Scalar boson self-coupling

José Francisco Zurita

(THEP, Johannes Gutenberg Universität, Mainz)
Mainly based on:
Andreas Papaefstathiou, Li Lin Yang, JZ: PRD 87 (2013) 011301 [arXiv 1209.1489] Florian Goertz, Andreas Papaefstathiou, Li Lin Yang, JZ: JHEP 1306 (2013) 016 [arXiv: 1301.3492 + work in progress

Rencontres du Vietnam 2014, II th August 2014.

Scalar boson (H) potential: self couplings

After EWSB : $V(H)=\frac{1}{2} M_{H}^{2} H^{2}+\lambda_{H H H} v H^{3}+\frac{1}{4} \lambda_{H H H H} H^{4}$.

Scalar boson (H) potential: self couplings

After EWSB : $V(H)=\frac{1}{2} M_{H}^{2} H^{2}+\lambda_{H H H} v H^{3}+\frac{1}{4} \lambda_{H H H H} H^{4}$.

- Single boson: $M_{H} \approx 125 \mathrm{GeV} \longrightarrow$ Is it the SM Higgs? Need to measure its properties.

Scalar boson (H) potential: self couplings

After EWSB : $V(H)=\frac{1}{2} M_{H}^{2} H^{2}+\lambda_{H H H} v H^{3}+\frac{1}{4} \lambda_{H H H H} H^{4}$.

- Single boson: $M_{H} \approx 125 \mathrm{GeV} \longrightarrow$ Is it the SM Higgs? Need to measure its properties.
- HHH prod. very difficult @ HC $\sigma_{H H H}=0.06(9.5) \mathrm{fb} 14 \mathrm{TeV}$ LHC (200 TeV VLHC) .

Plehn, Rauch, Phys. Rev D 72, 053008.
Linear Collider? TESLA TDR (hep-ph/01063I5) ~ $1000 \mathrm{fb}^{-1}$ for 20\% accuracy.

Scalar boson (H) potential: self couplings

$$
\text { After EWSB: } V(H)=\frac{1}{2} M_{H}^{2} H^{2}+M_{H H H} H^{3}+\frac{1}{4} \mathrm{NHHHH}^{4} \text {. }
$$

- Single boson: $M_{H} \approx 125 \mathrm{GeV} \longrightarrow$ Is it the SM Higgs? Need to measure its properties.
- HHH prod. very difficult @ HC $\sigma_{H H H}=0.06(9.5) \mathrm{fb} 14 \mathrm{TeV}$ LHC (200 TeV VLHC) .

Plehn, Rauch, Phys. Rev D 72, 053008.
Linear Collider? TESLA TDR (hep-ph/01063I5) ~ $1000 \mathrm{fb}^{-1}$ for 20\% accuracy.

- Trilinear coupling (double scalar boson production): this talk!
- In the SM: $\lambda_{H H H}^{S M}=\lambda_{H H H H}^{S M}=\left(M_{H}^{2} / 2 v^{2}\right) \approx 0.13 \longrightarrow$ We want to verify it!
- Throughout the talk: $\lambda=\lambda_{H H H} / \lambda_{H H H}^{S M}$ and $y_{t}=g_{H t \bar{t}} / g_{H t \bar{t}}^{\mathrm{SM}}$.

Disclaimer: No BSM in this talk! (rather active field in the recent past, incomplete list below) Contino, Ghezzi, Moretti, Panico, Piccinini, Wulzer [1205.5444]; Gillioz, Grober, Grojean, Muhlleitner, Salvioni [1206.7120]; Kribs, Martin [1207.4496]; Dawson, Furlan, Lewis [1210.6663]; Dolan, Englert, Spannowsky [1210.8166]; Englert, Re, Spannowsky [1302.6506]; Goutzevich, Oliveira, Rojo, Rosenfeld, Salam, Sanz [1303.3663]; Craig, Galloway, Thomas, [1305.2424]; Killick, Kumar, Logan, [1305.7236]; Gupta, Rzehak, Wells, [1305.6397]; Nhung, Muhlleitner, Streicher, Walz [1306.3926]; Choi, Englert, Zerwas [1308.784]; Nishiwaku, Noyogi, Shivaji [1309.6907]; Liu, Wang, Zhu [1310.3634]; Ramsey-Musolf, No [1310.6035]; Enkhbat [1311.4445]; Heng, Shang, Zhang, Zhu [312.4260], Hespel, Lopez-Val, Vryonidou [1407.0281], Bhattacherkee, Choudhury [1407.6866] + many others

