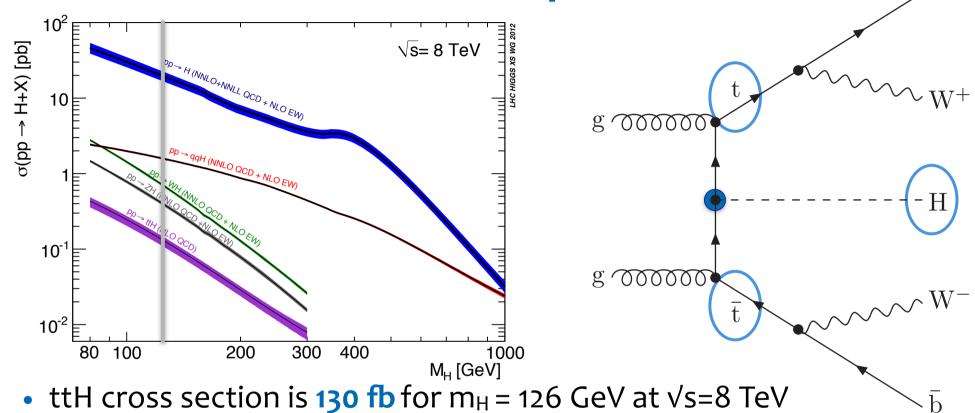

Search for ttH associated production at LHC

Cristina Botta (CERN)

on behalf of the ATLAS and CMS collaborations


"Physics at LHC and beyond", August 10-17 2014, Quy-Nhon, Vietnam

The top Yukawa coupling

- Two main probes of ttH coupling at LHC:
 - gluon fusion production cross section ($\sigma \sim |y_t|^2$), assuming no BSM particles in the loop.
 - associated production cross section, a tree level process proportional to $|y_t|^2$
- The first is pretty well known: already now the experimental accuracy on y_t is 25-30% from each experiment
- Significant progress from the experimental side on the second point in the last year.

ttH associated production

- Higgs decays at this mass:
 - BR H \rightarrow bb ~60%, H \rightarrow WW^(*) ~20% and H \rightarrow γγ, H \rightarrow ττ, H \rightarrow ZZ^(*) significantly smaller BR but produce experimentally accessible signatures
- ttH events are crowded due to the presence of additional b-jets, jets/leptons from the top quarks decays

ttH searches at ATLAS & CMS

C. Botta (CERN)

- tt + b-jets, to search for H→bb
 - high rate but big tt+bb bkg and complex multi-jet final state

ATLAS: 8 TeV data, ATLAS-CONF-2014-011

• CMS Analysis I: 8 TeV data, arXiv:1408.1682 (together with the low sensitivity channel tt + ττ: with hadronically decaying taus)

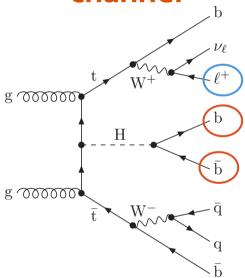
• CMS Analysis II: 8 TeV data, HIG-14-009

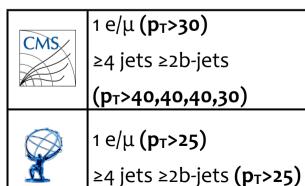
• low rate. important for the high-lumi projection as systematics play a negligible role in it

• ATLAS: 7+8 TeV data, ATLAS-CONF-2014-043

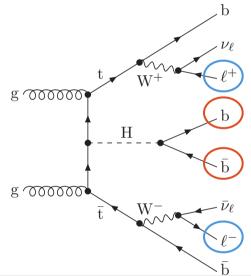
- tt + leptons, to search for $H \rightarrow WW$, ZZ, $\tau\tau$ ($\tau \rightarrow \ell$)
 - low rate. clean and low bkg signatures with 2,3,4 leptons

CMS: 8 TeV data, arXiv:1408.1682



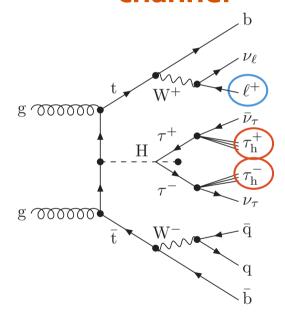


5


H-hadrons

Single-lepton (SL) channel

Di-lepton (DL) channel



CNC	2 OS e/μ (p τ> 20,10)
CMS	≥3 jets ≥2b-jets
	(p _T >40,40,40,30)
	1 e/u (p _T >25.15)

≥3 jets ≥2b-jets (**p**_T>**25**)

Hadronic- τ (τ_h) channel

1 e/ μ (p_T>30), 2 τ (p_T>20),

≥ 4jets 1-2b-jets $(p_T>40,40,40,30)$

Analysis Strategy

- Categorization in NJets and Nb-Jets, BDT/NN built in each categories (best S/B ~0.03 with #sig ~10)
 - variables: reconstructed object kinematic, event shape, b-tagging discriminator value

