Status and future prospects for Higgs production computations

Claude Duhr

Rencontres du Vietnam 2014: Physics at LHC and beyond
Quy Nhon, 15 August 2014
Establishing whether the BEH mechanism and its boson is SM-like will be of outmost importance for the run of the LHC.
Establishing whether the BEH mechanism and its boson is SM-like will be of outmost importance for the run of the LHC.

Higgs-boson production modes at the LHC:

- Gluon fusion
- TTH
- Higgs strahlung
- VBF
Establishing whether the BEH mechanism and its boson is SM-like will be of outmost importance for the run of the LHC.

Higgs-boson production modes at the LHC:

- Gluon fusion
- TTH
- Higgs strahlung
- VBF

Current status for the total cross section: \[\frac{\sigma}{\sigma_{SM}} = 1.00 \pm 0.13 \left[\pm 0.09 \text{(stat.)}^{+0.08}_{-0.07} \text{(theo.)} \pm 0.07 \text{(syst.)} \right] \]
Establishing whether the BEH mechanism and its boson is SM-like will be of outmost importance for the run of the LHC.

Higgs-boson production modes at the LHC:

- Gluon fusion
- TTH
- Higgs strahlung
- VBF

Current status for the total cross section: [D. André @ ICHEP 2014]

\[\frac{\sigma}{\sigma_{SM}} = 1.00 \pm 0.13 \left[\pm 0.09 \text{(stat.)} \pm 0.08 \text{(theo.)} \pm 0.07 \text{(syst.)} \right] \]

- Theo. and exp. uncertainties are of the same order.
- Need to improve our theory predictions!
Outline

- There is a need to improve our theoretical predictions!
 - Requires higher order computations!

- Outline:
 - The gluon fusion cross section: Status
 - NNLO corrections to H + jet and Higgs pairs.
 - Towards N3LO corrections to inclusive Higgs production.
The gluon fusion cross section: Status
The dominant Higgs production mechanism at the LHC is gluon fusion.

Loop induced process!

→ Leads to technical complications!
The dominant Higgs production mechanism at the LHC is gluon fusion.

- Loop induced process!
 - Leads to technical complications!

- Complication 1:
 Everything is shifted by one loop order.
The dominant Higgs production mechanism at the LHC is gluon fusion.

- Loop induced process!
 - Leads to technical complications!

- Complication 1:
 Everything is shifted by one loop order.

- Complication 2:
 Loops with massive virtual particles are generically beyond the state-of-the-art starting at two loops.
The dominant Higgs production mechanism at the LHC is gluon fusion.

Loop induced process!

- Leads to technical complications!

Complication 1:
Everything is shifted by one loop order.

Complication 2:
Loops with massive virtual particles are generically beyond the state-of-the-art starting at two loops.

Conclusion:
Higher-order computations for gluon fusion are extremely difficult!
Gluon fusion

- For a light Higgs boson, the dimension five operator describing a tree-level coupling of the gluons to the Higgs boson

\[\mathcal{L} = \mathcal{L}_{QCD,5} - \frac{1}{4v} C_1 H G^a_{\mu \nu} G_a^{\mu \nu} \]

- Benefit: Removes both complications in one go!
Gluon fusion

- For a light Higgs boson, the dimension five operator describing a tree-level coupling of the gluons to the Higgs boson

\[\mathcal{L} = \mathcal{L}_{QCD,5} - \frac{1}{4v} C_1 H G^a_{\mu\nu} G_a^{\mu\nu} \]

- Benefit: Removes both complications in one go!
- If we aim for precision, how good is this ‘crude’ approximation..?
 - Corrections in the top mass can be systematically computed.
 - Experience from NNLO shows that this approximation works amazingly well!
- Caveat! This is not true if other scales are involved that can be higher than the top threshold!
Gluon fusion: Status

- Status of the inclusive cross section:
 - NLO corrections including full top-mass effects.
 - NNLO corrections in effective theory.
 - Top mass corrections at NNLO.
 - Leading electroweak corrections.
 - Resummation up to NNLL.

- Fully differential cross sections are available up to NNLO!

