

Status and future prospects for Higgs production computations

Claude Duhr

Rencontres du Vietnam 2014: Physics at LHC and beyond Quy Nhon, 15 August 2014

 Establishing whether the BEH mechanism and its boson is SM-like will be of outmost importance for the run of the LHC.

- Establishing whether the BEH mechanism and its boson is SM-like will be of outmost importance for the run of the LHC.
- Higgs-boson production modes at the LHC:

- Establishing whether the BEH mechanism and its boson is SM-like will be of outmost importance for the run of the LHC.
- Higgs-boson production modes at the LHC:

Current status for the total cross section: [D. André @ ICHEP 2014]

$$\sigma/\sigma_{\rm SM} = 1.00 \pm 0.13 \left[\pm 0.09 ({\rm stat.})^{+0.08}_{-0.07} ({\rm theo.}) \pm 0.07 ({\rm syst.}) \right]$$

- Establishing whether the BEH mechanism and its boson is SM-like will be of outmost importance for the run of the LHC.
- Higgs-boson production modes at the LHC:

Current status for the total cross section: [D. André @ ICHEP 2014]

$$\sigma/\sigma_{\rm SM} = 1.00 \pm 0.13 \left[\pm 0.09 \text{(stat.)} + 0.08 \text{(heo.)} \pm 0.07 \text{(syst.)} \right]$$

- → Theo. and exp. uncertainties are of the same order.
- → Need to improve our theory predictions!

Outline

- There is a need to improve our theoretical predictions!
 - → Requires higher order computations!

- Outline:
 - → The gluon fusion cross section: Status
 - → NNLO corrections to H + jet and Higgs pairs.
 - → Towards N3LO corrections to inclusive Higgs production.

The gluon fusion cross section: Status

- Loop induced process!
 - → Leads to technical complications!

- Loop induced process!
 - → Leads to technical complications!
- Complication 1:
 Everything is shifted by one loop order.

- Loop induced process!
 - → Leads to technical complications!
- Complication 1:
 Everything is shifted by one loop order.
- Complication 2: Loops with massive virtual particles are generically beyond the state-of-the-art starting at two loops.

- Loop induced process!
 - → Leads to technical complications!
- Complication 1:
 Everything is shifted by one loop order.
- Complication 2:
 Loops with massive virtual particles are generically beyond the state-of-the-art starting at two loops.
- Conclusion:
 Higher-order computations for gluon fusion are extremely difficult!

• For a light Higgs boson, the dimension five operator describing a tree-level coupling of the gluons to the Higgs boson

Benefit: Removes both complications in one go!

• For a light Higgs boson, the dimension five operator describing a tree-level coupling of the gluons to the Higgs boson

$$\mathcal{L} = \mathcal{L}_{QCD,5} - \frac{1}{4v} C_1 H G^a_{\mu\nu} G^{\mu\nu}_a$$

- Benefit: Removes both complications in one go!
- If we aim for precision, how good is this 'crude' approximation..?
 - → Corrections in the top mass can be systematically computed.
 - → Experience from NNLO shows that this approximation works amazingly well!
- Caveat! This is not true if other scales are involved that can be higher than the top threshold!

Gluon fusion: Status

- Status of the inclusive cross section:
 - → NLO corrections including full top-mass effects.
 - → NNLO corrections in effective theory.
 - → Top mass corrections at NNLO.
 - → Leading electroweak corrections.
 - Resummation up to NNLL.
- Fully differential cross sections are available up to NNLO!
- Next goal: Inclusive cross section at N3LO in the effective theory
 - → More on this later!

NNLO corrections to H + jet and Higgs pairs

Higgs + jet

- The two-loop corrections to H+jet in the effective theory have been computed

 [Gehrmann, Glover, Jaquier, Koukoutsakis]
- Last year first steps were taken towards the computing the full NNLO corrections.
 [Boughezal, Caola, Melnikov, Petriello, Schulze]
- First process computed at NNLO where a jet function is required already at LO.

• Infrared singularities were subtracted using (a variant of) Stripper. [Czakon]

Higgs + jet

• Inclusive NNLO cross section computed last year (gluons

only.)

$$\sigma_{\text{LO}}(pp \to Hj) = 2713^{+1216}_{-776} \text{ fb},$$
 $\sigma_{\text{NLO}}(pp \to Hj) = 4377^{+760}_{-738} \text{ fb},$
 $\sigma_{\text{NNLO}}(pp \to Hj) = 6177^{-204}_{+242} \text{ fb}.$

[Boughezal, Caola, Melnikov, Petriello, Schulze]

- At LoopFest preliminary differential distributions were announced.
 - Using (a variant of) Stripper.
 - Using antenna subtraction.

[Boughezal, Caola, Melnikov, Petriello, Schulze]

[Chen, Gehrmann, Glover, Jaquier]

Higgs pair production

• Last year NNLO correction to Higgs pair production in the large top-mass limit production became available.

$$\sigma_{\text{LO}} = 17.8^{+5.3}_{-3.8} \,\text{fb}$$

$$\sigma_{\text{NLO}} = 33.2^{+5.9}_{-4.9} \,\text{fb}$$

$$\sigma_{\text{NNLO}} = 40.2^{+3.2}_{-3.5} \,\text{fb}$$

[de Florian, Mazzitelli]

- NNLO computations in EFT are normalised to exact LO matrix element
 - → At NLO: ~10% agreement.

