Search for ttH associated production at LHC Cristina Botta (CERN) on behalf of the ATLAS and CMS collaborations "Physics at LHC and beyond", August 10-17 2014, Quy-Nhon, Vietnam # The top Yukawa coupling - Two main probes of ttH coupling at LHC: - gluon fusion production cross section ($\sigma \sim |y_t|^2$), assuming no BSM particles in the loop. - associated production cross section, a tree level process proportional to $|y_t|^2$ - The first is pretty well known: already now the experimental accuracy on y_t is 25-30% from each experiment - Significant progress from the experimental side on the second point in the last year. ttH associated production - Higgs decays at this mass: - BR H \rightarrow bb ~60%, H \rightarrow WW^(*) ~20% and H \rightarrow γγ, H \rightarrow ττ, H \rightarrow ZZ^(*) significantly smaller BR but produce experimentally accessible signatures - ttH events are crowded due to the presence of additional b-jets, jets/leptons from the top quarks decays ## ttH searches at ATLAS & CMS C. Botta (CERN) - tt + b-jets, to search for H→bb - high rate but big tt+bb bkg and complex multi-jet final state ATLAS: 8 TeV data, ATLAS-CONF-2014-011 • CMS Analysis I: 8 TeV data, arXiv:1408.1682 (together with the low sensitivity channel tt + ττ: with hadronically decaying taus) • CMS Analysis II: 8 TeV data, HIG-14-009 • low rate. important for the high-lumi projection as systematics play a negligible role in it • ATLAS: 7+8 TeV data, ATLAS-CONF-2014-043 - tt + leptons, to search for $H \rightarrow WW$, ZZ, $\tau\tau$ ($\tau \rightarrow \ell$) - low rate. clean and low bkg signatures with 2,3,4 leptons CMS: 8 TeV data, arXiv:1408.1682 5 # H-hadrons #### Single-lepton (SL) channel #### Di-lepton (DL) channel | CNC | 2 OS e/μ (p τ> 20,10) | |-----|--------------------------------------| | CMS | ≥3 jets ≥2b-jets | | | (p _T >40,40,40,30) | | | 1 e/u (p _T >25.15) | ≥3 jets ≥2b-jets (**p**_T>**25**) #### Hadronic- τ (τ_h) channel 1 e/ μ (p_T>30), 2 τ (p_T>20), ≥ 4jets 1-2b-jets $(p_T>40,40,40,30)$ # **Analysis Strategy** - Categorization in NJets and Nb-Jets, BDT/NN built in each categories (best S/B ~0.03 with #sig ~10) - variables: reconstructed object kinematic, event shape, b-tagging discriminator value | CLAC | | |----------|--| | CM5/ | | | \times | | | | | | | | #### H->bb, SL Channel | | 2 b-tags | 3 b-tags | 4 b-tags | |-----------|----------|----------|----------| | 4 jets | | BDT | BDT | | 5 jets | | BDT | BDT | | >= 6 jets | BDT | BDT | BDT | | CMS/ | |------| | | | | | | 2 b-tags | 3 b-tags | 4 b-tags | |-----------|----------|----------|----------| | 2 jets | | | | | 3 jets | BDT | RI |)T | | >= 4 jets | BDT | BDT | | H->bb, DL Channel | | 2 b-tags | 3 b-tags | 4 b-tags | |-----------|--------------------|--------------------|---------------| | 4 jets | H _T had | H _T had | H_{T}^{had} | | 5 jets | H_{T}^{had} | NN | NN | | >= 6 jets | H_{T}^{had} | NN | NN | | | 2 b-tags | 3 b-tags | 4 b-tags | |-----------|--------------------|----------|----------| | 2 jets | H _T had | | | | 3 jets | H_{T}^{had} | NN | | | >= 4 jets | H_{T}^{had} | NN | NN | - Main bkg tt+jets: - from simulation separated in sub-samples: (tt+lf, tt+bb,tt+b,tt+cc) - data in bins with low S/B are used to constraint these bkg sources ## Results bb: 15 categories #### From combined fit to NNs/BDTs: #### 95% CL upper limits on μ_{ttH} : | | | Median Exp
