Theory progresses in understanding exotic quarkonium-like states

Fulvio Piccinini

INFN, Sezione di Pavia

Charmonium and bottomonium spectrum

not shown $Y(4140)$ and $Y(4274)$

S. Olsen, arXiv:1403.1254[hep-ex]

- all $c \bar{c} / b \bar{b}$ states below open c / b threshold identified
- all $J^{P C}=1^{--} c \bar{c} / b \bar{b}$ states filled
- new neutral and charged particles above threshold

Summary of the available information on XYZ (I)

from T. Bodwin et al, arXiv:1307.7435[hep-ph] plus recent updates

State	$M(\mathrm{MeV})$	$\Gamma(\mathrm{MeV})$	$J^{P C}$	Process (decay mode)	Experiment (\# O $^{\text {) }}$	$1^{\text {st }}$ observation
X (3823)	3823.1 ± 1.9	<24	? ${ }^{-}$	$B \rightarrow K+\left(\chi_{c 1} \gamma\right)$	Belle (3.8)	Belle 2013
X (3872)	3871.68 ± 0.17	<1.2	1^{++}	$B \rightarrow K+\left(J / \psi \pi^{+} \pi^{-}\right)$	Belle (12.8), BaBar (8.6)	Belle 2003
				$p \bar{p} \rightarrow\left(J / \psi \pi^{+} \pi^{-}\right)+\ldots$	CDF (np), D0 (5.2)	
				$B \rightarrow K+\left(J / \psi \pi^{+} \pi^{-} \pi^{0}\right)$	Belle (4.3), BaBar (4.0)	
				$B \rightarrow K+\left(D^{0} \bar{D}^{0} \pi^{0}\right)$	Belle (6.4), BaBar (4.9)	
				$B \rightarrow K+(J / \psi \gamma)$	Belle (4.0), BaBar (3.6)	
				$B \rightarrow K+(\psi(2 S) \gamma)$	BaBar (3.5), Belle (0.4)	
				$p p \rightarrow\left(J / \psi \pi^{+} \pi^{-}\right)+\ldots$	LHCb (np), CMS	
X (3915)	3917.5 ± 1.9	20 ± 5	0^{++}	$B \rightarrow K+(J / \psi \omega)$	Belle (8.1), BaBar (19)	Belle 2004
				$e^{+} e^{-} \rightarrow e^{+} e^{-}+(J / \psi \omega)$	Belle (7.7), BaBar (7.6)	
$\chi_{c 2}(2 P)$	3927.2 ± 2.6	24 ± 6	2^{++}	$e^{+} e^{-} \rightarrow e^{+} e^{-}+(D \bar{D})$	Belle (5.3), BaBar (5.8)	Belle 2005
X (3940)	$3942{ }_{-8}^{+9}$	37_{-17}^{+27}	? ${ }^{+}$	$e^{+} e^{-} \rightarrow J / \psi+\left(D^{*} \bar{D}\right)$	Belle (6.0)	Belle 2007
				$e^{+} e^{-} \rightarrow J / \psi+(\ldots)$	Belle (5.0)	
$G(3900)$	3943 ± 21	52 ± 11	1^{--}	$e^{+} e^{-} \rightarrow \gamma+(D \bar{D})$	BaBar (np), Belle (np)	BaBar 2007
$Y(4008)$	$4008{ }_{-49}^{+121}$	226 ± 97	1^{--}	$e^{+} e^{-} \rightarrow \gamma+\left(J / \psi \pi^{+} \pi^{-}\right)$	Belle (7.4)	Belle 2007
$Y(4140)$	4144.5 ± 2.6	15_{-7}^{+11}	$?^{?+}$	$B \rightarrow K+(J / \psi \phi)$	$\begin{aligned} & \text { CDF (5.0), D0 }(3.1) \\ & \text { CMS }(>5) \end{aligned}$	CDF 2009
$X(4160)$	4156_{-25}^{+29}	$139{ }_{-65}^{+113}$	$?^{?+}$	$e^{+} e^{-} \rightarrow J / \psi+\left(D^{*} \bar{D}^{*}\right)$	Belle (5.5)	Belle 2007