[Grigo, Hoff, Melnikov, Steinhauser]

Going beyond NNLO: towards N3LO

The need for N3LO

$$\sigma/\sigma_{\rm SM} = 1.00 \pm 0.13$$
 $\left[\pm 0.09 \text{(stat.)} + 0.08 \text{(heo.)} \pm 0.07 \text{(syst.)} \right]$

- → We need to update our theory prediction!
- Next contribution is the N3LO contribution in the effective theory.
 - → Huge challenge!
 - → Never has an N3LO computation been done for a hadron collider!
- Recently: Several approximate N3LO results have been presented.
 - → Only full N3LO result will be final judge!

Contributions at N3LO

• At N3LO, there are 5 contributions:

Triple virtual

Real-virtual squared

Double virtual real

Double real virtual

Triple real

LO	9000000	1 diagram	1 integral
NLO	9000000000000000000000000000000000000		
NNLO	××		
N3LO	\$2000000 \$		

LO	9000000	1 diagram	1 integral
NLO	000000000000000000000000000000000000000	10 diagrams	1 integral
NNLO	××		
N3LO	\$		

LO	000000000000000000000000000000000000000	1 diagram	1 integral
NLO	98000000000000000000000000000000000000	10 diagrams	1 integral
NNLO	×	381 diagrams	18 integrals
N3LO	\$		

LO	000000	1 diagram	1 integral
NLO	 ⊗×⊗ 98000000000000000000000000000000000000	10 diagrams	1 integral
NNLO	××	381 diagrams	18 integrals
N3LO	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	26565 diagrams	~500 integrals

The threshold expansion

- There are 1000's of integrals to compute!
 - → Tough nut to crack!
 - Concentrate on some approximation first.
- The gluon fusion cross section depends on one single parameter:

$$z = \frac{m^2}{s}$$

• Close to threshold ($z \sim 1$), we can approximate the triple real cross section by a power series:

$$\hat{\sigma}(z) = \sigma_{-1} + \sigma_0 + (1 - z)\sigma_1 + \mathcal{O}(1 - z)^2$$

- Goal:
 - First term captures complete 3-loop correction + emission of soft gluons.

The soft-virtual approximation

• The computation of the first term has been completed!

[Anastasiou, CD, Dulat, Furlan, Gehrmann, Herzog, Mistlberger]

Many different contributions are needed:

→ 22 three-loop.

[Baikov, Chetyrkin, Smirnov, Smirnov, Steinhauser; Gehrmann, Glover, Huber, Ikizlerli, Studerus]

→ 3 double-virtual-real.

[CD Gehrmann, Li, Zhu]

→ 7 real-virtual-squared.

[Anastasiou, CD, Dulat, Herzog, Mistlberger; Kilgore]

→ 10 double-real-virtual. [Anastasiou, CD, Dulat, Furlan, Herzog, Mistlberger; Li, von Manteuffel, Schabinger, Zhu]

→ 8 triple real.

[Anastasiou, CD, Dulat, Mistlberger]

three-loop splitting functions.

[Moch, Vermaseren, Vogt]

→ three-loop beta function.

[Tarasov, Vladimirov, Zharkov; Larin, Vermaseren]

three-loop Wilson coefficient: [Chetyrkin, Kniehl, Steinhauser; Schroeder, Steinhauser; Chetyrkin, Kuhn, Sturm]

Higgs soft-virtual @ N3LO

- Caveat!
- Source of ambiguity:

$$\int dx_1 dx_2 \left[f_i(x_1) f_j(x_2) z g(z) \right] \left[\frac{\hat{\sigma}_{ij}(s,z)}{z g(z)} \right]_{\text{threshold}}$$

$$\lim_{z \to 1} g(z) = 1$$

[Herzog, Mistlberger]

Generalizations

- Soft-virtual corrections are universal, and the result can be extended to other processes.
- Can be used to predict the rapidity distribution of the Higgs boson at N3LO at threshold. [Ahmed, Mandal, Rana, Ravindran]
- Recently the 3-loop form factor for bb -> H was computed. [Gehrmann, Kara]
- The result was immediately extended to N3LO corrections to Higgs production in bottom fusion at threshold.

[Ahmed, Rana, Ravindran]

- → N.B.: Bottom-fusion cross section available fully differentially at NNLO! [Buehler, Herzog, Lazopoulos, Mueller]
- Caveat for threshold approximation still applies!

Looking into the future...

- The soft-virtual term is only the beginning!
- Real-virtual-squared contribution already fully known.

[Anastasiou, CD, Dulat, Herzog, Mistlberger; Kilgore]

• Next-to-soft term known for triple real contribution.

[Anastasiou, CD, Dulat, Mistlberger]

Two-loop matrix element for H+j known

[Gehrmann, Glover, Jaquier, Koukoutsakis]

- → Phase space integration requires contribution from collinear regions!
- Once the N3LO result for the Higgs is available, more will follow!
 - → Drell-Yan, bb -> H, ...

Conclusion

- LHC Run II will require very precise QCD computations for Higgs production.
 - → Theory uncertainties are same size as experimental ones.
- A lot of progress was made regarding (differential) predictions at NNLO.
 - → H + jet, Higgs pairs, bb -> H.
- N3LO result for inclusive cross section is in the making.
 - → Threshold term already available!
 - → More terms in threshold expansion and the full results are in the making.
 - → Requires a lot of new and advanced technologies from the theory side!