CLAC	
CM5/	
\times	

H->bb, SL Channel

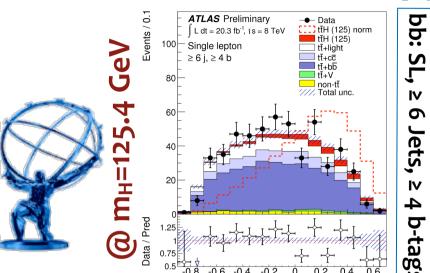
	2 b-tags	3 b-tags	4 b-tags
4 jets		BDT	BDT
5 jets		BDT	BDT
>= 6 jets	BDT	BDT	BDT

CMS/

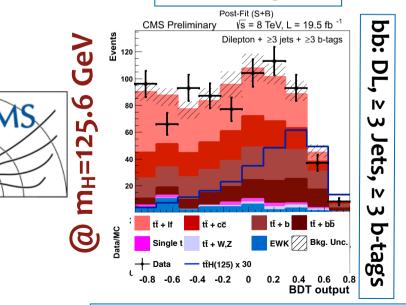
	2 b-tags	3 b-tags	4 b-tags
2 jets			
3 jets	BDT	RI)T
>= 4 jets	BDT	BDT	

H->bb, DL Channel

	2 b-tags	3 b-tags	4 b-tags
4 jets	H _T had	H _T had	H_{T}^{had}
5 jets	H_{T}^{had}	NN	NN
>= 6 jets	H_{T}^{had}	NN	NN



	2 b-tags	3 b-tags	4 b-tags
2 jets	H _T had		
3 jets	H_{T}^{had}	NN	
>= 4 jets	H_{T}^{had}	NN	NN


- Main bkg tt+jets:
 - from simulation separated in sub-samples: (tt+lf, tt+bb,tt+b,tt+cc)
 - data in bins with low S/B are used to constraint these bkg sources

Results

bb: 15 categories

From combined fit to NNs/BDTs:

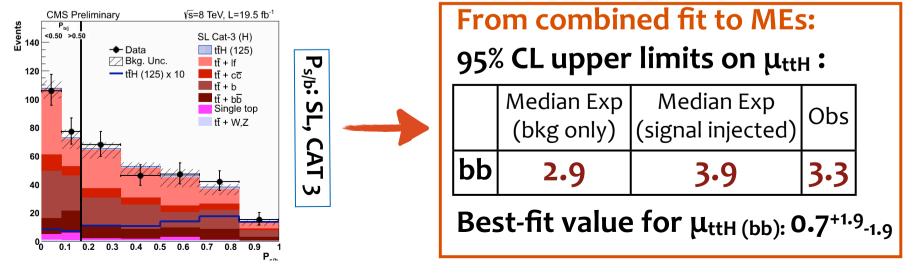
95% CL upper limits on μ_{ttH} :

		Median Exp (bkg only)	Median Exp (signal injected)	
	bb	2.7	3.3	4.4
CMS	bb	3.5	5.5	4.1
CMS	ττ	14.2	16.2	13

Best-fit value for μ_{ttH} :

	bb	1.8+1.5-1.4
CMS	bb	0.7+1.9-1.9
CMS	ττ	-1.3 ^{+6.3} -5.5

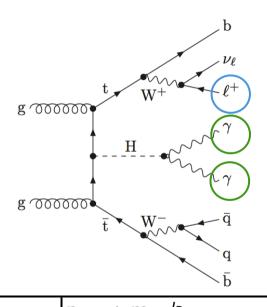
bb: 10 categories, ττ: 6 categories



Alternative Analysis Strategy

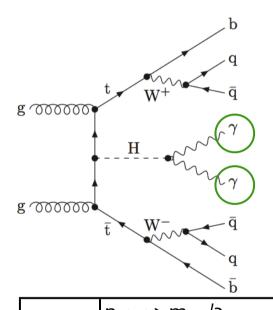
- Similar event selection (SL, DL channels with ≥5 jets, ≥4 jets)
- b-tagging discriminator value for the leading 6(4) jets in SL(DL) used to build a perevent likelihood ratio to separate bbbb (ttH, tt+HF) vs bbjj (tt+LF)
- Four event-categories based on exclusive event interpretation for bkg:

CAT1: tt->bblvqq	CAT2: tt->bblvq(q)+g	CAT3: tt->bblvq(q)	CAT4: tt->bblvlv	
------------------	----------------------	--------------------	------------------	--


- Likelihood technique based on the **theoretical Matrix Element** for **ttH** and **tt+bb** used to compute probability density functions for S and B.
- •Signal extraction performed fitting the ratio between these two probabilities ($P_{s/b}$)