- Next goal: Inclusive cross section at N3LO in the effective theory
 - More on this later!
NNLO corrections to
H + jet and Higgs pairs
Higgs + jet

- The two-loop corrections to H+jet in the effective theory have been computed
 [Gehrmann, Glover, Jaquier, Koukoutsakis]

- Last year first steps were taken towards the computing the full NNLO corrections.
 [Boughezal, Caola, Melnikov, Petriello, Schulze]

- First process computed at NNLO where a jet function is required already at LO.

- Infrared singularities were subtracted using (a variant of) Stripper. [Czakon]
Higgs + jet

- Inclusive NNLO cross section computed last year (gluons only.):

\[
\sigma_{\text{LO}}(pp \to Hj) = 2713^{+1216}_{-776} \text{ fb}, \\
\sigma_{\text{NLO}}(pp \to Hj) = 4377^{+760}_{-738} \text{ fb}, \\
\sigma_{\text{NNLO}}(pp \to Hj) = 6177^{+204}_{-242} \text{ fb}.
\]

[Boughezal, Caola, Melnikov, Petriello, Schulze]

- At LoopFest preliminary differential distributions were announced.

 ➡ Using (a variant of) Stripper.

 ➡ Using antenna subtraction.

 [Boughezal, Caola, Melnikov, Petriello, Schulze]

 [Chen, Gehrmann, Glover, Jaquier]
Higgs pair production

- Last year NNLO correction to Higgs pair production in the large top-mass limit production became available.

\[
\begin{align*}
\sigma_{\text{LO}} &= 17.8^{+5.3}_{-3.8} \text{ fb} \\
\sigma_{\text{NLO}} &= 33.2^{+5.9}_{-4.9} \text{ fb} \\
\sigma_{\text{NNLO}} &= 40.2^{+3.2}_{-3.5} \text{ fb}
\end{align*}
\]

[de Florian, Mazzitelli]

- NNLO computations in EFT are normalised to exact LO matrix element
 - At NLO: \(~10\%\) agreement.

[Grigo, Hoff, Melnikov, Steinhauser]
Going beyond NNLO: towards N3LO
The need for N3LO

\[\frac{\sigma}{\sigma_{SM}} = 1.00 \pm 0.13 \left[\pm 0.09 \text{(stat.)}^{+0.08}_{-0.07} \text{(theo.)} \pm 0.07 \text{(syst.)} \right] \]

⇒ We need to update our theory prediction!

• Next contribution is the N3LO contribution in the effective theory.
 ⇒ Huge challenge!
 ⇒ Never has an N3LO computation been done for a hadron collider!

• Recently: Several approximate N3LO results have been presented.
 ⇒ Only full N3LO result will be final judge!
Contributions at N3LO

At N3LO, there are 5 contributions:

- Triple virtual
- Real-virtual squared
- Double virtual real
- Double real virtual
- Triple real
Reverse-unitarity @ N3LO

Growth in complexity for real emission

<table>
<thead>
<tr>
<th>Order</th>
<th>Diagram</th>
<th>Diagram</th>
<th>Diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO</td>
<td></td>
<td></td>
<td>1 diagram</td>
</tr>
<tr>
<td>NLO</td>
<td></td>
<td></td>
<td>1 integral</td>
</tr>
<tr>
<td>NNLO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N3LO</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Reverse-unitarity @ N3LO

Growth in complexity for real emission

<table>
<thead>
<tr>
<th></th>
<th>Diagram</th>
<th>LO</th>
<th>NLO</th>
<th>NNLO</th>
<th>N3LO</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO</td>
<td></td>
<td>1 diagram</td>
<td>1 integral</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NLO</td>
<td></td>
<td>10 diagrams</td>
<td>1 integral</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NNLO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N3LO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Reverse-unitarity @ N3LO

<table>
<thead>
<tr>
<th>Order</th>
<th>Diagrams</th>
<th>Integrals</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO</td>
<td></td>
<td>1 diagram</td>
</tr>
<tr>
<td>NLO</td>
<td></td>
<td>10 diagrams</td>
</tr>
<tr>
<td>NNLO</td>
<td></td>
<td>381 diagrams</td>
</tr>
<tr>
<td>N3LO</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Reverse-unitarity @ N3LO

Growth in complexity for real emission

<table>
<thead>
<tr>
<th>Order</th>
<th>Diagrams</th>
<th>Integrals</th>
</tr>
</thead>
<tbody>
<tr>
<td>LO</td>
<td>1 diagram</td>
<td>1 integral</td>
</tr>
<tr>
<td>NLO</td>
<td>10 diagrams</td>
<td>1 integral</td>
</tr>
<tr>
<td>NNLO</td>
<td>381 diagrams</td>
<td>18 integrals</td>
</tr>
<tr>
<td>N3LO</td>
<td>26565 diagrams</td>
<td>~500 integrals</td>
</tr>
</tbody>
</table>
The threshold expansion

- There are 1000’s of integrals to compute!
 - Tough nut to crack!
 - Concentrate on some approximation first.

