated to M_w 3, 9, 4, MeV for M_T, p_T^T, p_T^V $$S = \left[g_1 - g_2 \log \left(\frac{\sqrt{\hat{s}}}{2Q_0}\right) - g_1 g_3 \log(100x_j x_k)\right] b^2$$ Phys. Rev. D 89, 072003 (2014) #### **ATLAS** - POWHEG+PYTHIA8 model - Fit non-pQCD parameters primordial k_T and ISR cut-off to p_T^Z data ### PDF uncertainties PDF uncertainties on M_W extraction from M_T (DYNNLO) Phys.Rev.D83:113008,2011 arXiv:1309.1311 - Normalised distribution are essential to reduce PDF uncertainties - PDF uncertainties are expected to be larger at the LHC than at the Tevatron, and different between W⁺ and W⁻ - Estimated small $\alpha_{_{\rm S}}$ and $m_{_{\rm C}}$ uncertainties - pp collision → no symmetry between W⁺ and W⁻ lepton p_T due to u_v ≠ d_v and W polarization → Larger PDF uncertainties at LHC than Tevatron - At the LHC, a charge-dependent separate analysis of W⁺ and W⁻ helps to reduce PDF uncertainties Eur. Phys. J. C69 (2010) 379-397 ### PDF uncertainties - Crucial to reduce the valence PDF uncertainty - ATLAS and CMS have provided several measurements of W, Z inclusive and W+charm, which can constrain PDF uncertainties arXiv:1312.6283 ### W, Z polarization - Set of 8 observables: angular coefficients A_i → ratio of helicity cross sections - A_i are functions of the leptons kinematic $A_i(p_T^{\parallel}, y^{\parallel}, M^{\parallel})$ - A_i coefficients can be calculated form MC sample with moments method $$\langle m \rangle = \frac{\int d\sigma(p_T,y,\theta,\phi) \ m \ d\cos\theta \ d\phi}{\int d\sigma(p_T,y,\theta,\phi) \ d\cos\theta \ d\phi}$$ - A_i can be measured precisely for Z, the W measurement is more challenging - Related to boson polarization, V-A coupling - Provide insight into QCD and EW dynamics - Stringent test of predictions and MC generators - A₀-A₄ coefficients measured at CDF - Precise measurements at the LHC of A₀-A₇ can discriminate between different predictions ## Prospects for M_w at ILC and TLEP M_w can be measured at e⁺e⁻ colliders through an energy scan of the WW production threshold Near threshold, the WW cross section is proportional to the non-relativistic W velocity $$\sigma(WW) \propto \beta_W$$ arXiv:1306.6352 ILC Giga-Z program - Energy scan 160 to 170 GeV - $\delta M_W = 6-7 \text{ MeV}$ JHEP 1401 (2014) 164 TLEP OkuW program - $\delta M_{\rm W}$ = 0.5 MeV - → dominated by statistical uncertainty Dominant theory uncertainties - Initial state QED corrections - Parametrization of cross section near threshold ## Prospects for M₂ at TLEP TeraZ program: 7 x 10¹¹ visible Z in one year of data taking at 91 GeV M₂ extracted from Z lineshape Statistical uncertainty: 5 keV Systematic uncertainty: 100 keV → dominated by beam energy calibration Dominant theory uncertainties Initial state QED corrections ≤ 100 keV - Additional lepton pairs ≤ 300 keV - Lineshape parametrization ≤ 100 keV - → Need to revisit theory predictions 173200 ± 900 Phys.Rept.427:257-454,2006 Factor of 20 improvement wrt LEP M₂ measurement | Quantity | Physics | Present | Measured | Statistical | Systematic | Key | Challenge | |----------------------|---|-----------------------|-------------------|---------------|-------------|-------------------------------|-------------------------| | | | precision | from | uncertainty | uncertainty | | | | m _Z (keV) | Input | 91187500 ± 2100 | Z Line shape scan | 5 (6) keV | < 100 keV | E_{beam} calibration | QED corrections | | Γ _Z (keV) | $\Delta \rho \text{ (not } \Delta \alpha_{had})$ | 2495200 ± 2300 | Z Line shape scan | 8 (10) keV | < 100 