H-photons

Leptonic channel


CMS

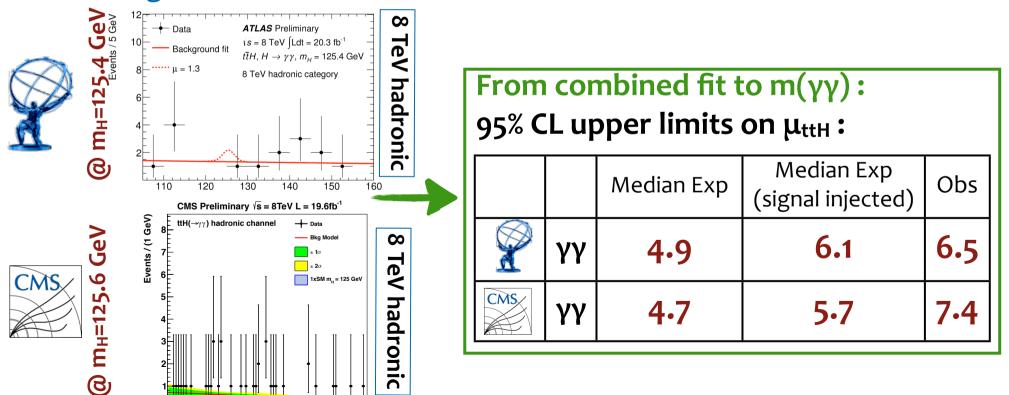
 $p_{T(\gamma_1)} > m_{\gamma_1}/2$ $p_{T(\gamma_2)} > 25$ $\geq 1 e/\mu, p_T > 20$ $\geq 2 \text{ jets (} \geq 1\text{b-jets)}, p_T > 25$

 $p_{T(\gamma 1)} > 0.35 \text{ m}_{\gamma \gamma}$ $p_{T(\gamma 2)} > 0.25 \text{ m}_{\gamma \gamma}$ $\geq 1 \text{ e}/\mu, p_T > 20$ $\geq 2 \text{ jets (} \geq 1 \text{b-jets)}, p_T > 25$

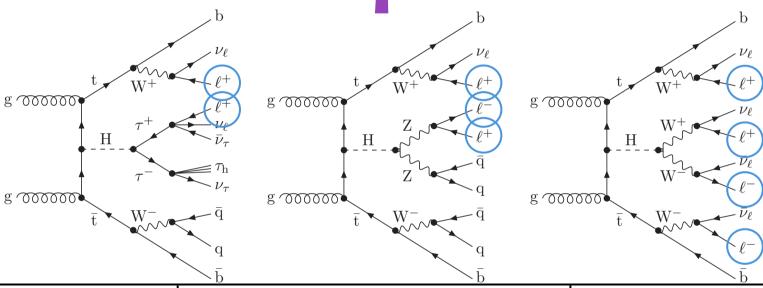
Hadronic channel

 $p_{T(\gamma 1)} > m_{\gamma \gamma}/2$ $p_{T(\gamma 2)} > 25$ o e/μ , $p_T > 20$ ≥ 5 jets ($\geq 1b$ -jets), $p_T > 25$

 $p_{T(\gamma 1)} > 0.35 \text{ m}_{\gamma \gamma}$ $p_{T(\gamma 2)} > 0.25 \text{ m}_{\gamma \gamma}$ $o e/\mu, p_T > 20$ $\geq 5 \text{ jets (} \geq 1\text{b-jets)}, p_T > 25$



11/08/14


Analysis Strategy

- Analysis limited by statistic (low BR H→γγ) but distinctive signature:
 - two energetic photons, narrow Higgs peak over falling bkg in M_{yy} distribution
 - the only channel that can eventually confirm that an excess is due to h(125)
- Strategy: fit the M_{YY} distribution using the diphoton spectrum sidebands to fit the bkg

H-leptons

H decay	top pair decay	trigger	
WW, ZZ, ττ	semileptonic or dileptonic	double lepton	

signature

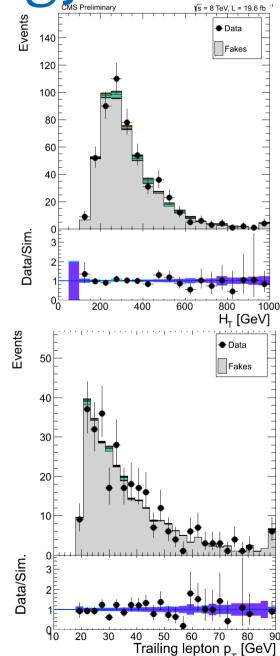
2 same-sign leptons (ee,eµ,µµ)

