

Lucio Rossi and Oliver Brüning For the HL-LHC Project team

Goal of High Luminosity LHC (HL-LHC):

The main objective of HiLumi LHC Design Study is to determine a hardware configuration and a set of beam parameters that will allow the LHC to reach the following targets:

Prepare machine for operation beyond 2025 and up to 2035

Devise beam parameters and operation scenarios for:

enabling at total integrated luminosity of 3000 fb⁻¹

implying an integrated luminosity of 250 fb⁻¹ per year,

design oper. for $\mu \delta$ 140 (\rightarrow peak luminosity of 5 10³⁴ cm⁻² s⁻¹).

> Ten times the luminosity reach of first 10 years of LHC operation!!

HL-LHC goal could be reached in 2036

LHC Upgrade Goals: Performance optimization

Luminosity recipe (round beams):

$$L = \frac{n_b \times N_1 \times N_2 \times g \times f_{rev}}{4\rho \times b^* \times e_n} \times F(f, b^*, e, s_s)$$

→1) maximize bunch intensities

→ Injector complex

→2) minimize the beam emittance

- Upgrade LIU
- →3) minimize beam size (constant beam power); → triplet aperture
- →4) maximize number of bunches (beam power); →25ns
- →5) compensate for 'F';

→ Crab Cavities

→6) Improve machine 'Efficiency'

minimize number of unscheduled beam aborts

LHC Limitations and Challanges:

- Technical bottle necks (e.g. cryogenics) → New addit. Equipment
- Insertion magnet lifetime and aperture:
 - → New insertion magnets and triplets with increased aperture
- Geometric Reduction Factor: → SC Crab Cavities
 - → New technology and a first for a hadron storage ring!
- Performance Optimization: Pileup density → luminosity levelling
 - → devise parameters for virtual luminosity >> target luminosity
- Beam power & losses → additional DS (cold region) collimators
- Machine effciency and availability:
 - # R2E -> removal of all electronics from tunnel region
 - # e-cloud

 beam scrubbing (conditioning of surface)

Eliminating Technical Bottlenecks Cryogenics P4- P1 -P5

HL-LHC technical bottleneck:

Radiation damage to triplet magnets at 300 fb⁻¹

Need to replace existing triplet magnets with radiation hard system (shielding!) such that the new magnets coils receive a similar radiation dose at 10 times higher integrated luminosity!!!!

30 35 40 45 distance from IP [m]

ЭU

CC

ZU

HL-LHC Challenges: Crossing Angle I

Operation with ca. 2800 bunches @ 25ns spacing approximately 30 unwanted collision per Interaction Region (IR).

Operation requires crossing angle

non-linear fields from long-range beam-beam interaction:

efficient operation requires large beam separation at unwanted collision points

 \rightarrow Separation of 10 -12 σ \rightarrow large triplet apertures for HL-LHC upgrade!!

HL-LHC Upgrade Ingredients: Triplet Magnets

- Nominal LHC triplet: 210 T/m, 70 mm coil aperture
 - → ca. 8 T @ coil
 - → 1.8 K cooling with superfluid He (thermal conductivity)
 - current density of 2.75 kA / mm²
- At the limit of NbTi technology (HERA & Tevatron ca. 5 T @ 2kA/mm²)!!!

LHC Production in collaboration with USA and KEK

Critical Surface for NbTi

HL-LHC Magnets:

- LHC triplet:
 - 210 T/m, 70 mm bore aperture
 - → 8 T @ coil (limit of NbTi tech.)
- HL-LHC triplet:

140 T/m, 150 mm coil aperture (shielding, β^* and crossing angle)

- → ca. 12 T @ coil → 30% longer
- Requires Nb₃Sn technology
 - ceramic type material (fragile)
 - → ca. 25 year development for this new magnet technology!
- US-LARP CERN collaboration

US-LARP MQXF magnet design Based on Nb₃Sn technology

New Interaction Region lay out

Thick boxes are magnetic lengths -- Thin boxes are cryostats

Progress with Triplet magnets:

