Searches for Long-Lived Particles in ATLAS and CMS

Rachel Rosten
University of Washington, Seattle
For the ATLAS and CMS Collaborations

16th August 2014

16 August 2014

Why Long-Lived Particles?

- LLPs are predicted by a wide variety of models
 - Hidden Sectors, RPV violating decays, Split-SUSY, AMSB, GMSB, etc.
- LLP decays have unusual and interesting signatures
 - May be overlooked or misidentified by searches not dedicated to LLPs
 - May require customized triggers or other algorithms for each search

16 August 2014

Detecting LLPs

 Identification/discriminating variables depends on properties of the LLP

• Lifetime? Charge? Decay products? Decay position in detector?

• Highly ionizing \rightarrow High $\frac{dE}{dx}$

• Low $\beta \rightarrow$ Long time-of-flight (TOF) to systems with good timing resolution

- Charged LLP decay in detector → Kinked or disappearing tracks
- Neutral LLP → MET, displaced vertices, non-pointing objects
- Stopped in detector → Decay in different bunch-crossing

Models + Signatures Examples

- Anomaly Mediated SUSY Breaking (AMSB)
- Gauge Mediated SUSY Breaking (GMSB)
- Split-SUSY
- R-Parity Violating (RPV)
- Hidden Sector (HS)

- (GMSB)

 R-parity conserving models
- And many more!
- Degenerate masses, small couplings, conserved quantum numbers → LLPs

Model	Displaced Vertex		Non-pointing Objects/Lepton Jets	dE/dx or ToF	Out-of-time Decays
AMSB		X			
GMSB				X	
Split-SUSY				X	X
RPV	X		X		
HS	Χ		Χ		

 $\sqrt{s} = 8 \text{ TeV}$

ATLAS and CMS Recent Results

Search	ID	Model
Neutral LLPs decaying in the HCal	ATLAS-CONF-2014-041	HS – Higgs-like communicator
Meta-stable gluinos	ATLAS-CONF-2014-037	Split-SUSY
Long-lived sleptons	ATLAS-CONF-2013-058	GMSB
Long-lived stopped, out-of-time R-hadrons	Phys. Rev. D 88 112003	Split-SUSY
Muon + displaced vertex	ATLAS-CONF-2013-092	RPV
Disappearing Tracks	Phys. Rev D 88112006	AMSB

BOLD = Presented in this talk

Search	ID	Model
Displaced SUSY	CMS B2G-12-024	RPV
Displaced leptons	CMS EXO-12-037	RPV or HS with Higgs-like communicator
Displaced Jets	CMS EXO-12-038	HS with heavy Higgs
Heavy Stable Charged Particles	JHEP 07 (2013) 122	GMSB, Split-SUSY
HSCP Reinterpretation	CMS EXO-13-006	pMSSM

LLPs - Quy Nhon - R. Rosten

Hidden Sector

ATLAS – Neutral LLPs Decaying in the HCal 1

- A neutral scalar (100-140 GeV) decays to a pair of neutral LLPs (10-100 GeV) which in turn decay to heavy fermions $\Phi_{HS} \to \pi_v \pi_v \quad \pi_v \to f \bar{f}$
- If such neutral LLPs decay in the hadronic calorimeter (HCal), the result will be:
 - One narrow jet per LLP (fermion pairs have no time to separate)
 - No inner detector tracks pointing towards the jet

• Little to no energy in the electromagnetic calorimeter (which is closer

to the beampipe

16 August 2014

Hidden Sector

ATLAS – Neutral LLPs Decaying in the HCal 2

- Use a dedicated trigger to search for jets
- Only seeking signal in the HCal reduces multijet background
 - Cosmic and beam-halo backgrounds reduced by timing and MET cuts
- Set limits on mean $c\tau$ of the LLPs

MC sample	excluded range	excluded range	
$m_{\Phi}, m_{\pi v}$	$30\%~{ m BR}~\Phi_{HS} ightarrow \pi_{ m v}\pi_{ m v}$	10% BR $\Phi_{HS} \rightarrow \pi_{v}\pi_{v}$	
[GeV]	[m]	[m]	
126, 10	0.10 - 4.38	0.13 - 2.30	
126, 25	0.27 - 10.01	0.37 - 5.12	
126, 40	0.54 - 12.11	0.86 - 5.62	