State	$M(\mathrm{MeV})$	$\Gamma(\mathrm{MeV})$	$J^{P C}$	Process (decay mode)	Experiment (\# ${ }^{\text {a }}$)	$1^{\text {st }}$ obser
$Y(4260)$	$4263{ }_{-9}^{+8}$	95 ± 14	1^{--}	$e^{+} e^{-} \rightarrow \gamma+\left(J / \psi \pi^{+} \pi^{-}\right)$	$\begin{aligned} & \text { BaBar (8.0), CLEO (5.4) } \\ & \text { Belle (15) } \end{aligned}$	BaBar 20
				$e^{+} e^{-} \rightarrow\left(J / \psi \pi^{+} \pi^{-}\right)$	CLEO (11)	
				$e^{+} e^{-} \rightarrow\left(J / \psi \pi^{0} \pi^{0}\right)$	CLEO (5.1)	
$Y(4274)$	$4274.4_{-6.7}^{+8.4}$	32_{-15}^{+22}	? ${ }^{+}$	$B \rightarrow K+(J / \psi \phi)$	CDF (3.1) CMS	CDF 2010
X (4350)	$4350.6{ }_{-5.1}^{+4.6}$	$13.3{ }_{-10.0}^{+18.4}$	0/2 ${ }^{++}$	$e^{+} e^{-} \rightarrow e^{+} e^{-}(J / \psi \phi)$	Belle (3.2)	Belle 20
$Y(4360)$	4361 ± 13	74 ± 18	1^{--}	$e^{+} e^{-} \rightarrow \gamma+\left(\psi(2 S) \pi^{+} \pi^{-}\right)$	BaBar (np), Belle (8.0)	BaBar 20
X (4630)	4634_{-11}^{+9}	92_{-32}^{+41}	1^{--}	$e^{+} e^{-} \rightarrow \gamma\left(\Lambda_{c}^{+} \Lambda_{c}^{-}\right)$	Belle (8.2)	Belle 200
$Y(4660)$	4664 ± 12	48 ± 15	1^{--}	$e^{+} e^{-} \rightarrow \gamma+\left(\psi(2 S) \pi^{+} \pi^{-}\right)$	Belle (5.8)	Belle 200
$Z_{c}^{+}(3900)$	3898 ± 5	51 ± 19	1 ?-	$Y(4260) \rightarrow \pi^{-}+\left(J / \psi \pi^{+}\right)$	BESIII (np), Belle (5.2)	BESIII 20
				$e^{+} e^{-} \rightarrow \pi^{-}+\left(J / \psi \pi^{+}\right)$	Xiao et al. (6.1)	
$Z_{c}^{\prime}(3900)$	3883.9 ± 6.3	24.8 ± 11.5	1^{+}	$Y(4260) \rightarrow Z_{c}^{\prime} \pi^{+} \rightarrow D \bar{D}^{*} \pi^{+}$	BESIII (np)	BESIII 20
Z_{c}^{\prime} (4020)	4022.9 ± 2.8	7.9 ± 3.8	?	$Y(4260) \rightarrow Z_{c}^{\prime} \pi^{+} \rightarrow h_{c} \pi^{-} \pi^{+}$	BESIII (np)	BESIII 20
$Z_{c}^{\prime}(4025)$	4026.3 ± 4.5	24.8 ± 9.5	?	$Y(4260) \rightarrow Z_{c}^{\prime} \pi^{+} \rightarrow D^{*} \bar{D}^{*} \pi^{+}$	BESIII (np)	BESIII 20
Z_{1}^{+}(4050)	$4051{ }_{-43}^{+24}$	82_{-55}^{+51}	?	$B \rightarrow K+\left(\chi_{c 1}(1 P) \pi^{+}\right)$	Belle (5.0), BaBar (1.1)	Belle 200
$Z_{2}^{+}(4250)$	$4248{ }_{-45}^{+185}$	$177{ }_{-72}^{+321}$?	$B \rightarrow K+\left(\chi_{c 1}(1 P) \pi^{+}\right)$	Belle (5.0), BaBar (1.1)	Belle 20
$Z^{+}(4430)$	$4443{ }_{-18}^{+24}$	$107{ }_{-71}^{+113}$?	$B \rightarrow K+\left(\psi(2 S) \pi^{+}\right)$	Belle (6.4), BaBar (2.4)	Belle 200
$Y_{b}(10888)$	10888.4 ± 3.0	$30.7{ }_{-7.7}^{+8.9}$	1^{--}	$e^{+} e^{-} \rightarrow\left(\Upsilon(n S) \pi^{+} \pi^{-}\right)$	Belle (2.0)	Belle 20
$Z_{b}^{+}(10610)$	10607.2 ± 2.0	18.4 ± 2.4	1^{+-}	$\Upsilon(5 S) \rightarrow \pi^{-}+\left(\Upsilon(n S) \pi^{+}\right)$	Belle (16)	Belle 201
				$\Upsilon(5 S) \rightarrow \pi^{-}+\left(h_{b}(n P) \pi^{+}\right)$	Belle (16)	
$Z_{b}^{+}(10650)$	10652.2 ± 1.5	11.5 ± 2.2	1^{+-}	$\Upsilon(5 S) \rightarrow \pi^{-}+\left(\Upsilon(n S) \pi^{+}\right)$	Belle (16)	Belle 201
				$\Upsilon(5 S) \rightarrow \pi^{-}+\left(h_{b}(n P) \pi^{+}\right)$	Belle (16)	