Scalar boson pairs: production and decay

Cross sections, events and decay rates @ 14 TeV LHC

A. Papaefstathiou, L. L. Yang, JZ, 1209.1489

Cross sections computed with HPAIR (http://people.web.psi.ch/spira/hpair/)

Cross sections

- Gluon fusion is dominant (> 90\%) in $120-\mathrm{I} 30 \mathrm{GeV}, \mathrm{VBF}$ also interesting.
- K-fac ~ 2 (2.3) LO (NLO), th. unc. 30 (20) [8] \% @ LO (NLO) [NNLO]. LO: Glover, van der Bij, Nucl. Phys. B 309, 282 (I988); Plehn, Spira and Zerwas, Nucl. Phys. B 479,46 (I996), [Erratum B 53 I , 655 (I998)]
NLO heavy top : Dawson, Dittmaier and Spira, Phys. Rev. D58, II 50 I2 (I998). NLO exp. top mass: Grigo, Hoff, Melnikov and Steinhauser, I305.7340 NNLL+NLO : D. Shao, C. Li, H. Li, J. Wang, I 30 I .I 245.
NNLO heavy top: De Florian, Mazzitelli, I305.5206, I 309.6594

Event generation

- Events can be generated with MG5 and Herwig++ (public).
- Matching to PS @ NLO:
- MG5_aMC@NLO: Frederix et al, I40I.7340.
- Open Loops + Herwig++: Maierhöfer, Papaefstathiou, I40I. 0007

Total rates

- Hadronic decays dominate.
- Total rate for $b \bar{b} \tau^{+} \tau^{-}$and $b \bar{b} l \nu j j \sim 2.4 \mathrm{fb} . b \bar{b} \gamma \gamma \sim 0.087 \mathrm{fb}$.
A. Papaefstathiou, L. L. Yang, JZ, PRD 87 (2013) 011301

Dissecting HH cross section

2 topologies, each with 2 Lorentz structures (I and 2):

$$
\sigma_{L O}=\left|\alpha_{1} C_{t r i}^{(1)}+\beta_{1} C_{b o x}^{(1)}\right|^{2}+\gamma_{1}^{2}\left|C_{b o x}^{(2)}\right|^{2} \quad \text { SM: } \begin{aligned}
& \alpha_{1}=y_{t} \lambda \\
& \beta_{1}=\gamma_{1}=y_{t}^{2}
\end{aligned}
$$

Our fit: $\quad \sigma_{H H}^{\mathrm{NLO}}[\mathrm{fb}]=9.66 \lambda^{2} y_{t}^{2}-46.9 \lambda y_{t}^{3}+70.1 y_{t}^{4}+\mathcal{O}\left(\lambda y_{b} y_{t}^{2}\right)$.
(MSTW2008)

- Triangle diagram subdominant due to off-shell s-channel Higgs boson.
- Minimum for $\lambda \sim 2.4 y_{t}$.
- Cross section is very sensitive to actual value of y_{t}.
- Bottom loop effects 0.2% in the SM (up to 2% for currently allowed ranges).

Final states @ 14 TeV LHC

Process	$\mathrm{S}\left(600 \mathrm{fb}^{-1}\right)$	$\mathrm{B}(600 \mathrm{fb})^{-1}$	σ
$b \bar{b} \tau^{+} \tau^{-}$	50	104	4.5
$b b W^{+} W^{-}$	12	8	4.1
$b \bar{b} \gamma \gamma$	9	11	2.4
$b \bar{b} \gamma \gamma$	6	12.5	1.5
$b b b b$	50	2500	1.0

Dolan, Englert, Spannowsky, 1206.5001
Papaefstathiou, L. L. Yang, JZ, 1209.1489.
Baglio, Djouadi, Gröber, Mühlleitner, Quevillon, Spira:1212.5581. Baur, Plehn, Rainwater, Phys.Rev. D69 (2004) 053004
Ferreira de Lima, Papaefstathiou, Spannowsky:1404.7139.

- Benefits from new techniques in jet physics: $b \bar{b} \tau^{+} \tau^{-}, b \bar{b} W^{+} W^{-}$exploit jet substructure. Phys.Rev.Lett. 100 (2008) 242001
$b \bar{b} b \bar{b}$ based on shower deconstruction.
-What if we combine channels?