 \varnothing 150 mm, B_{peak} \sim 12.1 T

LHC Challenges: Crossing Angle II

geometric luminosity reduction factor:

$$F = \frac{1}{\sqrt{1 + Q^2}}; \quad Q \circ \frac{q_c S_z}{2S_x}$$

large crossing angle:

- → reduction of long range beam-beam interactions
- → reduction of beam-beam tune spread and resonances
- → reduction of the mechanical aperture
- increase of effective beam cross section at IP
- → reduction of luminous region
- → reduction of instantaneous luminosity

HL-LHC Upgrade Ingredients: Crab Cavities

- Geametrictleuminosity
- Reduction Factor:
 Reduces the effect of
 geometrical reduction factor
- Independent for each IP

$$F = \frac{1}{\sqrt{1 + Q^2}}; \quad Q \circ \frac{q_c S_z}{2S_x}$$

- Noise from cavities to beam?!?
- Challenging space constraints

3 Crab Cavity prototypes:

And excellent results: e.g. RF dipole > 5 MV

1/4 w and 4-rods also tested (1.5 MV)

Latest cavity designs toward accelerator

Concentrate on two designs in order to be ready for test installation in SPS in 2016/2017 TS

Coaxial couplers with

nt ar

Present baseline: 4 cavity/cryomod TEST in SPS under preparation for 2017

HL-LHC Challenge: Event Pileup Density

CMS Average Pileup, pp, 2012, $\sqrt{s} = 8$ TeV

Vertex Reconstru 60

< u > = 21

HL-LHC Performance Optimization:

Use leveling techniques for keeping

Pileup around 140 events per bunch

→ level luminosity at 5 10³⁴ cm⁻² s Use leveling techniques for keeping average

Pileup around 140 events per bunch crossing

→ level luminosity at 5 10³⁴ cm⁻² s⁻¹

$$\rightarrow$$
 < μ > = 140; μ_{peak} = 280 @ 25ns bunch spacing

LHC Challenges: Beam Power

Unprecedented beam power:

Worry about beam losses:

Failure Scenarios → Local beam Impact

- → Equipment damage
- → Machine Protection

Lifetime & Loss Spikes → Distributed losses

- → Magnet Quench
- → R2E and SEU
- → Machine efficiency

LHC Challenges: Quench Protection

- Magnet Quench:
 - → beam abort → several hours of recovery
- HL LHC beam intensity: $I > 1 A => > 7 \cdot 10^{14} \text{ p /beam}$
- Quench level: $N_{lost} < 7 \cdot 10^8 \text{ m}^{-1}$ \rightarrow $< 10^{-6} N_{beam}!$

(compared to 20% to 30% in other superconducting rings)

- requires collimation during all operation stages!
- → requires good optic and orbit control!
- → HL-LHC luminosity implies higher leakage from IP & requires additional collimators
- → Which we have demonstrated during Runl

DS collimators – 11 T Dipole (LS2 -2018)

FNAL: MBHSP01 – 1-in-1 Demonstrator (2 m)

40-strand cable fabricated using FNAL cabling machine

Coil fabrication

Collared coil assembly

Cold mass assembly

MBHSP02 passed 11 T field during training at 1.9 K

with I = 12080A on 5th March 2013!

Prototyping of cryogenics bypass @ CERN

Prototyping of the by-pass crystostat (QTC) for the installation of a warm collimator in the cold dispersion suppressors.

Oliver Brüning, CERN

HL-LHC Challenge: Machine Efficiency

→ Operational Turn around time of 2 - 3 hours → Efficiency = time in physics / scheduled time

HL-LHC Challenge: Machine Efficiency

→ Integrated Luminosity

Operation experience in 2011 and 2012:

J. Wenninger @ Evian LHC Operation workshop

Only ~30% of the fills are dumped by operation.

- □ → corresponds to ca. 40% machine efficiency (time actually spend in physics divided by scheduled time for physics operation)
- □ → 3000 fb-1 for HL-LHC will require significantly better machine efficiency!!!

and average fill length above 6 hours (ca. 10 hours)!