Some striking features to be remarked

- charged states prove the internal composition of 4 valence quarks
- several states very close to open charm/bottom thresholds
- narrow (extreme case: $X(3872)$)
- $X(3872)$ has a large prompt production cross section at hadron colliders
- some states prefer to decay to $\psi(2 S)$ w.r.t. J / ψ, despite more constrained phase space
challenge: can we give a theoretically unified description?

Features of most popular th-models of exotic mesons

- hadronic molecules
- $Q \bar{q}$ tightly bound in heavy mesons which move at distances longer than typical size of mesons $\left(R \sim \frac{\hbar c}{2 M_{\text {red }}{ }^{E_{b i n d}}}\right)(\sim 10 \mathrm{fm}$ for $X(3872))$
- masses close to thresholds
- typically loosely bound systems which can decay easily through the independent decay of their constituents
- isospin breaking easily accomodated
- difficult to make predictions (in principle any pair of mesons at threshold can rescatter and form a molecule)
- hybrids ($c \bar{c}+$ excited gluons)
- different quantum numbers from charmonium
- natural preference to decay to $J / \psi+$ pions
- lowest lying state predicted around 4200 MeV by LQCD $\Longrightarrow Y(4260)$
- this model can not be applied to charged states
- diquark-antidiquarks (tetraquarks)
- $Q q$ tightly bound in diquarks, which interact by QCD colour force
- masses not necessarily close to threshold
- prediction of bound states with higher L and/or radially excited
- many new states (charged and neutral) foreseen (a nonet for each spin-parity)
- neutral states expected to appear in doublets
- decays include both open and hidden charm channels and (if kinematically allowed) baryonium
- hadro-quarkonium
- $Q \bar{Q}$ tightly bound as in quarkonium
- $Q Q$ embedded in a spatially large excited state of light mesonic matter
- interactions through QCD analog of Van der Waals force
- natural suppression of decay to open chearm/beauty