Channel	Evidence	Discovery
$b b \tau^{+} \tau^{-}$	$270 \mathrm{fb}^{-1}$	$730 \mathrm{fb}^{-1}$
Combination	$140 \mathrm{fb}^{-1}$	$350 \mathrm{fb}^{-1}$

Goertz, Papaefstathiou, Yang, JZ, in progress

Soper, Spannowsky, 1102.3480.

Double to single scalar

boson cross section ratio

Cross section ratio

$$
C_{H H}=\frac{\sigma(g g \rightarrow H H)}{\sigma(g g \rightarrow H)} \equiv \frac{\sigma_{H H}}{\sigma_{H}} \quad \text { Djouadi, arXiv } 1208.3436
$$

- The bulk of the QCD corrections for both processes comes from real radiation from initial state gluons, hence we expect the ratio to be more stable against higher order corrections.
- Moreover, common systematic uncertainties will cancel out (i.e luminosity).

LO
$\sigma_{H} \quad 20 \%$ (scale)
$\sigma_{H H} \quad 25 \%$ (scale)
$C_{H H} \quad 9 \%$ (scale) 2-3\% (PDF)

F. Goertz, A. Papaefstathiou, L. L. Yang, JZ (arXiv: 1301.3492)

Scalar boson self coupling

at the LHC

Measuring the scalar boson self coupling

 I-Traditional method: fitting a distribution

- A few events in a few bins: poor statistics.

Baur, Plehn, Rainwater, Phys.Rev. D69 (2004) 053004
(see also Chen, Low, 1405.7040)
2- Alternative: event count (more "shape-independent")

- We measure N events, and we expected B background events.
- Assuming Gaussian distribution, $S=N-B, \Delta S=\sqrt{N+B}$.
- We draw land 2σ exclusion contours (68% and 95% C.L).

Exploiting the ratio

$$
\begin{aligned}
\sigma_{H H}^{b \bar{b} x x} & \equiv \sigma_{H H} \times 2 \times \mathrm{BR}(b \bar{b}) \times \operatorname{BR}(x x) \\
\sigma_{H}^{b \bar{b}} & \equiv \sigma_{H} \times \operatorname{BR}(b \bar{b}) \\
C_{H H}^{\text {exp. }} & =\left.\frac{\sigma_{H H}^{b \bar{b} x x}}{\sigma_{H}^{b \bar{b}} \times 2 \times B R(x x)}\right|_{\text {exp }}
\end{aligned}
$$

Measured quantities

- Uncertainties assumed:
$y_{t} \sim 20 \%$ after $300 / \mathrm{fb}$ at 14 TeV LHC.

$$
h \rightarrow\left(\tau^{+} \tau^{-}, W^{+} W^{-}, \gamma \gamma\right)=(12,12,16) \%
$$

- Assume no further improvement beyond 300/fb (conservative).
- Combine all errors in quadrature:
$\left(\frac{\Delta C_{H H}}{C_{H H}}\right)^{2}=\left(\frac{\Delta \sigma_{b H H}^{\sigma_{H} \bar{b} x}}{\sigma_{H H}^{b \vec{H} x}}\right)^{2}+\left(\frac{\Delta \mathrm{BR}(x x)}{\operatorname{BR}(x x)}\right)^{2}+\left(\frac{\Delta \sigma_{H}^{b \bar{b}}}{\sigma_{H}^{b \hbar}}\right)^{2}+\left(\right.$ "theory" errors) ${ }^{2}$.

Constraining the self-coupling

$b \bar{b} \tau^{+} \tau^{-}$channel, $y_{t}=1, M_{H}=125 \mathrm{GeV}$, LHC@14 TeV, MSTW2008nlo68cl

- Given an assumption for the "true" value of the self-coupling ($\lambda_{\text {true }}$) what is the constraint we can impose on λ ?

$$
\begin{aligned}
& 1 \sigma: \lambda \in(0.57-1.64) \\
& 2 \sigma: \lambda \in(0.22-4.70)
\end{aligned}
$$

$$
\begin{aligned}
& 1 \sigma: \lambda \in(0.54-1.78) \\
& 2 \sigma: \lambda \in(0.17-4.75)
\end{aligned}
$$