keV | E_{beam} calibration | QED corrections | | R_{ℓ} | $\alpha_{\rm s}, \delta_{\rm b}$ | 20.767 ± 0.025 | Z Peak | 0.00010 (12) | < 0.001 | Statistics | QED corrections | | N_{ν} | PMNS Unitarity, | 2.984 ± 0.008 | Z Peak | 0.00008 (10) | < 0.004 | | Bhabha scat. | | N_{ν} | and sterile ν 's | 2.92 ± 0.05 | Zγ, 161 GeV | 0.0010 (12) | < 0.001 | Statistics | | | $R_{\rm b}$ | δ_{b} | 0.21629 ± 0.00066 | Z Peak | 0.000003 (4) | < 0.000060 | Statistics, small IP | Hemisphere correlations | | A_{LR} | $\Delta \rho$, ϵ_3 , $\Delta \alpha_{had}$ | 0.1514 ± 0.0022 | Z peak, polarized | 0.000015 (18) | < 0.000015 | 4 bunch scheme, 2exp | Design experiment | | mw (MeV) | $\Delta \rho$, ϵ_3 , ϵ_2 , $\Delta \alpha_{had}$ | 80385 ± 15 | WW threshold scan | 0.3 (0.4)MeV | < 0.5 MeV | E_{beam} , Statistics | QED corrections | Input JHEP 1401 (2014) 164 $m_{\text{top}} (\text{MeV})$ tt threshold scan 10 (12) MeV < 10 MeV Statistics Theory interpretation ## Summary - The indirect determination of M_w from the global fit of the SM parameters calls for a target precision of 10 MeV on the measurement of M_w - For the measurement of the W mass at the LHC it is necessary to control and reduce many sources of experimental and theoretical uncertainties - A first step towards the measurement of M_w is the lepton calibration, and the validation of the analysis techniques through the measurement of M_z - ATLAS and CMS have an extensive program of W, Z measurements which can help constraining many of the theoretical uncertainties - Prospects at future e⁺e⁻ colliders ILC (TLEP) for approximately a factor of 2 (20) improvement on δM_W and δM_Z # **BACKUP** ### W mass uncertainties at CDF | m_T fit uncertainties | | | | | | | | |--------------------------|----------------|---------------------|--------|--|--|--|--| | Source | $W o \mu \nu$ | $W \rightarrow e v$ | Common | | | | | | Lepton energy scale | 7 | 10 | 5 | | | | | | Lepton energy resolution | 1 | 4 | 0 | | | | | | Lepton efficiency | 0 | 0 | 0 | | | | | | Lepton tower removal | 2 | 3 | 2 | | | | | | Recoil scale | 5 | 5 | 5 | | | | | | Recoil resolution | 7 | 7 | 7 | | | | | | Backgrounds | 3 | 4 | 0 | | | | | | PDFs | 10 | 10 | 10 | | | | | | W boson p_T | 3 | 3 | 3 | | | | | | Photon radiation | 4 | 4 | 4 | | | | | | Statistical | 16 | 19 | 0 | | | | | | Total | 23 | 26 | 15 | | | | | | p_T^{ν} fit uncertainties | | | | | | | | |-------------------------------|---|----|----|--|--|--|--| | Source | $W \rightarrow \mu \nu$ $W \rightarrow e \nu$ Correla | | | | | | | | Lepton energy scale | 7 | 10 | 5 | | | | | | Lepton energy resolution | 1 | 7 | 0 | | | | | | Lepton efficiency | 2 | 3 | 0 | | | | | | Lepton tower removal | 4 | 6 | 4 | | | | | | Recoil scale | 2 | 2 | 2 | | | | | | Recoil resolution | 11 | 11 | 11 | | | | | | Backgrounds | 6 | 4 | 0 | | | | | | PDFs | 11 | 11 | 11 | | | | | | W boson p_T | 4 | 4 | 4 | | | | | | Photon radiation | 4 | 4 | 4 | | | | | | Statistical | 22 | 25 | 0 | | | | | | Total | 30 | 33 | 18 | | | | | | p_T^{ℓ} fit uncertainties | | | | | | | | |--------------------------------|----------------|---------------------|--------|--|--|--|--| | Source | $W o \mu \nu$ | $W \rightarrow e v$ | Common | | | | | | Lepton energy scale | 7 | 10 | 5 | | | | | | Lepton energy resolution | 1 | 4 | 0 | | | | | | Lepton efficiency | 1 | 2 | 0 | | | | | | Lepton tower removal | 0 | 0 | 0 | | | | | | Recoil scale | 6 | 6 | 6 | | | | | | Recoil resolution | 5 | 5 | 5 | | | | | | Backgrounds | 5 | 3 | 0 | | | | | | PDFs | 9 | 9 | 9 | | | | | | W boson p_T | 9 | 9 | 9 | | | | | | Photon radiation | 4 | 4 | 4 | | | | | | Statistical | 18 | 21 | 0 | | | | | | Total | 25 | 28 | 16 | | | | | Phys. Rev. D 89, 072003 (2014) Uncertainties are given in MeV ### W mass uncertainties at D0 Phys. Rev. D 89, 012005 (2014) | Source | Section | m_T | p_T^e | E_T | |---|-----------------------------|-------|---------|-------| | Experimental | | | | | | Electron Energy Scale | $\overline{\mathrm{VIIC4}}$ | 16 | 17 | 16 | | Electron Energy Resolution | $\overline{ m VIIC 5}$ | 2 | 2 | 3 | | Electron Shower Model | VC | 4 | 6 | 7 | | Electron Energy Loss | $\nabla \mathbf{D}$ | 4 | 4 | 4 | | Recoil Model | VIID3 | 5 | 6 | 14 | | Electron Efficiencies | VIIB10 | 1 | 3 | 5 | | Backgrounds | VIII | 2 | 2 | 2 | | \sum (Experimental) | | 18 | 20 | 24 | | W Production and Decay Model | | | | | | PDF | VIC | 11 | 11 | 14 | | QED | $\overline{ ext{VIB}}$ | 7 | 7 | 9 | | Boson p_T | $\overline{\text{VIA}}$ | 2 | 5 | 2 | | \sum (Model) | | 13 | 14 | 17 | | Systematic Uncertainty (Experimental and Model) | | 22 | 24 | 29 | | W Boson Statistics | IX | 13 | 14 | 15 | | Total Uncertainty | | 26 | 28 | 33 | Uncertainties are given in MeV ## PDF uncertainties on M_T | | CTEQ6.6 | | MSTW2008 | | NNPDF2.1 | | | |---------------------|---------------------------|----------------------------|------------------------------|----------------------------|------------------------------|----------------------------|----------------------------| | | $m_W \pm \delta_{ m pdf}$ | $ \langle \chi^2 \rangle $ | $m_W \pm \delta_{ ext{pdf}}$ | $ \langle \chi^2 \rangle $ | $m_W \pm \delta_{ ext{pdf}}$ | $ \langle \chi^2 \rangle $ | $\delta_{ m pdf}^{ m tot}$ | | Tevatron, W^{\pm} | 80.398 ± 0.004 | 1.42 | 80.398 ± 0.003 | 1.42 | 80.398 ± 0.003 | 1.30 | 4 | | LHC 7 TeV W^+ | 80.398 ± 0.004 | 1.22 | 80.404 ± 0.005 | 1.55 | 80.402 ± 0.003 | 1.35 | 8 | | LHC 7 TeV W^- | 80.398 ± 0.004 | 1.22 | 80.400 ± 0.004 | 1.19 | 80.402 ± 0.004 | 1.78 | 6 | | LHC 14 TeV W^+ | 80.398 ± 0.003 | 1.34 | 80.402 ± 0.004 | 1.48 | 80.400 ± 0.003 | 1.41 | 6 | | LHC 14 TeV W^- | 80.398 ± 0.004 | 1.44 | 80.404 ± 0.006 | 1.38 | 80.402 ± 0.004 | 1.57 | 8 | Phys.Rev.D83:113008,2011 | | Tevatron | LHC7W+ | LHC7W- | LHC14W+ | LHC14W- | |---------------------------------------|----------|--------|--------|---------|---------| | $\alpha_s(m_Z) = 0.118$ | 80.398 | 80.400 | 80.398 | 80.402 | 80.400 | | $\alpha_s(m_Z) = 0.119 \text{ (ref)}$ | 80.398 | 80.402 | 80.402 | 80.400 | 80.402 | | $\alpha_s(m_Z) = 0.120$ | 80.398 | 80.400 | 80.398 | 80.402 | 80.402 | Table 7: Central value of the fit of m_w obtained with NNPDF2.1, using PDF sets that differ by the $\alpha_s(m_Z)$ value, for different colliders and energies. The fit has been done on normalized distributions and using normalized templates, and the distributions have been generated at NLO-QCD with DYNNLO. | m_W (GeV) | Tevatron | LHC7W+ | LHC7W- | LHC14W+ | LHC14W- | |-----------------------------|----------|--------|--------|---------|---------| | $m_c = 1.414 \text{ (ref)}$ | 80.398 | 80.402 | 80.402 | 80.400 | 80.402 | | $m_c = 1.5$ | 80.398 | 80.400 | 80.398 | 80.398 | 80.399 | | $m_c = 1.6$ | 80.398 | 80.400 | 80.400 | 80.398 | 80.399 | | $m_c = 1.7$ | 80.396 | 80.400 | 80.400 | 80.396 | 80.398 | Table 8: Central value of the fit of m_W obtained with NNPDF2.1 sets with different values of m_c for different colliders and energies. We include the default value in NNPDF2.1, $m_c^2 = 2 \text{ GeV}^2$ as well.