$X(3872)$, the oldest and still debated one

- $M(X 3872)=3871.68 \pm 0.17 \mathrm{MeV} \quad \Gamma_{X} \lesssim 1.2 \mathrm{MeV} \quad J^{P C}=1^{++}$
- $\Delta M \equiv M(X 3872)-\left(M_{D^{0}}+M_{D^{* 0}}\right)=-0.09 \pm 0.28 \mathrm{MeV}$
(LHCb)
- production
- production through B decays at $e^{+} e^{-}$and $p \bar{p} / p p$ colliders
- dominant prompt production at Tevatron/LHC ($p \bar{p} \rightarrow X+$ all)
- decay
- $J / \psi \rho \rightarrow J / \psi \pi^{+} \pi^{-}$
- $J / \psi \omega \rightarrow J / \psi \pi^{+} \pi^{-} \pi^{0}$
- $D^{0} \overline{D^{0}} \rightarrow D^{0} \overline{D^{0}} \pi^{0} \quad$ (large isospin violation)
- $D^{0} \overline{D^{0}} \rightarrow \bar{D}^{0} \gamma$
- $J / \psi \gamma, \psi(2 S) \gamma$
- $\Delta M \lesssim 0 \Longrightarrow$ molecular interpretation natural
- isospin violation explained with the distance of $D^{+} D^{*-}$ and $D^{0} \bar{D}^{0 *}$ thresholds of $\sim 8 \mathrm{MeV}$
- large cross sections (several nb) at hadron colliders compatible with this hypothesis? $(\Longrightarrow$ see later $)$

Threshold distance for charged states \Longrightarrow molecules?

- $Z_{b}^{+}(10610) \rightarrow \Upsilon(n S) \pi^{+}(n=1,2,3)$
- $M_{Z}=10607.2 \pm 2.0 \mathrm{MeV}, \quad \Gamma_{Z}=18.4 \pm 2.4 \mathrm{MeV}$
- $M_{B}+M_{B^{*}}=10604.46 \pm 0.43 \mathrm{MeV} \quad \Delta M \sim 3 \pm 2 \mathrm{MeV}$
- $Z_{b}^{+}(10650) \rightarrow h_{B}(n P) \pi^{+}(n=1,2)$
- $M_{Z}=10652.2 \pm 1.5 \mathrm{MeV}, \quad \Gamma_{Z}=11.5 \pm 2.2 \mathrm{MeV}$
- $M_{B^{*}}+M_{B^{*}}=10650.4 \pm 0.6 \mathrm{MeV} \quad \Delta M \sim 2 \pm 2 \mathrm{MeV}$
- $Z_{c}(3900) \rightarrow J \psi \pi^{+}$
- $M_{Z}=3899.0 \pm 6.1(\mathrm{MeV}), \Gamma_{Z}=46 \pm 22 \mathrm{MeV}$ (in $J \psi \pi^{ \pm}$); $M_{Z}=3883.9 \pm 4.5(\mathrm{MeV}), \Gamma_{Z}=24.8 \pm 12 \mathrm{MeV}\left(\right.$ in $\left.D \bar{D}^{*}\right)$
- $M_{D^{0}}+M_{D^{*+}}=3875.15 \pm 0.18 \mathrm{MeV}$; $M_{D^{ \pm}}+M_{D^{* 0}}=3876.61 \pm 0.21 \mathrm{MeV} \quad \Delta M \sim 24 / 8 \pm 5 \mathrm{MeV}$
- $Z_{c}^{\prime}(4020) \rightarrow h_{c}(1 P) \pi^{+}$
- $M_{Z}\left(h_{c} \pi\right)=4022.9 \pm 1.8 \mathrm{MeV}, \Gamma_{Z}=7.9 \pm 3.8 \mathrm{MeV}$; $M_{D^{*+}}+M_{D^{* 0}}=4017.28 \pm 0.20 \quad \Delta M \sim 6 \pm 2 \mathrm{MeV}$
- $Z_{c}^{\prime}(4025) \rightarrow D^{*} \bar{D}^{*}$
- $M_{Z}\left(D^{*} \bar{D}^{*}\right)=4026.3 \pm 4.5 \mathrm{MeV}, \Gamma_{Z}=24.5 \pm 9.5 \mathrm{MeV}$
$\Delta M_{Z}>0$ (even if higher experimental precision needed)