(bkg only) | Median Exp
(signal injected) | | |-----|----|--------------------------|---------------------------------|-----| | | bb | 2.7 | 3.3 | 4.4 | | CMS | bb | 3.5 | 5.5 | 4.1 | | CMS | ττ | 14.2 | 16.2 | 13 | #### Best-fit value for μ_{ttH} : | | bb | 1.8+1.5-1.4 | |-----|----|----------------------------------| | CMS | bb | 0.7+1.9-1.9 | | CMS | ττ | -1.3 ^{+6.3} -5.5 | bb: 10 categories, ττ: 6 categories # Alternative Analysis Strategy - Similar event selection (SL, DL channels with ≥5 jets, ≥4 jets) - b-tagging discriminator value for the leading 6(4) jets in SL(DL) used to build a perevent likelihood ratio to separate bbbb (ttH, tt+HF) vs bbjj (tt+LF) - Four event-categories based on exclusive event interpretation for bkg: | CAT1: tt->bblvqq | CAT2: tt->bblvq(q)+g | CAT3: tt->bblvq(q) | CAT4: tt->bblvlv | | |------------------|----------------------|--------------------|------------------|--| |------------------|----------------------|--------------------|------------------|--| - Likelihood technique based on the **theoretical Matrix Element** for **ttH** and **tt+bb** used to compute probability density functions for S and B. - •Signal extraction performed fitting the ratio between these two probabilities ($P_{s/b}$) # H-photons #### **Leptonic channel** | CMS | |-----| | | | | | | $p_{T(\gamma_1)} > m_{\gamma_1}/2$ $p_{T(\gamma_2)} > 25$ $\geq 1 e/\mu, p_T > 20$ $\geq 2 \text{ jets (} \geq 1\text{b-jets)}, p_T > 25$ $p_{T(\gamma 1)} > 0.35 \text{ m}_{\gamma \gamma}$ $p_{T(\gamma 2)} > 0.25 \text{ m}_{\gamma \gamma}$ $\geq 1 \text{ e}/\mu, p_T > 20$ $\geq 2 \text{ jets (} \geq 1 \text{b-jets)}, p_T > 25$ #### **Hadronic channel** $p_{T(\gamma 1)} > m_{\gamma \gamma}/2$ $p_{T(\gamma 2)} > 25$ o e/μ , $p_T > 20$ ≥ 5 jets ($\geq 1b$ -jets), $p_T > 25$ $p_{T(\gamma 1)} > 0.35 \text{ m}_{\gamma \gamma}$ $p_{T(\gamma 2)} > 0.25 \text{ m}_{\gamma \gamma}$ $o e/\mu, p_T > 20$ $\geq 5 \text{ jets (} \geq 1\text{b-jets)}, p_T > 25$ 11/08/14 # Analysis Strategy - Analysis limited by statistic (low BR H→γγ) but distinctive signature: - two energetic photons, narrow Higgs peak over falling bkg in M_{yy} distribution - the only channel that can eventually confirm that an excess is due to h(125) - Strategy: fit the M_{YY} distribution using the diphoton spectrum sidebands to fit the bkg # H-leptons | H decay | top pair decay | trigger | | |------------|----------------------------|---------------|--| | WW, ZZ, ττ | semileptonic or dileptonic | double lepton | | #### signature #### 2 same-sign leptons (ee,eµ,µµ) 2 e/μ, p_T>20 GeV ≥4 jets (≥1b-jet), p_T>25 GeV #### 3 leptons $3 e/\mu, p_T>20,10,7/5 GeV$ ≥2 jets (≥1b-jet), p_T>25 GeV no resonant Z->II (#sig~8 sig/bkg~0.08) (#sig~4 sig/bkg~0.07) #### 4 leptons 4 e/ μ , p_T>20,10,7/5,7/5 GeV ≥2 jets (≥1b-jet), p_T>25 GeV no resonant Z->ll (#sig~0.5 sig/bkg~0.2) Analysis Strategy - Main focus: suppress and control reducible background (~up to 2/3 of the total bkg after selection) - tt with fake l from b-jets Dedicated lepton ID (MVA) developed to suppress it. - data-driven estimate: measurement of the probability for a lepton from b-jet to pass the MVA ID requirement - Inclusive selection to preserve signal efficiency. Full event kinematic cannot be reconstructed - to improve sensitivity: - categorize events (for 2l, 3l) in positive and negative total lepton charge (ttW, WZ and Wjets are asymmetric), 