- The gluon fusion cross section depends on one single parameter:
 \[z = \frac{m^2}{s} \]

- Close to threshold \((z \sim 1)\), we can approximate the triple real cross section by a power series:
 \[\hat{\sigma}(z) = \sigma_{-1} + \sigma_0 + (1 - z) \sigma_1 + O(1 - z)^2 \]

- Goal:
 - First term captures complete 3-loop correction + emission of soft gluons.
The soft-virtual approximation

- The computation of the first term has been completed!
 [Anastasiou, CD, Dulat, Furlan, Gehrmann, Herzog, Mistlberger]

- Many different contributions are needed:
 - 22 three-loop.
 [Baikov, Chetyrkin, Smirnov, Smirnov, Steinhauser; Gehrmann, Glover, Huber, Ikizlerli, Studerus]
 - 3 double-virtual-real.
 [CD Gehrmann, Li, Zhu]
 - 7 real-virtual-squared.
 [Anastasiou, CD, Dulat, Herzog, Mistlberger; Kilgore]
 - 10 double-real-virtual.
 [Anastasiou, CD, Dulat, Furlan, Herzog, Mistlberger; Li, von Manteuffel, Schabinger, Zhu]
 - 8 triple real.
 [Anastasiou, CD, Dulat, Mistlberger]
 - three-loop splitting functions.
 [Moch, Vermaseren, Vogt]
 - three-loop beta function.
 [Tarasov, Vladimirov, Zharkov; Larin, Vermaseren]
 - three-loop Wilson coefficient.
 [Chetyrkin, Kniehl, Steinhauser; Schroeder, Steinhauser; Chetyrkin, Kuhn, Sturm]
Caveat!

Source of ambiguity:

\[
\int dx_1 \, dx_2 \, [f_i(x_1) \, f_j(x_2) \, z \, g(z)] \left[\frac{\hat{\sigma}_{ij}(s, z)}{z \, g(z)} \right]_{\text{threshold}} \quad \lim_{z \to 1} g(z) = 1
\]
Generalizations

- Soft-virtual corrections are universal, and the result can be extended to other processes.

- Can be used to predict the rapidity distribution of the Higgs boson at N3LO at threshold. [Ahmed, Mandal, Rana, Ravindran]

- Recently the 3-loop form factor for $bb \rightarrow H$ was computed. [Gehrmann, Kara]

- The result was immediately extended to N3LO corrections to Higgs production in bottom fusion at threshold. [Ahmed, Rana, Ravindran]

 ➡ N.B.: Bottom-fusion cross section available fully differentially at NNLO! [Buehler, Herzog, Lazopoulos, Mueller]

- Caveat for threshold approximation still applies!
Looking into the future…

- The soft-virtual term is only the beginning!
- Real-virtual-squared contribution already fully known.
 [Anastasiou, CD, Dulat, Herzog, Mistlberger; Kilgore]
- Next-to-soft term known for triple real contribution.
 [Anastasiou, CD, Dulat, Mistlberger]
- Two-loop matrix element for H+j known
 [Gehrmann, Glover, Jaquier, Koukoutsakis]
 ➡ Phase space integration requires contribution from collinear regions!
- Once the N3LO result for the Higgs is available, more will follow!
 ➡ Drell-Yan, bb -> H, …
Conclusion

- LHC Run II will require very precise QCD computations for Higgs production.
 - Theory uncertainties are same size as experimental ones.
- A lot of progress was made regarding (differential) predictions at NNLO.
 - $H + \text{jet, Higgs pairs, } bb \rightarrow H$.
- N3LO result for inclusive cross section is in the making.
 - Threshold term already available!
 - More terms in threshold expansion and the full results are in the making.
 - Requires a lot of new and advanced technologies from the theory side!