Prompt X (3872) production: upper theoretical bounds

Bignamini, Grinstein, F.P., Polosa, Sabelli: Phys. Rev. Lett. 103, 162001, 2009 hypothesis: of $X(3872)$ as an S-wave bound state of two D mesons

$$
\begin{aligned}
\sigma(p \bar{p} \rightarrow X(3872)) & \sim\left|\int d^{3} \mathbf{k}\left\langle X \mid D \bar{D}^{*}(\mathbf{k})\right\rangle\left\langle D \bar{D}^{*}(\mathbf{k}) \mid p \bar{p}\right\rangle\right|^{2} \\
& \leq \int_{\mathcal{R}} d^{3} \mathbf{k}\left|\left\langle D \bar{D}^{*}(\mathbf{k}) \mid p \bar{p}\right\rangle\right|^{2} \sim \sigma(p \bar{p} \rightarrow X(3872))_{\mathrm{prompt}}^{\max }
\end{aligned}
$$

- \mathbf{k} is the rest-frame relative 3-momentum between the D and D^{*}
- $\left|\left\langle D \bar{D}^{*}(\mathbf{k}) \mid p \bar{p}\right\rangle\right|^{2}$ can be computed with MC simulations
- result: measured prompt cross section \ll upper estimate by more than 2 orders of magnitude unless integration over $|\mathbf{k}|$ extended up to $\sim 400 \mathrm{MeV}$
- this could be made possible by FSI Artoisenet and Braaten, PRD81 (2010) 114018
- the same method recently adopted to estimate other Z state production cross sections @LHC
- actually the large hadronic activity (mainly π) close to D and D^{*} could prevent the effectiveness of FSI (Bignamini et al., pLB684 (2010) 228)
- but the same π could give an alternative contribution

Possible mechanism alternative to FSI

A. Esposito, F.P., A. Pilloni and A.D. Polosa, J.Mod.Phys. 4 (2013) 1569
A.L. Guerrieri, F.P., A. Pilloni and A.D. Polosa, arXiv:1405.7929[hep-ph]

- additional pions close to $D^{0(*)}$ in momentum space can interact elastically and change the rel. momentum between D^{0} and $D^{0 *}$
- given the initial asymmetric distribution in $k_{\text {rel }}$ there could be a feed-down process from larger relative momenta to lower ones and bring D pairs from positive to negative energies (bound state)

- there is a contribution but not enough
- additional ways to check the molecular hypothesis?

Antideuterium - X(3872)

A.L. Guerrieri, F.P., A. Pilloni, A.D. Polosa, arXiv:1405.7929[hep-ph]

- deuterium is the known hadronic molecule, would be analog of X (3872)
- antideuterium production is measured at ALICE
- we could study the relation indicated by data between antideuterium and $X(3872)$ production
- unfortunately, up to now, they are measured in two completely different p_{\perp} regimes. We can only have a qualitative idea through MC

Diquark-antidiquark / tetraquark model

L. Maiani, F.P., A.D. Polosa, V. Riquer, PRD 71 (2005) 014028

- in the original version a "democratic" hypothesis was made on spin-spin interactions

$$
H=\sum_{i} m_{i}+\sum_{i<j} 2 \kappa_{i j} \boldsymbol{s}_{i} \cdot \boldsymbol{s}_{j}
$$

From conventional S-wave mesons and baryons

$$
H \approx 2 \kappa_{q \bar{q}} s_{q} \cdot s_{\bar{q}}
$$

- tetraquark production cross sections of the same order of $Q \bar{Q}$
- drawback of the model: too many foreseen states, in particular charged ones w.r.t. what observed
- after the Belle announcement of $Z(4430)$ in 2007, a new state predicted, $Z^{ \pm} \rightarrow J / \psi \pi^{ \pm}$or $\rightarrow \eta_{c} \rho^{ \pm}$, with mass $\sim 3880 \mathrm{MeV}$