5% gain in sensitivity - combine partial kinematic variables in a **BDT** (for 2 ℓ , 3 ℓ), 10% gain in sensitivity (4I: just use N(jet), since yields are small - signal extraction performed fitting the BDT/N(jet) distributions ### Results #### From combined fit to BDTs/N(jet): #### 95% CL upper limits on μ_{ttH} : | | Median Exp | Median Exp | Obs | |------------|------------|-------------------|-----| | | (bkg only) | (signal injected) | ODS | | 2lss | 3.4 | 3.6 | 9.0 | | 3 l | 4.1 | 5.0 | 7.5 | | 41 | 8.8 | 11.9 | 6.8 | | all | 2.4 HIG- | 3.5 | 6.6 | #### Best-fit value for μ_{ttH}: | 2lss | 5·3 ^{+2.1} -1.8 | | |------------|----------------------------------|------------| | 3l | 3.1 ^{+2.4} -2.0 | | | 4 l | -4.7 ^{+5.0} -1.3 | | | all | 3·7 ^{+1.6} -1.4 | HIG-13-020 | @ m_H=125.6 GeV 11/08/14 C. Botta (CERN) # Combination ## Limits on $\mu = \sigma/\sigma_{SM}$ - Median expected UL on μ: - in the absence of ttH signal:2.3 at 95% CL - with the SM ttH production:3.0 at 95% CL - Observed UL is 3.9 at 95% CL ATLAS-CONF-2014-043 - Median expected UL on μ: - in the absence of ttH signal:1.7 at 95% CL - with the SM ttH production:2.7 at 95% CL - Observed UL is 4.5 at 95% CL arXiv:1408.1682 # Best fit $\mu = \sigma/\sigma_{SM}$ The best fit to the combination yields: $$\mu = 1.6^{+1.3}$$ -1.1 - The observed p-value relative to $\mu=1$ is 0.5 σ - 1.5 σ relative to μ =0 (1 σ expected) The best fit to the combination yields: $$\mu = 2.8^{+1.0}$$ -0.9 - The observed p-value relative to $\mu=1$ is 2 σ - 3.4 σ relative to μ =0 (1.2 σ expected) ## Conclusions - - several signatures have been explored: tt+bb, tt+τ_hτ_h, tt+γγ, tt+leptons - We are entering the "measurement" era for y_t (CMS reached 1xSM sensitivity on $\mu(ttH)$: $\Delta\mu/\mu\sim1$ -> $\Delta y_t/y_t\sim50\%$) - **CMS** fit $\mu(ttH)=2.8^{+1.1}-0.9$ compatible with the SM Higgs prediction ($\mu=1$) at 2 σ - the excess is mainly driven by the same-sign μμ channel - ATLAS fit $\mu(ttH)=1.6^{+1.3}$ -1.1 compatible with the SM Higgs prediction ($\mu=1$) at **0.5** σ 11/08/14 # Backup 20/03/14 # ## Nominal result - The results in the different channels are fairly close to the SM Higgs predictions except in the $\mu^{\pm}\mu^{\pm}$ final state - Excess of events compared to the expectations, in the signal-like region of the final BDT discriminator | Process | Expected ± syst. | |-----------|------------------| | ttH | 2.7 ± 0.4 | | ttW | 8.2 ± 1.4 | | ttZ/γ* | 2.5 ± 0.5 | | WZ | 0.8 ± 0.9 | | Others | 1.4 ± 0.1 | | Reducible | 10.8 ± 4.8 | | Data | 41 | | | | C. Botta (CERN) The kinematic of the leptons in the events does not show anomalies and is compatible with that of signal or ttV events - Jets and E_Tmiss are more compatible with signal or ttV. - The multeplicity of **b-tags** is also signal-like (while the reducible background has more often only 1 b-tag since the other b-jet is misidentified as a lepton) CMS - The events in excess are characterized by having both leptons very well isolated. - Scrutiny of the events also confirms that both leptons are well reconstructed in the tracker and muon system, and that their charge is correctly assigned - The analysis was also repeated using a looser working point of the lepton MVA - the excess is visible only when both leptons pass the tight MVA wp - the rest of the sample is well described by the background model - The analysis was