Exclusion intervals

Process	$600 \mathrm{fb}^{-1}(2 \sigma)$	$600 \mathrm{fb}^{-1}(1 \sigma)$	$3000 \mathrm{fb}^{-1} 2 \sigma$	$3000 \mathrm{fb}^{-1} 1 \sigma$
$b b \tau^{+} \tau^{-}$	$(0.22,4.70)$	$(0.57,1.64)$	$(0.42,2.13)$	$(0.69,1.40)$
$b b W^{+} W^{-}$	$(0.04,4.88)$	$(0.46,1.95)$	$(0.36,4.56)$	$(0.65,1.46)$
$b b \gamma \gamma$	$(-0.56,5.48)$	$(0.09,4.83)$	$(0.08,4.84)$	$(0.48,1.87)$

Table 1: The expected limits at 1σ and 2σ confidence levels, provided that $\lambda_{\text {true }}$ and $y_{t, \text { true }}$ have their SM values: $\lambda_{\text {true }}=1, y_{t, \text { true }}=1$. The results have been derived using $C_{H H}$ and are shown for $600 \mathrm{fb}^{-1}$ and $3000 \mathrm{fb}^{-1}$.

Naive combination, $\sqrt{s}=14 \mathrm{TeV}, 3000 \mathrm{fb}^{-1}$, gives $\pm 20 \%$.
(adding 4 b channel, not shown here)

- Compare to:

LHC: (0.26-1.94) $\sqrt{s}=14 \mathrm{TeV}, 600 \mathrm{fb}^{-1}(1 \sigma) \begin{aligned} & \text { Baur, Plehn, Rainwater, } \\ & \text { Phys.Rev. D69 (2004) } 053004\end{aligned}$
ILC: (0.76-I.24) $\sqrt{s}=1 \mathrm{TeV}, 1000 \mathrm{fb}^{-1}$
T. Barklow, et al, "Physics at the International Linear Collider", to be published in the ILC Detailed Baseline Design Report (2012).

Varying Yukawa top

F. Goertz, A. Papaefstathiou, L. L. Yang, JZ (arXiv: 1301.3492)

$$
\begin{array}{lll}
1 \sigma & y_{t}=0.85 & \lambda \in(0.2-1.1) \\
& y_{t}=1.15 & \lambda \in(1.1-2.5)
\end{array}
$$

No overlap!

Scalar boson pair production in Effective Field Theory (HEFT)

Lagrangean and couplings

$$
\begin{aligned}
\mathcal{L}=\mathcal{L}_{\mathrm{SM}} & +\frac{\bar{c}_{H}}{2 v^{2}}\left(\partial^{\mu}|H|^{2}\right)^{2}-\frac{\bar{c}_{6}}{v^{2}} v|H|^{6}+\left\{-\frac{\bar{c}_{u}}{v^{2}} y_{u}|H|^{2} \bar{Q}_{L} H^{c} u_{R}-\frac{\bar{c}_{d}}{v^{2}} y_{d}|H|^{2} \bar{Q}_{L} H d_{R}-\frac{\bar{c}_{l}}{v^{2}} y_{l}|H|^{2} \bar{L}_{L} H e_{R}+\text { h.c. }\right\} \\
& +\frac{\alpha_{s} \bar{c}_{g}}{4 \pi v^{2}}|H|^{2} G_{\mu \nu}^{a} G_{a}^{\mu \nu}+\frac{g^{2} \bar{c}_{\gamma}}{v^{2}}|H|^{2} B_{\mu \nu} B^{\mu \nu}+\frac{i g \bar{c}_{H W}}{v^{2}}\left(D^{\mu} H\right)^{\dagger} \sigma_{k}\left(D^{\nu} H\right) W_{\mu \nu}^{k} \\
& +\frac{i g^{\prime} \bar{c}_{H B}}{v^{2}}\left(D^{\mu} H\right)^{\dagger}\left(D^{\nu} H\right) B_{\mu \nu}+\frac{i \bar{g} \bar{c}_{W}}{2 v^{2}}\left(H^{\dagger} \sigma_{k} \overleftrightarrow{D}^{\mu} H\right) D^{\nu} W_{\mu \nu}^{k}+\frac{i g^{\prime} \bar{c}_{B}}{2 v^{2}}\left(H^{\dagger} \overleftrightarrow{D^{\mu}} H\right) \partial^{\nu} B_{\mu \nu}
\end{aligned}
$$