ATLAS-CONF-2014-041

LLPs - Quy Nhon - R. Rosten

AMSB

ATLAS – Disappearing Tracks

- Lightest chargino nearly degenerate with lightest neutralino (the LSP), leading to a long lifetime $\tilde{\chi}_1^{\pm} \to \pi^{\pm} \tilde{\chi}_1^0$
- If decay in inner detector, where track hits can be reconstructed with high resolution \rightarrow track will not extend the full width of the tracker (soft π^{\pm} not reconstructed)

Use a dedicated trigger and append standard ATLAS tracking

algorithm with additional stage

LLPs - Quy Nhon - R. Rosten

Phys. Rev. D 88 112006

RPV, HS

CMS – Displaced Leptons

- Neutral LLP decay to dileptons in the inner tracker $\begin{array}{ccc} H \to XX & X \to \ell^+\ell^- \\ \tilde{q} \to q\tilde{\chi}^0 & \tilde{\chi}^0 \to \ell^+\ell^- v \end{array}$

 - Seek pairs of lepton tracks with high transverse impact parameter d_0 originating from the same displaced vertex
- Standard lepton IDing for inner tracker poor for displaced leptons
 - Base identification on match to trigger object
- Use standard tracking algorithms
 - Determine efficiency vs d_0 using cosmic events

CMS EXO-12-037

10

RPV

CMS - Displaced SUSY1

• Attempt to create a **generalized** search for non-pointing leptons, built around an R-parity violating model $pp \to \tilde{t}_1 \tilde{t}_1 = \tilde{t}_1 \to bl$

• LSP (a \tilde{t}_1) decays to a lepton and a b in the inner tracker

• Search for a pair of opposite-sign leptons with high (> 100 μ m) impact parameter d_0

• Background is a function of d_0

• d_0 is a function of LLP lifetime

Search Regions

	> 1000 μm	> 500 μm	> 200 μm
$ \mathbf{e} d_0 $			
> 1000 μm	Exclusive	Intermediate	Loose
> 500 μm	Intermediate	Intermediate	Loose
> 200 μm	Loose	Loose	Loose

RPV

CMS – Displaced SUSY 2

- Push for model independence: No E_T^{miss} cut, leptons not required to originate at the same vertex, hadronic activity is not required
- Use standard muon and electron identification algorithms, but use custom scale factors (removing d_0 and z_0 requirements of standard algorithms) for differences in data/MC reconstruction efficiencies

GMSB, Split-SUSY, etc.

CMS – Heavy Stable Charged Particles

- Consider low β , ($e/3 \le Q \le 8e$) particles and bound states from a variety of models
 - R-hadron interaction with detector uncertain → Two models considered
- Search for tracks with anomalous dE/dx or long TOF to the MS

pMSSM

CMS - HSCP Reinterpretation

 A technique is developed to adapt the results of the previous slide's search to other models predicting long-lived lepton-like particles

• Selection requirements on dE/dx, p_T , m, and TOF \rightarrow probability as a function of k, β , and η that a particle will pass the selection criteria

Use to limits on chargino lifetime in the phenomenological minimal

SUSY standard model (pMSSM)

Split-SUSY

ATLAS – Metastable Gluinos

100% BR
$$\tilde{g} \to t\bar{t}\tilde{\chi}^0$$
 OR
50% $\tilde{g} \to q\bar{q}\tilde{\chi}^0$, 50% $\tilde{g} \to g\tilde{\chi}^0$

- Reinterpret two searches for promptly decaying gluinos and squarks to search for long-lived gluinos decaying inside the detector
 - First search for gluinos with mid-range lifetimes
- Follow full simulation-digitization-reconstruction train signal samples → generic model of hadronization
- Maintain signal region definitions, background yields and uncertainties, and statistical treatment of parent searches

Jet Number	b-Jets	E_T^{miss}
7-10	0, 1, ≥2	\checkmark
2-6	-	\checkmark

Limits set for $\tau = 1$ ns and $m_{\tilde{\chi}_1^0} = 100$ GeV:

$$\tilde{g} \rightarrow t\bar{t}\tilde{\chi}^0$$
: 900 GeV

$$\tilde{g} \to q\bar{q}\tilde{\chi}^0(g\tilde{\chi}^0)$$
: 850 GeV

LLPs - Quy Nhon - R. Rosten

Run 2 and LLPs

- Higher energy allows for a greater mass reach, but...
- Every analysis has questions to answer:
 - Will changes to default tracking, etc algorithms require the creation of analysis dedicated algorithms where standard ones were previously used?
 - Similarly, do custom triggers have to be added or reconfigured (this should be done already!)?
 - How will pileup, and pileup removal, affect those searches requiring isolation or triggering and searching for non-pointing tracks and jets?