Intervention rate & time: QPS boxes

Consolidation of infrastructure!
But also new paradigme: remove as
much as possible from the tunnel

R2E SEU Failure Analysis - Actions

2008-2011

- Analyze and mitigate all safety relevant cases and limit global impact
- **2011-2012**
- Focus on equipment with long downtimes; provide shielding
- LS1 (2013/2014)
- Relocation of power converters
- LS1 LS2:
- Equipment Upgrades
- LS3 -> HL-LHC
- Remove all sensitive equipment from underground installations

53 Feb 2014: L = 20 m(25×2) 1 kA @ 25 K, LHC Link P7 **World record for HTS** Physics at LHC and Beyond, Recontres du Vietnam, 10-17 August 2014 Oliver Bruning, CERN

28

The critical zones around IP1 and IP5

- 3. For collimation we also need to change the DS in the continuous cryostat: 11T Nb₃Sn dipole
- 2. We also need to modify a large part of the matching section e.g. Crab Cavities & D1, D2, Q4 & corrector
- New triplet Nb₃Sn required due to:
- -Radiation damage
- -Need for more aperture

Changing the triplet region is not enough for reaching the HL-LHC goal!

- → More than 1.2 km of LHC!!
- → Plus technical infrastructure (e.g. Cryo and Powering)!!

Implementation plan:

- PDR: Oct 2014; Ext. Cost & Schedule Review in Jan-Feb 2015;
- TDR: OCT 2015; TDR_v2: 2017
- Cryo, SC links, Collimators, Diagnostics, etc. starts in LS2 (2018)
- Proof of main hardware by 2016; Prototypes by 2017 (IT, CC)
- Start construction 2018 from IT, CC, other main hardware
- IT String test (integration) in 2019-20; Main Installation 2023-24
- Though but based on LHC experience feasible

Project approval milestones:

- June 2010: launch of High Luminosity LHC
- November 2010 : HiLumi DS application to FP7
- November 2011: start FP7-HiLumi DS
- May 2013: approval of HL-LHC as 1st priority of EU-HEP strategy by CERN Council in Brussels
- May 2014: US P5 ranks HL-LHC as priority for DOE (Particle Physics Project Prioritization Panel)
- June 2014: CERN Council approves the financial plan of HL-LHC till 2025 (with an overall 10% budget cut)

Reserve Transparencies

HL-LHC Baseline Parameters:

TIE EITE BASCIIITE I ATAIT	Naminal IIIC	_	III IIIC 25 × 5	
Parameter	Nominal LHC 'design report)	HL-LHC 25ns (standard)	HL-LHC 25 ns (BCMS)	HL-LHC 50ns
Beam energy in collision [TeV] $L = \gamma \frac{f_{rev} n_b N_b^2}{4\pi \varepsilon_n \beta^*}$	7	7	7	7
$L = \gamma \frac{\gamma \epsilon \nu}{4}$	<i>R</i> 1.15E+11	2.2E+11	2.2E11	3.5E+11
n_b $4\pi \varepsilon_n \beta^*$	2808	2748 ¹	2604	1404
Number of collisions at IP1 and IP5	2808	2736	2592	1404
N _{tot} ATS required	3.2E+14	6.0E+14	5.7E+14	4.9E+14
beam current [A]	0.58	1.09	1.03	0.89
x-ing angle [µrad]	285	590	590	590
beam separation [σ]	9.4	12.5	12.5	11.4
β^* [m]	0.55	0.15	0.15	0.15
ε _n [μm]	3.75	2.50	2.50	3
ε _L [eVs]	2.50	2.50	2.50	2.50
r.m.s. energy spread	1.13E-04	1.13E-04	1.13E-04	1.13E-04
r.m.s. bunch length [m]	7.55E-02	7.55E-02	7.55E-02	7.55E-02
IBS horizontal [h]	80 -> 106	18.5	18.5	17.2
IBS longitudinal [h]	61 -> 60	20.4	20.4	16.1
Piwinski angle	0.65	3.14	3.14	2.87
Geometric loss factor RO without crab-cavity	0.836	0 305	0.305	0.331
Geometric loss factor R1 with crab-cavity	(0.981)	0.829	0.829	0.838
beam-beam / IP without Crab Cavity	3.1E-03	3.3E-03	3.3E-03	4.7E-03
beam-beam / IP with Crab cavity	3.8E-03	1.1E-02	1.1E-02	1.4E-02
Peak Luminosity without crab-cavity [cm ⁻² s ⁻¹]	1.00E+34	7.18E+34	6.80E+34	8.44E+34
Virtual Luminosity with crab-cavity: Lpeak*R1/R0 [cm ⁻² s ⁻¹]	(1.18E+34)	19.54E+34	18.52E+34	21.38E+34
Events / crossing without levelling w/o crab-cavity	27	198	198	454
Levelled Luminosity [cm ⁻² s ⁻¹]	_	5.00E+34	5.00E34	2.50E+34
Events / crossing (with levelling and crab-cavities for HL-LHC)	27	138	146	135
Peak line density of pile up event [evt/mm] (max over stable beam)	0.21	1.25	1.31	1.20
Levelling time [h] (assuming no emittance growth) Physics at LHC and Beyond, Recontres du Vietnam, 10-17 A	- ugust 201 <i>4</i>	8.3 Oliver Brünir	7.6	18.0