See (recent) e.g: Passarino (1209.5538), Buchalla, Cata, Krause (1307.5017), Alloul, Fuks, Sanz (1310.5150) and refs therein. $\bar{c}_{H B}=-\bar{c}_{H W}=\bar{c}_{W}=-\bar{c}_{B}$ Elias-Miro, Espinosa, Masso, Pomarol (1308.1879).
"Extended kappa framework" for double scalar boson production:

$$
\begin{gathered}
\mathcal{L} \supset-\frac{m_{h}^{2}}{2 v} \kappa_{\lambda} h^{3}-\frac{m_{h}^{2}}{8 v^{2}} \kappa \\
\kappa_{\lambda}=1-\frac{3}{2} \bar{c}_{H}+\bar{c}_{6} \\
\kappa_{h h}=1-\frac{25}{3} \bar{c}_{H}+6 \bar{c}_{6} \\
\kappa_{g}=\kappa_{2 g}=\frac{\alpha_{s} \bar{c}_{g}}{4 \pi} \\
\kappa_{f}=1-\frac{\bar{c}_{H}}{2}+\bar{c}_{f} \\
\kappa_{2 f}=\frac{3 \bar{c}_{f}-\bar{c}_{H}}{2}
\end{gathered}
$$

Process	Tree
$h \rightarrow b b$	\bar{c}_{H}, \bar{c}_{d}
$h \rightarrow \tau \tau$	\bar{c}_{H}, \bar{c}_{l}
$h \rightarrow \gamma \gamma$	\bar{c}_{γ}
$h \rightarrow W W$	$\bar{c}_{H}, \bar{c}_{H W}, \bar{c}_{W}$
$g g \rightarrow h$	$\bar{c}_{H}, \bar{c}_{g}, \bar{c}_{t}$
$g g \rightarrow h h$	$\bar{c}_{H}, \bar{c}_{g}, \bar{c}_{t}, c_{6}$

Only place where \bar{c}_{6} shows up!

Varying the trilinear coupling only is consistent with the EFT framework

EFT analysis

BRs computed with eHDECAY Contino, Ghezzi, Grojean, Mühlleitner, Spira,1303.3876, 1403.3381.
Compatibility with scalar boson data using HiggsBounds and HiggsSignals Bechtle et al, 1311.0055, 1305.1933.

Our fit $\quad \frac{\sigma(g g \rightarrow h h)}{\sigma(g g \rightarrow h h)_{\text {SM }}}=2.1 \kappa_{t}^{4}-1.4 \kappa_{t}^{3} \kappa_{\lambda}+0.3 \kappa_{t}^{2} \kappa_{\lambda}^{2}+\kappa_{g}^{2}\left(0.05 \kappa_{\lambda}^{2}-0.03 \kappa_{\lambda}+24.4\right)-8.3 \kappa_{g} \kappa_{t}^{2}$ (MSTW) $\quad+\kappa_{g} \kappa_{\lambda}\left(2.8 \kappa_{t}^{2}-0.5 \kappa_{\lambda} \kappa_{t}+1.5 \kappa_{t}-2.2 \kappa_{2 t}\right)+\kappa_{2 t}\left(21.7 \kappa_{g}+3.1 \kappa_{\lambda} \kappa_{t}-8.8 \kappa_{t}^{2}+8.9 \kappa_{2 t}\right)$

Linearizing:
$\frac{\sigma(g g \rightarrow h h)}{\sigma(g g \rightarrow h h)_{\mathrm{SM}}}=1+1.6 c_{h}-0.8 c_{6}-4.5 c_{g}-3.7 c_{t}+\mathcal{O}\left(c_{i}^{2}\right)$
Large variations in the cross section still allowed by current SB data

Still a lot of room for surprises!

Goertz, Papaefstathiou, Yang, JZ, in preparation.

Conclusions

- We have considered the double to single scalar boson cross section ratio, $C_{H H}$ at the 14 TeV LHC , including scale and PDF uncertainties.
- The ratio is very stable under scale variation (I.5 \% @ NLO), while the cross section itself has a 20% theory uncertainty.
- We have derived exclusion limits for the trilinear scalar boson self coupling using the available channels, obtaining a 20% accuracy for the SM case.
- To measure it is crucial to know y_{t} with a high accuracy .
- The channels used here have to be studied in more realistic environment (including detector simulation, underlying event, pile up, efficiencies, etc...)
-We have shown preliminary results for the EFT analysis, large effects still allowed in spite of a "SM-look-alike" scalar boson.