Conclusions

- LLPs appear in a variety of models
 - Challenges to LLP searches encourage signal-based development of analyses
 - Variety of LLPs and models that produce them encourage model-independence of interpretation of results
- So far, no evidence of new physics has been detected
- Both ATLAS and CMS have a variety of published results and studies will continue and expand in 2015
 - Higher energy → Greater mass reach for LLPs and their parents
 - Higher luminosity → Challenge for searches with track isolation, etc

Backup Slides

Meta-stable gluinos: Decay to tops

LLPs - Quy Nhon - R. Rosten

18

Models and Signatures

- Anomaly Mediated SUSY Breaking (AMSB)
 - Long lived charginos decay to neutralinos
 - Disappearing/kinked tracks
- Gauge Mediated SUSY Breaking (GMSB)
 - Lightest neutralino decays to a photon and gravitino
 - TOF to photon production + MET
 - Lightest slepton decays to a lepton and gravitino
 - $\frac{dE}{dx}$ and TOF
- Split SUSY
 - Decay of long lived gluinos and R-hadrons
 - $\frac{dE}{dx}$ and TOF or out-of-time decays

Models and Signatures

R-Parity Violating (RPV) SUSY models

- LSP is metastable and may possess a long lifetime
 - Displaced vertices, non-pointing leptons

Hidden Sector (HS)

- A hidden sector couples weakly to the SM via some communicator – SM particles can decay to HS particles, or vice versa
 - Displaced vertices, lepton jets (collimated group of leptons)

• And more!

 Other models with near-degenerate mass spectra, weak couplings, etc can produce LLPs

Split-SUSY

ATLAS – Long-lived, Stopped R-Hadrons

Considered several models for hadronization of gluinos and \tilde{g} , \tilde{t} , or \vec{b} , (300-1000 GeV) decaying to hadronic jets and neutralinos

Trigger on empty bunch-crossings, looking for events with at least one high energy jet – allows for detection of R-hadrons whose charge

has changed

Lower limits set on mass of \tilde{g} , \tilde{t} , and \tilde{b}

Leading jet	R-hadron	Gluino/squark	Neutralino	Gluino/squa	rk mass limit (GeV)
energy (GeV)	model	decay	mass (GeV)	Expected	Observed
100	Generic	$\tilde{g} \rightarrow g/q\bar{q} + \tilde{\chi}^0$	$m_{\tilde{g}} - 100$	526	545
100	Generic	$\tilde{g} \rightarrow t\bar{t} + \tilde{\chi}^0$	$m_{\tilde{g}}~-~380$	694	705
300	Generic	$\tilde{g} \rightarrow g/q\bar{q} + \tilde{\chi}^0$	100	731	832
300	Generic	$\tilde{g} \rightarrow t\bar{t} + \tilde{\chi}^0$	100	700	784
300	Intermediate	$\tilde{g} \rightarrow g/q\bar{q} + \tilde{\chi}^0$	100	615	699
300	Regge	$\tilde{g} \rightarrow g/q\bar{q} + \tilde{\chi}^0$	100	664	758
100	Generic	$\tilde{t} \rightarrow t + \tilde{\chi}^0$	$m_{\tilde{t}} - 200$	389	397
100	Generic	$\tilde{t} \rightarrow t + \tilde{\chi}^{0}$	100	384	392
100	Regge	$\tilde{t} \rightarrow t + \tilde{\chi}^0$	100	371	379
100	Regge	$\tilde{b} \rightarrow b + \tilde{\chi}^0$	100	334	344

$100\% \text{ BR } \tilde{g} \to t\bar{t}\tilde{\chi}^0 \text{ OR}$
$50\% \ \tilde{g} \rightarrow q\bar{q}\tilde{\chi}^0$, $50\% \ \tilde{g} \rightarrow g\tilde{\chi}^0$
$100\% \ \tilde{t} \rightarrow t \tilde{\chi}^0 \ \text{AND} \ 100\% \ \tilde{b} \rightarrow b \tilde{\chi}^0$

