Physics at LHC and beyond 10-17 August 2014, Quy-Nhon, Vietnam

Part2: challenges of CMS operations during LHC Run 1

Roberto Castello (UC Louvain CP3, FNRS) on behalf of CMS collaboration

The Compact Muon Solenoid during Run 1

An impressive level of physics performance and results quality: Overall length which have been the keys for CMS to perform so well? An organized system for on-line operations Versatile trigger configuration Robust data acquisition system Constant monitoring of sub-detector response opera High quality of prompt reconstruction Meticulous data quality monitoring Efficient storage and data processing ELECTR DMAGNETIC CALORI METER (ECAL)

Challenges during LHC Run 1

Increasing of peak lumi →

need revisiting of trigger paths

Increasing of pile-up (#proton/bunch) →

need tuning of reconstruction and triggers

CMS peak interactions per crossing, pp

Detector downtime \rightarrow need automation of data acquisition

-20 -15 -10 -5 0

5Global X (cm)

Challenges during LHC Run 1

Detector inactive module/channels →

most of the losses addressed during shutdown

CMS Preliminary December 2010 Subsystem September 2011 MUON CSC June 2012 MUON RPC MUON DT **HCAL** Outer **HCAL** Forward **HCAL Endcaps HCAL** Barrel Preshower ECAL Endcaps **ECAL Barrel** Strip tracker Pixel tracker 0.3 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1 Active Fraction Global Y (cm) 12 10 2 2 3 3 4 5 Pixel disk region masked due optical

connections

Misalignment and miscalibration →

A fast workflow already during prompt reco

ECAL transparency loss used to correct physics data promptly

How did we tackle all this?

An organized system for on-line operations

CMS control room: core of the operations at LHC Point 5

- Most far of LHC points from Meyrin site (where main experts reside)
- ♦ Built up an easy-to-access system for allowing key expert interventions **from remote**

CMS shift leader

Run Field manager

Data Quality Monitor (DQM) shifter

On-line trigger shifter

Detector Control System (DCS) shifter Data AcQuisition (DAQ) shifter

+ Offline shifter: run certifications, offline DQM, Operation Release Managers, etc...

A versatile trigger system

Level 1

- hardware based : 4 μs decision time
- 20-MHz bunch-crossing rate to 100 kHz

High Level Trigger (HLT)

- Software based: **50-200 ms** decision time
- Reduce to 400 Hz (core) + 600 Hz (parked)

- Re-tuning of trigger paths and seeds, rather than prescaling physics paths
- "parking" of loose HLT path dataset (processed during LS1)
- ✓ Improving tracking and speeding up reconstruction

strategy

A robust data acquisition system

Detector downtime:

- Periodic re-synchronization of sub-detectors during data taking
- Stand-by needed also during LHC dump warning (kicker at point 6)
- Require Heavy automation of DCS and DAQ

Tracker HV turn-on, need to be in stand-by until stable beam declared

- Automatic ramping of HV at DAQ
- Provided beam conditions met criteria in the 30 s prior to the declaration of stable beam

- Implemented at DAQ level
- O(seconds) to reconfigure

Constant monitoring of sub-detectors

Example: detector control system for CMS solenoid (B=3.8T, kept at T=-268.5°C)

In general avoiding magnet recycling..

- Important downtime: 2-3 days for ramping up (critical if around LHC fills)
 - ..if anyway needed
- at least controlling non-negligible mechanical effects on the rest of sub-detectors:
 - Longitudinal 100 μm shift of the 2 halves of Pixel detector by magnet thermal cycle
 - ♦ Recovered by quasi-prompt alignment → fully automated since Run2

11/08/2014

A prompt calibration *loop* in reconstruction

- Update-strategy based on delay between express and prompt reco (48h)
- Successfully used during Run1:
 - beam-spot position measured every Lumi Sections (LS= 23s of run)
 - ECAL transparency corrections measured with laser pulses

- Also conditions which need to be monitored (and updated if necessary):
 - ♦ Tracker problematic channels → HV trips/noise
 - ♦ Calorimeter problematic channels → mask hot channels
 - \diamond **Pixel alignment (since Run2)** \rightarrow monitoring large structure shifts using tracks

CMS published physics measurements and discoveries out of prompt reco!

Monitoring of data quality (DQM)

- Online: live monitoring of detector performance during data taking
- Offline: reliable certification of the recorded data and release validation

A snapshot of DQM GUI

- Web site (GUI) for browsing data quality histograms for a given dataset/run
- Selection of LS considered for physics performed weekly by offline detector experts and shifters
- Final list distribute in JSON format to use for filtering in the analysis jobs

11/08/2014 R.Castello 11

An efficient storage and data flow

- 2012 was the busiest of the Run I years in terms of data collection and storage
 - ♦ 7 B physics events were collected: 4 B prompt-reco + parked data
 - All 2012 data was reprocessed later in 2013:
 - Only few re-reco, thanks to timely release validations and prompt calibration
 - ♦ 13 B MonteCarlo simulated events have been produced

Computing was used at 100%, no large problems which required recovering

Run 1: a success for CMS operations (and LHC machine)

Peak instantaneous luminosity	7.67 10 ³³ cm ⁻² s ⁻¹
Max interactions per bunch crossing (PU)	34-55
Maximum colliding bunches	1380
Best recording efficiency by lumi for one fill	98.93% [171.20 pb ⁻¹]
Maximum Recorded lumi in one day	280.07 pb ⁻¹
L1 trigger output rate	100 kHz
HLT physics stream output rate	400 Hz
HLT physics stream output rate (for parked data)	600 Hz

- Major improvements and challenges foreseen:
 - Trigger, Tracking: facing higher PU and ou-of-time PU (operations at 25ns)
 - Prompt calibration workflows: more automatized
 - Computing: the scale of the problem will increase by factor 6 in 2015 (x 2.5 evt reco time)

Many lessons from Run1 and CMS is working to keep the standard high for Run2

BACKUP

The tool: a Compact Muon Solenoid

• From particle reconstruction: muons, electrons, hadrons (charged and neutral), photons

... to physics objects: muons, electrons, jets, photons

- Excellent detector performance:
 - Track-finding efficiency is more than 99%
 - ♦ Transverse momentum resolution: $\sigma(p_T)/p_T$ = 1.5 3% for tracks of p_T ~ 100 GeV
 - ♦ Energy resolution for electrons and photons: $\sigma(E)/E$ ~ 1%

11/08/2014 R.Castello 15

Effects of pile-up and luminosity increase in Pixels

A Short term effect:

 Higher occupancy increases the power consumption and therefore the temperature in the ROCs
→pixel charge gain calibration is temperature dependent

A long term-effect:

- Lorentz-angle measurement :
 - Also depends on integrated luminosity
 - Highly depends on bias voltage
 - Influences charge-sharing among pixels

L1: fraction of L1 muon triggers in the different bunch crosses

HLT: many studies and improvements have been developed during LS1 in order to mitigate the track reconstruction timing