Maiani, Polosa, Riquer, arXiv:0708.3997

- now several charged states have been found and there is renewed recent interest in the tetraquark model
- e.g.: S. Brodsky, R. Lebed, D.S. Hwang, M. Papinutto, S. Prelovsek, N. Tantalo, Z. -G. Wang, S. Weinberg and others

From type-I to type-II diquark-antidiquark model

L. Maiani, F.P., A.D. Polosa, V. Riquer, PRD 89 (2014) 114010

- new ansatz: only spin-spin coupling inside the diquark is leading

$$
H \approx 2 \kappa_{q c}\left(s_{q} \cdot s_{c}+s_{\bar{q}} \cdot s_{\bar{c}}\right)
$$

In the $|s, \bar{s}\rangle_{J}$ basis

$$
\begin{aligned}
& \mathrm{J}^{\mathrm{P}}=0^{+} \quad C=+X_{0}=|0,0\rangle_{0}, X_{0}^{\prime}=|1,1\rangle_{0} \quad X(3915), X(3940) ? \\
& \left.\mathrm{~J}^{\mathrm{P}}=1^{+} \quad C=+X_{1}=\frac{1}{\sqrt{2}}\left(|1,0\rangle_{1}+|0,1\rangle_{1}\right) \quad X(3872)\right) \\
& \mathrm{J}^{\mathrm{P}}=1^{+} \quad G=+Z=\frac{1}{\sqrt{2}}\left(|1,0\rangle_{1}-|0,1\rangle_{1}\right), Z^{\prime}=|1,1\rangle_{1} \quad Z_{c}(3900), Z_{c}^{\prime}(4020) \text { lin. comb of } \mathrm{Z} \text { and } Z^{\prime} \\
& \mathrm{J}^{\mathrm{P}}=2^{+} \quad C=+X_{2}=|1,1\rangle_{2}
\end{aligned}
$$

with a value of the coupling $\kappa_{q c}=67 \mathrm{MeV}$ (cfr. 22 MeV of type I)

- $M\left(X_{1}\right) \sim M(Z)$
- $M\left(Z^{\prime}\right)-M(Z) \sim 2 \kappa_{q c}=134 \mathrm{MeV}$
- $M\left(X_{2}\right) \sim M\left(X_{0}^{\prime}\right) \sim 4000 \mathrm{MeV}$
- $M\left(X_{0}\right) \sim 3770 \mathrm{MeV}$

Type-II diquark-antidiquark model (cnt'd)

- in this scheme $Z(4430)$ is the first radial excitation of $Z(3900)$
- note that $M(Z(4430))-M(Z(3900))=593 \mathrm{MeV} \sim$ $M(\psi(2 S))-M(J / \psi)=589 \mathrm{MeV}$
- both $Z(3900)$ and $Z(4020)$ have $s_{c \bar{c}}=1,0$
- $\Longrightarrow Z(4020) \rightarrow \pi h_{c}\left({ }^{1} P_{1}\right)$

What about Y states in the tetraquark model?

- tetraquark with $J^{P C}=1^{--}$can be obtained with odd L
- using the notation $|s, \bar{s} ; S, L\rangle_{J=1}$

$$
\begin{array}{lll}
Y_{1}=|0,0 ; 0,1\rangle_{1} & (Y(4008)) & P\left(s_{c \bar{c}}=1\right): P\left(s_{c \bar{c}}=0\right)=3: 1 \\
Y_{2}=\frac{1}{\sqrt{2}}\left(|1,0 ; 1,1\rangle_{1}+|0,1 ; 1,1\rangle_{1}(Y(4260))\right. & P\left(s_{c \bar{c}}=1\right)=1 \\
Y_{3}=|1,1 ; 0,1\rangle_{1} & (Y(4290) / Y(4220)) & P\left(s_{c \bar{c}}=1\right): P\left(s_{c \bar{c}}=0\right)=1: 3 \\
Y_{4}=|1,1 ; 2,1\rangle_{1} & \left(Y(4630) \rightarrow \Lambda_{c} \bar{\Lambda}_{c}\right) & P\left(s_{c \bar{c}}=1\right)=1
\end{array}
$$