2 e/μ, p_T>20 GeV ≥4 jets (≥1b-jet), p_T>25 GeV

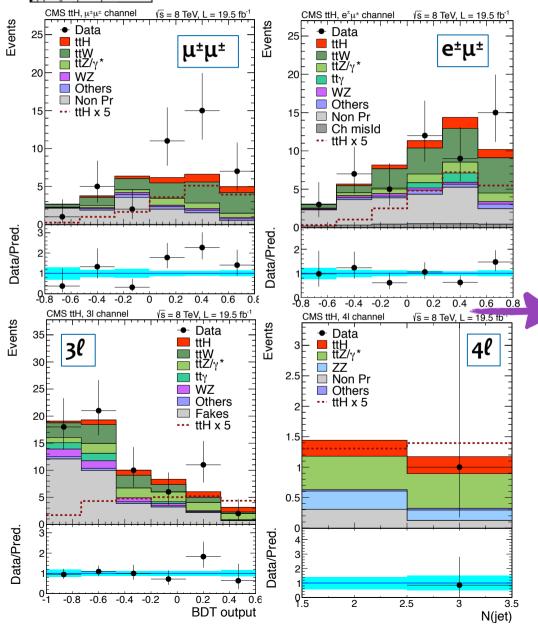

3 leptons

 $3 e/\mu, p_T>20,10,7/5 GeV$ ≥2 jets (≥1b-jet), p_T>25 GeV no resonant Z->II (#sig~8 sig/bkg~0.08) (#sig~4 sig/bkg~0.07)

4 leptons


4 e/ μ , p_T>20,10,7/5,7/5 GeV ≥2 jets (≥1b-jet), p_T>25 GeV no resonant Z->ll

(#sig~0.5 sig/bkg~0.2)


Analysis Strategy

- Main focus: suppress and control reducible background (~up to 2/3 of the total bkg after selection)
- tt with fake l from b-jets
 Dedicated lepton ID (MVA) developed to suppress it.
- data-driven estimate: measurement of the probability for a lepton from b-jet to pass the MVA ID requirement
- Inclusive selection to preserve signal efficiency.
 Full event kinematic cannot be reconstructed
- to improve sensitivity:
 - categorize events (for 2l, 3l) in positive and negative total lepton charge (ttW, WZ and Wjets are asymmetric), 5% gain in sensitivity
 - combine partial kinematic variables in a **BDT** (for 2 ℓ , 3 ℓ), 10% gain in sensitivity (4I: just use N(jet), since yields are small
 - signal extraction performed fitting the BDT/N(jet) distributions

Results

From combined fit to BDTs/N(jet):

95% CL upper limits on μ_{ttH} :

	Median Exp	Median Exp	Obs
	(bkg only)	(signal injected)	ODS
2lss	3.4	3.6	9.0
3 l	4.1	5.0	7.5
41	8.8	11.9	6.8
all	2.4 HIG-	3.5	6.6

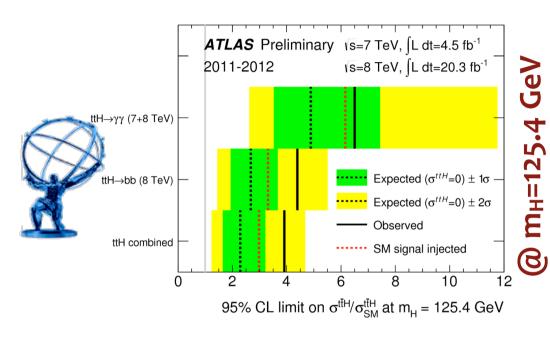
Best-fit value for μ_{ttH}:

2lss	5·3 ^{+2.1} -1.8	
3l	3.1 ^{+2.4} -2.0	
4 l	-4.7 ^{+5.0} -1.3	
all	3·7 ^{+1.6} -1.4	HIG-13-020