also repeated with a cut-based muon selection. The result is compatible with the nominal one but the sensitivity is worse both muons pass loose MVA WP # Irreducible bkg check - A more general fit is performed: - leaving unconstrained the yields of ttW, ttZ, and reducible background (for fake e, μ separately) - including additional control regions in the fit: trilepton events with one Z candidate (mostly ttZ), and dilepton events with 3 jets (ttW & red. bkg.) - Results compatible with the nominal ones (but ~20% worse sensitivity) - All backgrounds yields remain within 1σ from their input value: no indication of issues with ttW & ttZ - results for ttH and ttW are correlated, all the others are well resolved | parameter | expected | observed | |------------------------|---------------------|---------------------| | $\mu(ttH)$ | · · / / | \ | | , , | $1.0^{-1.3}_{+1.5}$ | $2.8^{-1.6}_{+1.8}$ | | $\mu(ttW)$ | $1.0^{-0.5}_{+0.5}$ | $1.4^{-0.5}_{+0.6}$ | | $\mu(ttZ)$ | $1.0^{-0.3}_{+0.4}$ | $1.1^{-0.3}_{+0.4}$ | | $\mu(\text{fake }\mu)$ | $1.0^{-0.3}_{+0.3}$ | $0.7^{-0.3}_{+0.4}$ | | $\mu(\text{fake e})$ | $1.0^{-0.3}_{+0.3}$ | $0.9^{-0.3}_{+0.3}$ | #### CMS ttH Analysis Comparison to ATLAS - For the ttH, H->bb analysis in the lepton+jets channel, the ATLAS limits are better than the baseline CMS analysis: - CMS baseline expected limit = 4.8, observed = 5.0 - ♦ ATLAS expected limit = 3.1, observed = 4.2 - Several differences between the two approaches, some large, some small. - Most prominently, ATLAS analysis has... - Increased signal and background acceptance due to object definitions and selections - Different background composition in selected events due to different b-tag performance - Incorporated additional background-rich categories - Employed more accurate NLO modeling for ttH signal - CMS has studied the effects which are immediately available to incorporate: - → ~20% improvement in unblinded limit when lowering jet/lepton pT thresholds - ~10% improvement in unblinded limit when incorporating additional categories - In fully-blinded assessment, these changes would not have been significant for the CMS baseline analysis, small % improvement - NLO signal model shows higher acceptance in most sensitive categories - Overall, no single aspect of the analysis differences cause the difference in performance - No simple explanation a collection of analysis optimizations #### CMS ttH Analysis Comparison to ATLAS - Details on the differences: - ♦ Object definition/selection: - Leptons: - ATLAS: pT>25, |η| < 2.5 for e and μ - CMS: pT>30, |η| < 2.5 (2.1) for e (μ) - Jets: - ATLAS: pT>25, | n | < 2.5, cone of 0.4 - CMS: pT > 40,40,40,30, |η| < 2.4, cone of 0.5 - b-tagging: - ATLAS has ~50% lower mistag rate at equivalent b-jet efficiency - ♦ Event Categorization - ATLAS includes background-dominated 4jet,2tag and 5jet,2tag categories, using a one-dimensional signal discriminant (H_T) - ♦ Signal Discriminant: - ATLAS uses ANN, CMS uses BDT (do not expect one to be superior if well trained) - ♦ MC generators: - ttH signal: ATLAS uses NLO HELAC+OneLoop+Powheg, CMS uses LO Pythia - tt+jets: ATLAS uses POWHEG for ttbar plus 1 additional parton, CMS uses MadGraph for ttbar with up to 3 additional partons - ♦ Luminosity: - ♦ ATLAS has ~5% more luminosity than CMS John Wood – jgw2kb@virginia.edu – University of Virginia # Input Variables ATLAS | Variable | Definition | |---|--| | Centrality | Sum of the p_T divided by sum of the E for all jets and the lepton | | H1 | Second Fox-Wolfram moment computed using all jets and the lepton | | $m_{ m bb}^{ m min~}\Delta m R$ | Mass of the combination of two b-tagged jets with the smallest ΔR | | N ₄₀ ^{jet} | Number of jets with $p_{\rm T} \ge 40 \text{ GeV}$ | | $\Delta R_{ m bb}^{ m avg}$ | Average ΔR for all b-tagged jet pairs | | m _{jj} pr | Mass of the combination of any two jets with the largest vector sum p_T | | Aplanarity _{b-jet} | $1.5\lambda_2$, where λ_2 is the second eigenvalue of the momentum tensor built with only b-tagged jets | | $H_{ m T}^{ m had}$ | Scalar sum of jet p_{T} | | $m_{ii}^{\min \Delta R}$ | Mass of the combination of any two jets with the smallest ΔR | | $\Delta R_{\text{lep-bb}}^{\text{min }\Delta R}$ | ΔR between the lepton and the combination of two b-tagged jets with the smallest ΔR | | $m_{\rm bi}^{{ m min}~\Delta R}$ | Mass of the combination of a b-tagged jet and any jet with the smallest ΔR | | mmax pr | Mass of the combination of a b -tagged jet and any jet with the largest vector sum p_T | | $m_{\mathrm{uu}}^{\mathrm{min} \Delta \mathrm{R}}$ | Mass of the combination of two untagged jets with the smallest ΔR | | $p_{\mathrm{T}}^{\mathrm{jet5}}$ | Fifth leading jet $p_{\rm T}$ | | $\Delta R_{\rm bb}^{ m max~p_T}$ | ΔR between two b-tagged jets with the largest vector sum $p_{\rm T}$ | | mmax m | Mass of the combination of two b-tagged jets with the largest invariant mass | | $p_{T,\mathrm{uu}}^{\min \Delta \mathrm{R}}$ | Scalar sum of the p_T 's of the pair of untagged jets with the smallest ΔR | | $m_{ m jjj}$ | Mass of the jet triplet with the largest vector sum p_T | | $\Delta R_{\mathrm{uu}}^{\mathrm{min} \Delta \mathrm{R}}$ | Minimum ΔR between two untagged jets | | $m_{ m bb}^{ m max~p_T}$ | Mass of the combination of two b -tagged jets with the largest vector sum p_T | # Input variables CMS | Variable | Description | |--|---| | abs $\Delta \eta$ (leptonic top, bb) | Delta-R between the leptonic top reconstructed by the best Higgs mass algo- | | ass 2.7 (represent top, ss) | rithm and the b -jet pair chosen by the algorithm | | abs $\Delta \eta$ (hadronic top, bb) | Delta-R between the hadronic top reconstructed by the best Higgs mass al- | | ass =1, (madrems top, ss) | gorithm and the b -jet pair chosen by the algorithm | | aplanarity | Event shape variable equal to $\frac{3}{2}(\lambda_3)$, where λ_3 is the third eigenvalue of the | | apianarity | sphericity tensor as described in [31]. | | ave CSV (tags/non-tags) | Average b-tag discriminant value for b-tagged/non-b-tagged jets | | ave $\Delta R(\text{tag,tag})$ | Average ΔR between b-tagged jets | | best Higgs boson mass | A minimum-chi-squared fit to event kinematics is used to select two b -tagged | | best Higgs boson mass | jets as top-decay products. Of the remaining b-tags, the invariant mass of the | | | two with highest E_t is saved. | | best $\Delta R(b,b)$ | The ΔR between the two b-jets chosen by the best Higgs boson mass algorithm | | closest tagged dijet mass | The invariant mass of the two b-tagged jets that are closest in ΔR | | | | | dev from ave CSV (tags) | The square of the difference between the b-tag discriminant value of a given | | | b-tagged jet and the average b-tag discriminant value among b-tagged jets, | | high and CCV (tage) | summed over all b-tagged jets | | highest CSV (tags) | Highest b-tag discriminant value among b-tagged jets | | H_0, H_1, H_2, H_3 | The first few Fox-Wolfram moments [32] (event shape variables) | | | Scalar sum of transverse momentum for all jets with $p_T > 30 \text{ GeV/c}$ | | $\sum p_T(\text{jets,leptons,MET})$
