

Searching WISPs

From theory to detection

J. Jaeckel**

```
S. Abel<sup>†</sup>, J. Berges**, M. Goodsell**, S. Gardiner<sup>†</sup>, H. Gies<sup>0</sup>
V. Khoze<sup>†</sup>, A. Lobanov<sup>y</sup>, J. Redondo*, A. Ringwald*, C. Wallace<sup>†</sup>
```

```
**ITP Heidelberg, <sup>†</sup>IPPP Durham, *DESY,

yMPIfR Bonn, *MPI Munich, **Cern, oITP Jena
```

We know... ...nothing

Inventory of the Universe

Where does physics beyond the 5M hide?

Exploring is (at least) 2 dimensional

Example WISP: (Weakly Interacting Sub-eV Particle) Axions in a nutshell

A dirty little secret...

$$S = \int d^4x \left[-\frac{1}{4} G^{\mu\nu} G_{\mu\nu} - \frac{\theta}{4} G^{\mu\nu} \tilde{G}_{\mu\nu} + i \bar{\psi} D_{\mu} \gamma^{\mu} \psi + \bar{\psi} M \psi \right]$$

$$" \sim \frac{\theta}{\theta} \vec{E} \cdot \vec{B}"$$

- The θ -term violates time reversal (T=CP)!
- · Connected to strong interactions!

Electric dipole moment of the neutron!

Not found $\rightarrow \theta \sim 0 \parallel \parallel$

Axion is light + couples to two photons

small < eV

$$\mathcal{L} = -\frac{1}{4}F^{\mu\nu}F_{\mu\nu} + \frac{1}{2}\partial_{\mu}a\partial^{\mu}a - m^2a^2 - \frac{1}{4}g_{a\gamma\gamma}aF^{\mu\nu}\tilde{F}_{\mu\nu} + \dots$$

Coupling to two photons

Very very weak $g_{a\gamma\gamma}\sim rac{\alpha}{2\pi\,f_a}$

Because: Very large

Searching Axions in the lab

Light shining through walls

Light shining through walls

• Test
$$P_{\gamma \to X \to \gamma} \lesssim 10^{-20}$$

- Enormous precision!
- · Study extremely weak couplings!

Photons coming through the wall!

It could be Axion(-like particle)s!

• Coupling to two photons: $rac{1}{M} a ilde{F} F \sim rac{1}{M} a ec{{f E}} \cdot ec{{f E}}$

$$P_{\gamma \to a \to \gamma} \sim N_{\text{pass}} \left(\frac{BL}{M}\right)^4$$

Light Shining Through Walls

Small coupling, small mass

 $Log_{10} m_a [eV]$

Small coupling, small mass

Weaker interaction

Dark Matter(s)

Can Dark Matter be WISPy?

(Weakly Interacting Sub-eV Particley)
Slim

Properties of Dark Matter

Dark matter is dark, i.e.
 it doesn't radiate!
 (and also doesn't absorb)

> very, very weak interactions with light and with ordinary matter

→ Exactly the property of WISPs

Exploring is (at least) 2 dimensional

A common prejudice

- Dark Matter has to be heavy: $m_{\rm DM} \gtrsim {\rm keV}$.
- Prejudice based on thermal production!
 and/or fermionic DM!

Both assumptions give minimal velocity (thermal/Fermi)

→ galaxy, i.e. structure, formation inhibited!

Weakly interacting sub-eV DM

· Has to be non-thermally (cold!!!) produced

See misalignment mechanism

Bosonic!

Axion(-like particles)
Hidden Photons

Dark matter has to be heavy...

Dark matter has to be heavy $m_{\rm DM} \gtrsim {\rm keV?}$

Dark matter has to be heavy...

Axion Dark Matter

The axion has no clue where to start

The axion has no clue where to start

The axion solution to the strong CP problem

- → Oscillations contain energy
- → behave like non-relativistic particles (T=0)

Axion(-like particle) Dark Matter

Detecting WISPy DM

Use a plentiful source of axions

Photon Regeneration

Signal: Total energy of axion

$$h\nu = m_a c^2 [1 + \mathcal{O}(\beta^2 \sim 10^{-6})]$$
 Virial velocity in galaxy halo!

An extremely sensitive probe!!!

Electricity from Dark Matter ;-).

INSTITUT FÜR
THEORETISCHE PHYSIK
Heidelberg
University

Photon Regeneration

@ DESY + Bonn: WISPDMX

Broadband Search Strategy

Dark Matter Antenna

Suppressed Thermal mass

Standard ALP CDM

 $\text{Log}_{10} m_{\phi} [\text{eV}]$

Probes here; very sensitive!!

Recycle Auger mirror

A Dream for Astrology ehhm Astronomy

· Emission from moving dark matter

· A picture of the DM-velocity distribution

Pre-Final words

Also for hidden photons!!!

- Most things also work for other well motivated light particles.
- E.g

extra (hidden) U(1) bosons=hidden photons!!!

Conclusions

Conclusions

Good Physics Case for Axions and WISPs

explore 'The Low Energy Frontier'

 Low energy experiments complementary to accelerators!

- · Dark Matter may be WISPy ©
 - → New Search opportunities!
 - → Searches ongoing!

Hidden sector

Axion Dark Matter

$$\ddot{a} + 3H\dot{a} + m_a^2 a = 0$$
 $H = \frac{\dot{R}(t)}{R(t)}$

$$H = \frac{R(t)}{R(t)}$$

 $\cdot H \gg m_a \rightarrow \text{overdamped}$ oscillator

• $H \ll m_a$ \rightarrow damped oscillator

$$\rho_a(t) = \frac{\rho_{ini}}{R^3(t)} \rightarrow \text{Dark Matter}$$

Beyond Photon Couplings

Light bosons can couple to fermions

- Goldstone bosons naturally couple to fermions (charged under the symmetry)
- E.g. Family symmetry changing e into μ

$$(\partial_{\mu}\phi)\bar{\mu}\gamma^{\mu}e + h.c.$$

Interestingly these couplings are not very constrained from astrophysics! (not enough energy to make μ s

Plenty of room for dark matter

Flexing BICEP 2

Axion/ALP DM: Two Scenarios

1) Phase Transition before inflation

Inflation ensures:

same initial field value everywhere

- → Can choose this value
 - Tune to right DM density (always poss.)

But quantum fluctuations from inflation

→ Isocurvature fluctuations ~H_I

2) Phase Transition after inflation

average over initial field values

- > Predict DM density (correct only for specific mass/coup.)
- → No isocurvature fluctuations

What is allowed?

Preferred range!

Two.5 comments

- 1) Similar behavior for other ALPs/WISPs
- 2) Can be circumvented by non-trivial couplings to gravity.
- 2.5) Needs to be confirmed

Properties of Dark Matter

Dark matter is dark, i.e.
 it doesn't radiate!
 (and also doesn't absorb)

> very, very weak interactions with light and with ordinary matter

→ Exactly the properties of axions