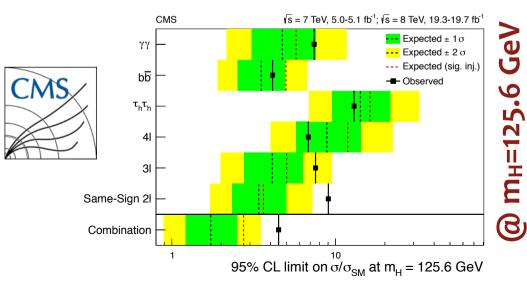
@ m_H=125.6 GeV

11/08/14

C. Botta (CERN)



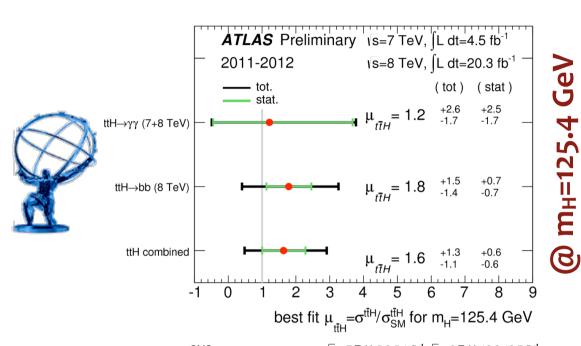
Combination



Limits on $\mu = \sigma/\sigma_{SM}$

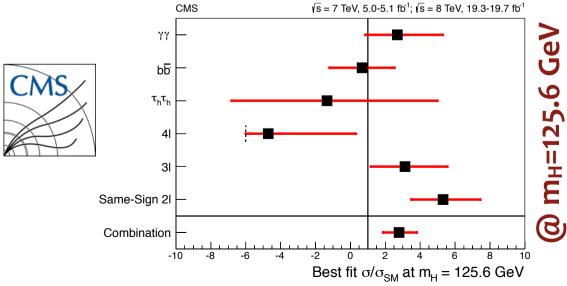
- Median expected UL on μ:
 - in the absence of ttH signal:2.3 at 95% CL
 - with the SM ttH production:3.0 at 95% CL
- Observed UL is 3.9 at 95% CL

ATLAS-CONF-2014-043



- Median expected UL on μ:
 - in the absence of ttH signal:1.7 at 95% CL
 - with the SM ttH production:2.7 at 95% CL
 - Observed UL is 4.5 at 95% CL

arXiv:1408.1682

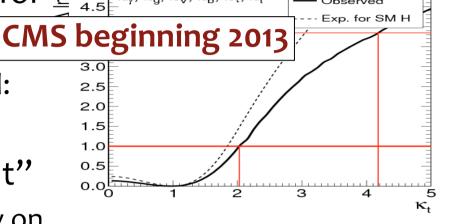

Best fit $\mu = \sigma/\sigma_{SM}$

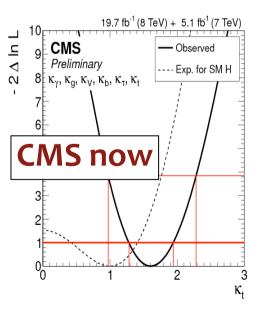
 The best fit to the combination yields:

$$\mu = 1.6^{+1.3}$$
-1.1

- The observed p-value relative to $\mu=1$ is 0.5 σ
 - 1.5 σ relative to μ =0 (1 σ expected)

The best fit to the combination yields:


$$\mu = 2.8^{+1.0}$$
-0.9


- The observed p-value relative to $\mu=1$ is 2 σ
 - 3.4 σ relative to μ =0 (1.2 σ expected)

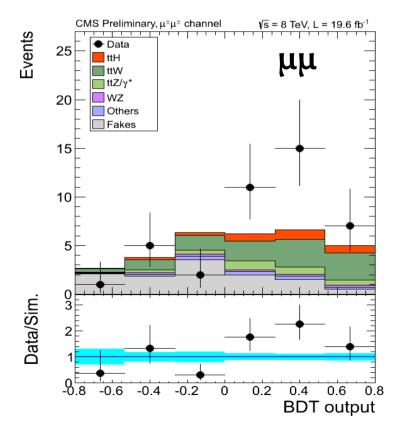
Conclusions

- - several signatures have been explored:
 tt+bb, tt+τ_hτ_h, tt+γγ, tt+leptons
- We are entering the "measurement" era for y_t (CMS reached 1xSM sensitivity on $\mu(ttH)$: $\Delta\mu/\mu\sim1$ -> $\Delta y_t/y_t\sim50\%$)
 - **CMS** fit $\mu(ttH)=2.8^{+1.1}-0.9$ compatible with the SM Higgs prediction ($\mu=1$) at 2 σ
 - the excess is mainly driven by the same-sign μμ channel
 - ATLAS fit $\mu(ttH)=1.6^{+1.3}$ -1.1 compatible with the SM Higgs prediction ($\mu=1$) at **0.5** σ

11/08/14

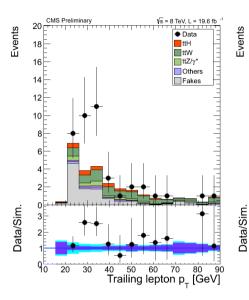
Backup

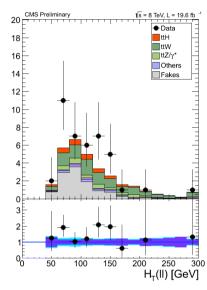
20/03/14

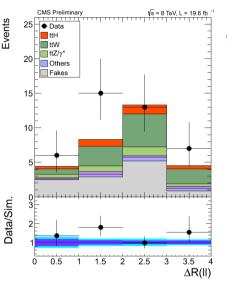


Nominal result

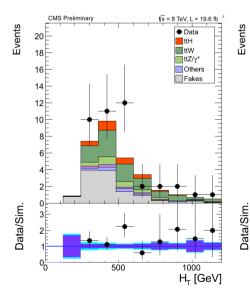
- The results in the different channels are fairly close to the SM Higgs predictions except in the $\mu^{\pm}\mu^{\pm}$ final state
 - Excess of events compared to the expectations, in the signal-like region of the final BDT discriminator

