LHCb Challenges for Run 2

Karol Hennessy on behalf of LHCb

University of Liverpool

16 August 2014

The LHC Beauty Experiment

- Single arm spectrometer instrumented in the forward region: $2 < \eta < 5$.
- Precision experiment designed to detect decays of b- and c-hadrons for the study of CP violation and rare decays.

The LHC Beauty Experiment

• Unique features:

- \circ vertex resolution (4 $\mu \mathrm{m}$ single-hit resolution)
- RICH provides excellent particle identification (Kaon ID efficiency: 95%)
- o high rate trigger (1MHz to software trigger)
- o momentum resolution ($\Delta p/p$: 0.4% @ 5 GeV/c, 0.6% @ 100 GeV/c)

LHCb Physics at 13 TeV and beyond

- bb and cc cross-sections expected to increase >60% for LHC Run 2.
- LHCb will maintain its physics program with increased statistics.
- HeRSCheL High Rapidity Shower Counters for LHCb
 - Scintillator planes with PMTs placed in tunnel either side of LHCb
 - Looks for showers at high rapidity
 - Improve performance of Central Exclusive Production studies

Long Shutdown 1

- Long Shutdown 1 (2013/2014) has presented several opportunies in order to prepare for the challenging new run.
- Further enhance detector stability
- Perform repairs/replacements to problematic hardware
- Service aging electronics
- Consolidation of gas, cooling systems, and power supplies/racks
- Enhance the capability of the computing farm
- Revise trigger strategy

Experiment-wide activities

- Beam pipe replacement
 - section 3 removed local nano-porosity
 - Improved production process for vacuum tightness
 - Dismantled in May 2013, to be commissioned in Nov. 2014
- Power supply maintenance
- Extensive maintenance to cooling system
- Operations weeks
 - Regular detector check-out
 - Team of experts to problem solve
- New hardware/software testing
 LHCb Challenges for Run 2 16 August 2014 K. Hennessy

- B-field measurement
- Creation of a new control room to become operational in 2015

Online

- Detector Control PCs moved to Virtual Machines
 - 2 years from concept to deployment
 - Failure recovery reduced from 4+ hours to 4 mins
 - Seamless and automatic
 - All control PCs can run in one of two chassis clones
- PVSS → WinCC ECS software changed
- Operating systems updated. Most control PCs now running on Linux
- Hardware drivers now running on CCPCs

Online

- Network redundancy with CERN IT and LHCb detector site
- Bandwidth to storage increased from 300 MB/s to 1 GB/s
- HLT Farm Upgrade
 - Farm will be doubled in CPU capacity. Many first and second generation servers will be replaced with state of the art.
 - Adding 3PB local storage across farm to accommodate new HLT scheme

Trigger

Run 1 Trigger

- L0 Hardware trigger muon & calorimeters
 - High rate!
- High Level Trigger (HLT) software
 - o HLT1 tracking
 - HLT2 full reconstruction
 - much of the same algorithms running in trigger and offline
- Deferred trigger
 - buffers data for processing between fills
 - improved trigger efficiency

9/26

Trigger

Run 1 Trigger

Run 2 Trigger

Trigger

- New trigger strategy based on the experiences of Run 1
- All HLT 2 processing will be deferred
- Calibration and alignment will be performed per-fill and in some cases per-run
- Can use PID in trigger
- HLT processing much closer to Offline
- ×2 farm CPU capacity allows much greater flexibility
- 5 kHz \rightarrow 12.5 kHz
 - Exceeding grid quota need to reduce data/event size

Run 2 Trigger

Vertex Locator

- Primary tracking and vertexing detector
- R and Φ strip sensors using n⁺-in-n silicon
- 300 μm thick AI foil separates modules from LHC vacuum
- Retractable halves Si 7 mm from beam
- Detector performed extremely well in Run 1
- Radiation damage not enough to impact physics in Run 2
 - o unnecessary to replace with spare

Vertex Locator

- New automatic calibration per fill
- · Radiation monitoring scans optimised
- ECS and monitoring software overhaul
- Studies of HV trips at $\sim \! \! 300 \text{ V}$, believed understood. (Run 1 operating voltage: 150 V)
- New HLT strategy VELO alignment performed per fill
 - Moveable detector closes every fill