RPV

ATLAS – Muon + Displaced Vertex

- A neutralino decays into a muon and quarks in the ID
- Search for a high track multiplicity displaced vertex in the inner detector with an associated non-pointing muon
- Limits set on squark pair production for a range of squark and neutralino masses

GMSB

ATLAS – Long-lived Sleptons

- The NLSP, the stau, decays outside of the detector, depositing energy throughout ATLAS
- Search for two high p_T , low β tracks using $\frac{dE}{dx}$ and TOF to the MS

HS

CMS - Displaced Jets 1

- A heavy Higgs-like boson (200-1000 GeV) to a pair of neutral LLPs (50-350 GeV)
- Search for pairs of jets originating from same displaced vertex with
 - Few prompt tracks and a high fraction of jet energy carried by the displaced tracks

HS

CMS – Displaced Jets 2

Black: Marks tracks associated with displaced vertex

Status: ICHFP 2014

ATLAS – Current Limits

ATLAS SUSY Searches* - 95% CL Lower Limits

ATLAS Preliminary

 \sqrt{s} = 7, 8 TeV

	latus. IOIILI 2014						$V_{0} = I$, $O_{1} = V_{1}$
	Model	e, μ, τ, γ	Jets	$E_{ m T}^{ m miss}$	$\int \mathcal{L} dt$ [fb]	¹] Mass limit	Reference
Long-lived	Direct $\tilde{X}_1^+\tilde{X}_1^-$ prod., long-lived \tilde{X}_1^\pm Stable, stopped \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{X}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e, \text{GMSB}, \tilde{X}_1^0 \rightarrow \gamma \tilde{G}, \text{long-lived } \tilde{X}_1^0$ $\tilde{q}\tilde{q}, \tilde{X}_1^0 \rightarrow qq\mu$ (RPV)	Disapp. trk 0 μ) 1-2 μ 2 γ 1 μ , displ. vtx	1 jet 1-5 jets - - -	Yes Yes - Yes -	20.3 27.9 15.9 4.7 20.3	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1310.6584 ATLAS-CONF-2013-058 1304.6310
RPV	$ \begin{array}{l} LFV \; pp \!$	$\begin{array}{c} 2\ e, \mu \\ 1\ e, \mu + \tau \\ 2\ e, \mu \text{ (SS)} \\ 4\ e, \mu \\ 3\ e, \mu + \tau \\ 0 \\ 2\ e, \mu \text{ (SS)} \end{array}$	0-3 <i>b</i> 6-7 jets 0-3 <i>b</i>	Yes Yes Yes Yes	4.6 4.6 20.3 20.3 20.3 20.3 20.3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1212.1272 1212.1272 1404.2500 1405.5086 1405.5086 ATLAS-CONF-2013-091 1404.250
Other		$0 \\ 2 e, \mu \text{ (SS)} \\ 0$ $\sqrt{s} = 8 \text{ TeV} \\ \text{artial data}$		Yes Yes Yes 8 TeV data	4.6 14.3 10.5	sgluon sgluon 350-800 GeV $m(\chi)$ <80 GeV, limit of <687 M 10 $^{-1}$ 1 Mass sc	1210.4826 ATLAS-CONF-2013-051 ATLAS-CONF-2012-147

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 or theoretical signal cross section uncertainty.

CMS – Current Limits

ATLAS Recent Results

$\sqrt{s} = 8 \text{ TeV}$

- Neutral LLP decaying in HCal
- Meta-stable gluinos
- Muon + displaced vertex
- Disappearing Tracks
- Long-lived sleptons
- Stopped R-hadrons

$\sqrt{s} = 7 \text{ TeV}$

- Non-pointing photons
- Weakly interacting LLPs in the MS
- Displaced muonic jets

CMS Recent Results

$\sqrt{s} = 8 \text{ TeV}$

- Displaced SUSY
- HSCP decays
- Neutral LLPs decaying to lepton pairs
 - Neutral LLPs decaying to dijets
 - Stopped particles

$\sqrt{s} = 7 \text{ TeV}$

- HSCP decays
- Stopped Particles
- Long-lived neutralinos using displaced Photons
- Neutral LLPs decaying to lepton pairs