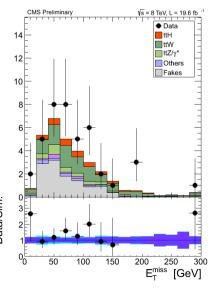

Process	Expected ± syst.
ttH	2.7 ± 0.4
ttW	8.2 ± 1.4
ttZ/γ*	2.5 ± 0.5
WZ	0.8 ± 0.9
Others	1.4 ± 0.1
Reducible	10.8 ± 4.8
Data	41

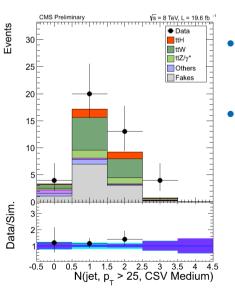




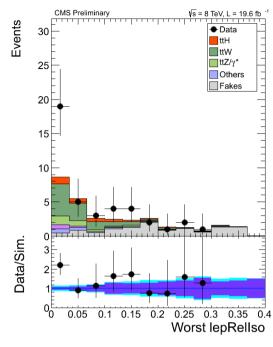
C. Botta (CERN)

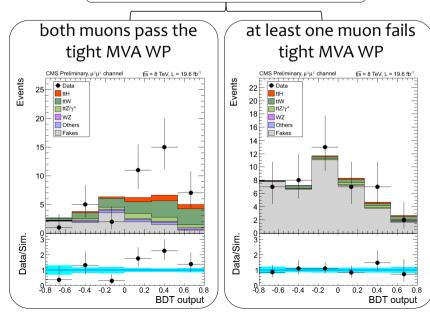






 The kinematic of the leptons in the events does not show anomalies and is compatible with that of signal or ttV events

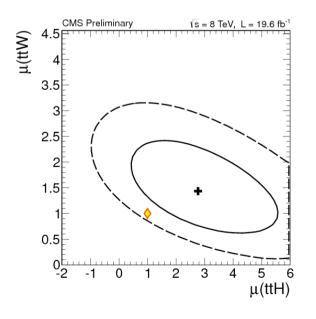

- Jets and E_Tmiss are more compatible with signal or ttV.
- The multeplicity of **b-tags** is also signal-like (while the reducible background has more often only 1 b-tag since the other b-jet is misidentified as a lepton)



CMS

- The events in excess are characterized by having both leptons very well isolated.
- Scrutiny of the events also confirms that both leptons are well reconstructed in the tracker and muon system, and that their charge is correctly assigned
- The analysis was also repeated using a looser working point of the lepton MVA
 - the excess is visible only when both leptons pass the tight MVA wp
 - the rest of the sample is well described by the background model
- The analysis was also repeated with a cut-based muon selection. The result is compatible with the nominal one but the sensitivity is worse

both muons pass loose MVA WP



Irreducible bkg check

- A more general fit is performed:
 - leaving unconstrained the yields of ttW, ttZ, and reducible background (for fake e, μ separately)
 - including additional control regions in the fit: trilepton events with one Z candidate (mostly ttZ), and dilepton events with 3 jets (ttW & red. bkg.)
- Results compatible with the nominal ones (but ~20% worse sensitivity)
- All backgrounds yields remain within 1σ from their input value: no indication of issues with ttW & ttZ
 - results for ttH and ttW are correlated, all the others are well resolved

parameter	expected	observed
$\mu(ttH)$	· · / /	\
, ,	$1.0^{-1.3}_{+1.5}$	$2.8^{-1.6}_{+1.8}$
$\mu(ttW)$	$1.0^{-0.5}_{+0.5}$	$1.4^{-0.5}_{+0.6}$
$\mu(ttZ)$	$1.0^{-0.3}_{+0.4}$	$1.1^{-0.3}_{+0.4}$
$\mu(\text{fake }\mu)$	$1.0^{-0.3}_{+0.3}$	$0.7^{-0.3}_{+0.4}$
$\mu(\text{fake e})$	$1.0^{-0.3}_{+0.3}$	$0.9^{-0.3}_{+0.3}$