Maximum variation of 2 half alignment

		46
	x (μm)	y (μm)
Run 1	±9	±6
calculated per fill	± 3	± 1

Silicon Tracker

- Two sets of silicon trackers.
 - one upstream of magnet (TT) and one downstream (IT)
 - TT has 1 station of 4 detection layers
 - IT has 3 stations of 4 detection layers
- p⁺-in-n silicon with long strips
- Improved resolution in magnet bending plane

Silicon Tracker

Cooling

- Degradation in performance of cooling system during Run 1
- Lubricant mixing with coolant
- Recirculated every 2-3 weeks in 2012
- No temperature increase seen in detector (due to vigilant experts)
- New chiller installed for Run 2

Alignment

- Inner Tracker too low on frame
 - New mechanics installed
 - Adjusted to nominal position
 - BCAM monitoring system installed
- New HLT strategy tracker alignment will be performed fill-by-fill

- ECS and monitoring software overhaul
- 25 ns running: spillover effects to be studied

Outer Tracker

- Straw tube tracker downstream of magnet
- 3 stations surrounding inner silicon tracker
- 4 detection layers per station
- <50 ns drift time</p>

Outer Tracker

Aging

- Discovered during Q.A. just prior to Run 1.
- Build-up of an insulating layer causing a decrease in gain -30%
- cause by sealant glue (minor change at manufacturing)
- Adding some O₂ to the straw tube gas mixture acts as a cleaning agent
- No significant degradation seen in Run 1

- 25 ns running/spillover
 - Maximum drift time 50 ns
 - Occupancy 5-25% (significant fraction from secondaries)
 - Spillover increase under study

RICH

- Ring Imaging CHerenkov detector
- Excellent separation of K, π , p
- Hybrid Photon Detectors
 - o can detect individual photons

RICH1 - Aerogel Removal

- Difficult to integrate into new HLT aerogel produces large rings, making ring finding very CPU-heavy
- Harsher environment than design
 - higher instantaneous luminosity
 - higher photon multiplicity
- Slightly lower aerogel performance
 - \circ resolution MC $\sim 4.5 \mathrm{mrad}$
 - reconstructed ~ 5.0mrad
- Improved gas performance due to extra gas length (but lose protons-pion separation)
- Efficiency determination more accurate
 same RICH algorithms online/offline

RICH

- New per-run HLT calibration
 - gas refractive-index calibration
 - HPDs calibrated for drift
 - mirror alignment
 - PID information in HIT 2
- Hybrid Photon Detectors
 - Aging problems seen in Run 1 due to vacuum degradation
 - Failure rate \sim 3% per year
 - New HPDs have getter strips to take care of outgassing
 - Some HV-induced light background inside HPD boxes
 - Changed flushing gas from N₂ to CO₂ has mitigated the effect

Calorimeters

- SPD/PS, ECAL, HCAL
- Sampling calorimeters -Interleaved scintillator and absorber
- SPD/PS cells read out via multi-anode pixel photomultiplier (MaPMT)
- ECAL/HCAL cells read out via single anode PMT
- Regular HV calibration needed
- Very stable performance
- Part of the L0 trigger

Calorimeters

- Replacement of fibres for ECAL LED monitoring system
 - Aging due to radiation damage
 - problem not seen in detector fibres (oriented perpendicular to beam)
 - replaced with quartz fibres
- Automatic calibration fill-by-fill for new HLT scheme
 - regular gain adjustments done in inter-fill gaps in Run 1
 - New method based on occupancy rather than LED system
 - o to be commissioned with initial

Muon

- Five stations of drift chambers interleaved with iron absorbers
- MultiWire Projection Chambers (MWPC)
- Exception inner region of M1 triple GEM
- First station (M1) situated upstream of the calorimeters
 - ho Improve $p_{
 m T}$ measurement at L0 trigger

Muon

- Improvement to MWPC grounding to reduce noise and increase stability
- Reconditioning of MWPC to prevent discharges
- HV channel doubling
 - o improves redundancy
 - o fewer gas-gaps removed in case of trip
- Malter effect currents
 - self-sustaining current produced by rad-induced insulation layer producing a high field
 - reversed by flipping HV polarity
 - O₂ used as a cleaning agent
- Shielding added behind last muon station (30 t of iron) significant reduction in back-splash particles
- Automatic alignment fill-by-fill for new HLT scheme

Final Remarks

- Very successful Run 1 for LHCb
- Lots of work ongoing during LS1
- Significant changes with respect to the LHCb trigger
- Implications for alignment and calibration of subdetectors
- Looking forward to Run 2 at 13 TeV!

Q&A