LHC Upgrade Goals: Performance optimization

Levelling:

- Luminosity limitation(s):
 - Even Pileup in detectors
 - Debris leaving the experiments and impacting in the machine (magnet quench protection)
 - Triplet Heat Load

The Achromatic Telescopic Squeezing (ATS) scheme

Small β^* is limited by aperture but not only: optics matching & flexibility (round and flat optics), chromatic effects (not only Q'), spurious dispersion from X-angle,...

A novel optics scheme was developed to reach un-precedent β^* w/o chromatic

limit based on a kind of generalized squeeze involving 50% of the ring (S. Fartoukh)

Beam sizes [mm] @ 7 TeV from IR8 to IR2 for typical ATS "pre-squeezed" optics (left) and "telescopic" collision optics (right)

LHC low-β quads: steps in magnet technology from LHC toward HL-LHC

The HL-LHC Nb-T imagnet zoo...

Nested Orbit corrector (CIEMAT) HO correctors: superferric (INFN)

Q4 (CEA)

D2 corr

SPS beam test: a critical step for CC (profiting of the EYETS 2016- 2017)

SPS test is critical: at least one cryomodule before LS2, possibly two, of different cavity type.

A test in LHC P4 is kept as a possibility but it is not in the baseline)

 \varnothing = 90 mm. 2 K 11.6 MV required voltage; baseline is 4 cavites/beam-side, \Rightarrow 2.9MV/cavity

Low impedence collimators(LS2 & LS3)

Efficiency for JLdt

 All our assumptions are based on forecast for the operation cycle:

High reliability and availbility are key goals

Controlling halo diffusion rate: hollow e-lens (synergy with LRBBCW)

Promises of hollow e-lens:

- 1. Control the halo dynamics without affecting the beam core;
- 2. Control the time-profile of beam losses (avoid loss spikes);
- 3. Control the steady halo population (crucial in case of CC fast failures).

Remarks:

- very convincing experimental experience in other machines!
- full potential can be exploited if appropriate halo monitoring is available.

Oliver Brüning, CERN

In-kind contribution and Collaboration for HW design and prototypes

Q1-Q3: R&D, Design, Prototypes

and in-kind USA

D1: R&D, Design, Prototypes

and in-kind JP

MCBX: Design and Prototype ES

HO Correctors: Design and

Prototypes IT

Q4 : Design and Prototype FR

CC: R&D, Design and in-kind USA | CC: R&D and Design UK

High Luminosity LHC Participants

The LHC and its Injector Complex:

LHC Performance Projection

HL-LHC Challenges: Collimation Efficiency