CMS ttH Analysis Comparison to ATLAS

- For the ttH, H->bb analysis in the lepton+jets channel, the ATLAS limits are better than the baseline CMS analysis:
 - CMS baseline expected limit = 4.8, observed = 5.0
 - ♦ ATLAS expected limit = 3.1, observed = 4.2
- Several differences between the two approaches, some large, some small.
- Most prominently, ATLAS analysis has...
 - Increased signal and background acceptance due to object definitions and selections
 - Different background composition in selected events due to different b-tag performance
 - Incorporated additional background-rich categories
 - Employed more accurate NLO modeling for ttH signal
- CMS has studied the effects which are immediately available to incorporate:
 - → ~20% improvement in unblinded limit when lowering jet/lepton pT thresholds
 - ~10% improvement in unblinded limit when incorporating additional categories
 - In fully-blinded assessment, these changes would not have been significant for the CMS baseline analysis, small % improvement
 - NLO signal model shows higher acceptance in most sensitive categories
- Overall, no single aspect of the analysis differences cause the difference in performance
 - No simple explanation a collection of analysis optimizations

CMS ttH Analysis Comparison to ATLAS

- Details on the differences:
 - ♦ Object definition/selection:
 - Leptons:
 - ATLAS: pT>25, |η| < 2.5 for e and μ
 - CMS: pT>30, |η| < 2.5 (2.1) for e (μ)
 - Jets:
 - ATLAS: pT>25, | n | < 2.5, cone of 0.4
 - CMS: pT > 40,40,40,30, |η| < 2.4, cone of 0.5
 - b-tagging:
 - ATLAS has ~50% lower mistag rate at equivalent b-jet efficiency
 - ♦ Event Categorization
 - ATLAS includes background-dominated 4jet,2tag and 5jet,2tag categories, using a one-dimensional signal discriminant (H_T)
 - ♦ Signal Discriminant:
 - ATLAS uses ANN, CMS uses BDT (do not expect one to be superior if well trained)
 - ♦ MC generators:
 - ttH signal: ATLAS uses NLO HELAC+OneLoop+Powheg, CMS uses LO Pythia
 - tt+jets: ATLAS uses POWHEG for ttbar plus 1 additional parton, CMS uses MadGraph for ttbar with up to 3 additional partons
 - ♦ Luminosity:
 - ♦ ATLAS has ~5% more luminosity than CMS

John Wood – jgw2kb@virginia.edu – University of Virginia

Input Variables ATLAS

Variable	Definition
Centrality	Sum of the p_T divided by sum of the E for all jets and the lepton
H1	Second Fox-Wolfram moment computed using all jets and the lepton
$m_{ m bb}^{ m min~}\Delta m R$	Mass of the combination of two b-tagged jets with the smallest ΔR
N ₄₀ ^{jet}	Number of jets with $p_{\rm T} \ge 40 \text{ GeV}$
$\Delta R_{ m bb}^{ m avg}$	Average ΔR for all b-tagged jet pairs
m _{jj} pr	Mass of the combination of any two jets with the largest vector sum p_T
Aplanarity _{b-jet}	$1.5\lambda_2$, where λ_2 is the second eigenvalue of the momentum tensor built with only b-tagged jets
$H_{ m T}^{ m had}$	Scalar sum of jet p_{T}
$m_{ii}^{\min \Delta R}$	Mass of the combination of any two jets with the smallest ΔR
$\Delta R_{\text{lep-bb}}^{\text{min }\Delta R}$	ΔR between the lepton and the combination of two b-tagged jets with the smallest ΔR
$m_{\rm bi}^{{ m min}~\Delta R}$	Mass of the combination of a b-tagged jet and any jet with the smallest ΔR
mmax pr	Mass of the combination of a b -tagged jet and any jet with the largest vector sum p_T
$m_{\mathrm{uu}}^{\mathrm{min} \Delta \mathrm{R}}$	Mass of the combination of two untagged jets with the smallest ΔR
$p_{\mathrm{T}}^{\mathrm{jet5}}$	Fifth leading jet $p_{\rm T}$
$\Delta R_{\rm bb}^{ m max~p_T}$	ΔR between two b-tagged jets with the largest vector sum $p_{\rm T}$
mmax m	Mass of the combination of two b-tagged jets with the largest invariant mass
$p_{T,\mathrm{uu}}^{\min \Delta \mathrm{R}}$	Scalar sum of the p_T 's of the pair of untagged jets with the smallest ΔR
$m_{ m jjj}$	Mass of the jet triplet with the largest vector sum p_T
$\Delta R_{\mathrm{uu}}^{\mathrm{min} \Delta \mathrm{R}}$	Minimum ΔR between two untagged jets
$m_{ m bb}^{ m max~p_T}$	Mass of the combination of two b -tagged jets with the largest vector sum p_T