$\sum p_T(\text{jets,leptons})$ | The sum of the p_T of all jets, leptons, and MET The sum of the p_T of all jets, leptons | | p_T (jets, leptons)
jet 1, 2, 3, 4 p_T | The sum of the p_T of an jets, leptons The transverse momentum of a given jet, where the jet numbers correspond | | jet 1, 2, 3, 4 p _T | to rank by p_T | | lowest CSV (tags) | Lowest b-tag discriminant value among b-tagged jets | | mass(lepton,jet,MET) | The invariant mass of the 4-vector sum of all jets, leptons, and MET | | | | | mass(lepton,closest tag) | The invariant mass of the lepton and the closest b-tagged jet in ΔR (LJ channel) | | may An (ict ava ict n) | max difference between jet eta and avg deta between jets | | $\max \Delta \eta$ (jet, ave jet η)
$\max \Delta \eta$ (tag, ave jet η) | max difference between tag eta and avg deta between jets | | $\max \Delta \eta$ (tag, ave jet η)
$\max \Delta \eta$ (tag, ave tag η) | max difference between tag eta and avg deta between lets | | median inv. mass (tag pairs) | median invariant mass of all combinations of b-tag pairs | | M3 | The invariant mass of the 3-jet system with the largest transverse momentum. | | MHT | Vector sum of transverse momentum for all jets with $p_T > 30 \text{ GeV/c}$ | | MET | Missing transverse energy | | $\min \Delta R(\text{lepton,jet})$ | The ΔR between the lepton and the closest jet (LJ channel) | | HiggsLike dijet mass(2) | the invariant mass of a jet pair(at least one is b -tagged) ordered in closeness | | HiggsLike dijet mass(2) | to a Higgs boson mass (DIL channel) | | number of HiggsLike dijet 15 | number of jet pairs (at least one is b -tagged) whose invariant mass is within | | number of Higgsbike dijet 10 | 15 GeV window of a Higgs boson mass (DIL channel) | | $\min \Delta R(\text{tag,tag})$ | The ΔR between the two closest b-tagged jets | | $\min \Delta R(\text{jet,jet})$ | The ΔR between the two closest jets | | $\sqrt{\Delta\eta(t^{lep},bb)\times\Delta\eta(t^{had},bb)}$ | square root of the product of abs $\Delta \eta$ (leptonic top, bb) and abs $\Delta \eta$ (hadronic | | $\nabla \Delta \eta(t^{-1}, 00) \wedge \Delta \eta(t^{-1}, 00)$ | top, bb) | | second-highest CSV (tags) | Second-highest b -tag discriminant value among b -tagged jets | | sphericity (tags) | Event shape variable equal to $\frac{3}{2}(\lambda_2 + \lambda_3)$, where λ_2 and λ_3 are the second | | sphericity | and third eigenvalues of the sphericity tensor as described in [31] | | $(\Sigma \text{ jet } p_T)/(\Sigma \text{ jet E})$ | The ratio of the sum of the transverse momentum of all jets and the sum of | | (2 Jet PT)/(2 Jet 13) | the energy of all jets | | tagged dijet mass closest to 125 | The invariant mass of the b-tagged pair closest to 125 GeV/ c^2 | | $t\bar{t}b\bar{b}/t\bar{t}H$ BDT | BDT used to discriminate between $t\bar{t}b\bar{b}$ and $t\bar{t}H$ in the LJ \geq 6 jets, \geq 4 tags, | | 0000,0011 DD1 | >6 jets $+$ 3 tags, and 5 jets $+$ >4 tags categories. See text for description | | | and table 15 for list of variables | | | and value to for his or variables |