- $Y(4360)$: radial excitation of $Y(4008) ; Y(4660)$: radial excitation of $Y(4260)$, since both decay to $\psi(2 S)$
- $Y(4260)$ and $X(3872)$ have the same spin structure \Longrightarrow the observed radiative decay $Y(4260) \rightarrow \gamma X(3872)$ is an $E 1$ transition ($\Delta L=1$ and $\Delta S=0$) as in radiative decays of χ states

some predictions on radiative decays

- type-II tetraquark model seems to capture several features making also additional predictions

$$
\begin{aligned}
& Y_{4}=Y(4630) \rightarrow \gamma+X_{2} \quad\left(J^{P C}=2^{++}\right)=\gamma+X(3940), ? ? \\
& Y_{3}=Y(4290 / 4220) \rightarrow \gamma+X_{0}^{\prime} \quad\left(J^{P C}=0^{++}\right)=\gamma+X(3916), ? ? \\
& Y_{2}=Y(4260) \rightarrow \gamma+X_{1} \quad\left(J^{P C}=1^{++}\right)=\gamma+X(3872), \text { seen } \\
& Y_{1}=Y(4008) \rightarrow \gamma+X_{0} \quad\left(J^{P C}=0^{++}\right)=\gamma+X(3770 ? ?), ? ?
\end{aligned}
$$

- however charged partners of X and Y states are still missing (or too large?)
- together with the hyperfine splitting among neutral states due to isospin breaking (maybe this could require additional experimental sensitivity)
- we conclude with a possible scenario which could be able to put effectively selection rules on the states

Four-quark states as Fano-Feshbach resonances?

A.L. Guerrieri, F.P., A. Pilloni, A.D. Polosa, arXiv:1405.7929[hep-ph]

- multiquark hadrons at LHC should be produced through the formation of compact clusters, with colour neutralized in all possible ways

$$
|Q \bar{Q} q \bar{q}\rangle=\alpha\left|[Q q]_{\overline{\mathbf{3}}_{c}}[\bar{Q} \bar{q}]_{\mathbf{3}_{c}}\right\rangle_{\mathcal{C}}+\beta\left|(Q \bar{Q})_{\mathbf{1}_{c}}(q \bar{q})_{\mathbf{1}_{c}}\right\rangle_{\mathcal{O}}+\gamma\left|(Q \bar{q})_{\mathbf{1}_{c}}(\bar{Q} q)_{\mathbf{1}_{c}}\right\rangle_{\mathcal{O}}
$$

- hypothesis: $|\beta|^{2},|\gamma|^{2} \gg|\alpha|^{2}$
- in this case we do not see directly the diquark-antidiquark spectrum; it could instead produce an effective attraction in the open channel which could produce a resonance (known as Feshbach resonance in atomic pysics) decaying into two particles in one of the open channels
- contribution to the scattering length

$$
a \sim|C| \sum_{n} \frac{\mathcal{c}\left\langle[Q q]_{\overline{\mathbf{3}}_{c}}[\bar{Q} \bar{q}]_{\mathbf{3}_{c}}, n\right| H_{\mathcal{C O}}\left|(Q \bar{q})_{\mathbf{1}_{c}}(\bar{Q} q)_{\mathbf{1}_{c}}\right\rangle_{\mathcal{O}}}{E_{\mathcal{O}}-E_{n}}
$$

- the "detuning" $\nu \equiv E_{n}-E_{\mathcal{O}}$ is the smallest denominator, which is supposed to dominate the sum
- Γ of the resonance $\sim \sqrt{\nu}$

Feshbach resonance in a picture

- for quantitative conclusions it would be necessary more information on the diquark-antidiquark spectrum
- to this aim LQCD studies of tetraquark would be very helpful
S. Prelovsek, Lang, Leskovek, Mohler; A.L. Guerrieri, M. Papinutto, A.D. Polosa, A. Pilloni, N. Tantalo