Input variables CMS

Variable	Description
abs $\Delta \eta$ (leptonic top, bb)	Delta-R between the leptonic top reconstructed by the best Higgs mass algo-
ass 2.7 (represent top, ss)	rithm and the b -jet pair chosen by the algorithm
abs $\Delta \eta$ (hadronic top, bb)	Delta-R between the hadronic top reconstructed by the best Higgs mass al-
ass =1, (madrems top, ss)	gorithm and the b -jet pair chosen by the algorithm
aplanarity	Event shape variable equal to $\frac{3}{2}(\lambda_3)$, where λ_3 is the third eigenvalue of the
apianarity	sphericity tensor as described in [31].
ave CSV (tags/non-tags)	Average b-tag discriminant value for b-tagged/non-b-tagged jets
ave $\Delta R(\text{tag,tag})$	Average ΔR between b-tagged jets
best Higgs boson mass	A minimum-chi-squared fit to event kinematics is used to select two b -tagged
best Higgs boson mass	jets as top-decay products. Of the remaining b-tags, the invariant mass of the
	two with highest E_t is saved.
best $\Delta R(b,b)$	The ΔR between the two b-jets chosen by the best Higgs boson mass algorithm
closest tagged dijet mass	The invariant mass of the two b-tagged jets that are closest in ΔR
dev from ave CSV (tags)	The square of the difference between the b-tag discriminant value of a given
	b-tagged jet and the average b-tag discriminant value among b-tagged jets,
high and CCV (tage)	summed over all b-tagged jets
highest CSV (tags)	Highest b-tag discriminant value among b-tagged jets
H_0, H_1, H_2, H_3	The first few Fox-Wolfram moments [32] (event shape variables)
	Scalar sum of transverse momentum for all jets with $p_T > 30 \text{ GeV/c}$
$\sum p_T(\text{jets,leptons,MET})$ $\sum p_T(\text{jets,leptons})$	The sum of the p_T of all jets, leptons, and MET The sum of the p_T of all jets, leptons
p_T (jets, leptons) jet 1, 2, 3, 4 p_T	The sum of the p_T of an jets, leptons The transverse momentum of a given jet, where the jet numbers correspond
jet 1, 2, 3, 4 p _T	to rank by p_T
lowest CSV (tags)	Lowest b-tag discriminant value among b-tagged jets
mass(lepton,jet,MET)	The invariant mass of the 4-vector sum of all jets, leptons, and MET
mass(lepton,closest tag)	The invariant mass of the lepton and the closest b-tagged jet in ΔR (LJ channel)
may An (ict ava ict n)	max difference between jet eta and avg deta between jets
$\max \Delta \eta$ (jet, ave jet η) $\max \Delta \eta$ (tag, ave jet η)	max difference between tag eta and avg deta between jets
$\max \Delta \eta$ (tag, ave jet η) $\max \Delta \eta$ (tag, ave tag η)	max difference between tag eta and avg deta between lets
median inv. mass (tag pairs)	median invariant mass of all combinations of b-tag pairs
M3	The invariant mass of the 3-jet system with the largest transverse momentum.
MHT	Vector sum of transverse momentum for all jets with $p_T > 30 \text{ GeV/c}$
MET	Missing transverse energy
$\min \Delta R(\text{lepton,jet})$	The ΔR between the lepton and the closest jet (LJ channel)
HiggsLike dijet mass(2)	the invariant mass of a jet pair(at least one is b -tagged) ordered in closeness
HiggsLike dijet mass(2)	to a Higgs boson mass (DIL channel)
number of HiggsLike dijet 15	number of jet pairs (at least one is b -tagged) whose invariant mass is within
number of Higgsbike dijet 10	15 GeV window of a Higgs boson mass (DIL channel)
$\min \Delta R(\text{tag,tag})$	The ΔR between the two closest b-tagged jets
$\min \Delta R(\text{jet,jet})$	The ΔR between the two closest jets
$\sqrt{\Delta\eta(t^{lep},bb)\times\Delta\eta(t^{had},bb)}$	square root of the product of abs $\Delta \eta$ (leptonic top, bb) and abs $\Delta \eta$ (hadronic
$\nabla \Delta \eta(t^{-1}, 00) \wedge \Delta \eta(t^{-1}, 00)$	top, bb)
second-highest CSV (tags)	Second-highest b -tag discriminant value among b -tagged jets
sphericity (tags)	Event shape variable equal to $\frac{3}{2}(\lambda_2 + \lambda_3)$, where λ_2 and λ_3 are the second
sphericity	and third eigenvalues of the sphericity tensor as described in [31]
$(\Sigma \text{ jet } p_T)/(\Sigma \text{ jet E})$	The ratio of the sum of the transverse momentum of all jets and the sum of
(2 Jet PT)/(2 Jet 13)	the energy of all jets
tagged dijet mass closest to 125	The invariant mass of the b-tagged pair closest to 125 GeV/ c^2
$t\bar{t}b\bar{b}/t\bar{t}H$ BDT	BDT used to discriminate between $t\bar{t}b\bar{b}$ and $t\bar{t}H$ in the LJ \geq 6 jets, \geq 4 tags,
0000,0011 DD1	>6 jets $+$ 3 tags, and 5 jets $+$ >4 tags categories. See text for description
	and table 15 for list of variables
	and value to for his or variables