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oa Frontiers of Particle Physics (PP)
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m FExplore Higher Energy Scale

[ ey

With the discovery of a Higgs boson the SM is now complete!

0.10
15> Major questions of PP justified by exper- [
. | ob . . ved 008 | M, = 125 GeV
Imental observations remain unresolve ! 3o bands in
_ _ _ - M, =173.1 £0.7 GeV
m I)M points to new type particle S 006¢ a.(M;) = 0.1184 £ 0.0007
=T¥] 4
mw BAU requires B, I processes T oo M) < 0 at 10 GoV]
m Neutrino mass suggests £ oo
sterile or Majorana neutrino &
&0 U'DU- -~ M, =1710 GeV
!
iz Need new large scale accelerators oml
0.02 ~o_ey(M)= 01163 ]
w Indirect searches through preci- oonl M, =1753GeV |
sion measurements (rare processes) 10° 10 10° 10° 101 102 10 10' 10 10%
. RGE scale y in GeV
=> many BSM models predict AR
Agnxx/guxx < 1 —10% The SM begins to unravel when
> |s Higgs potential A() as probed much beyond the range of
expected? (check consistency) current accelerators
, (unstable vacuum at the Plank scale!)
1= Direct Searches of NP

Everything proves that NP must exist,
m exploration of Higher Energy scales but... At What Energy Scales?
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Grand Unification

"~ Interaction strength varies with
energy scale and depends on
quantum numbers and particle
species

1 Additional particles such as SUSY part-
ners at energy scale of TeVs affect the
running of coupling constants

s |f BICEP2 result is confirmed, it im-
plies the E-scale of inflation 10'° GeV

=> associated with grand unification
of fundamental interactions

=> comparable with those when
3 non-gravitational forces be-
come about the same strength

i Physics at the highest E-scales:

m Are forces indeed unified?

w How is gravity connected?

S.Ganjour
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Need to explore new territory by
pushing energies!
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Probing the Standard Model

i SM is self-consistent model accounting all PP
phenomena at energy of current accelerators

w with myy all parameters of SM are known

1= myvy is a fundamental parameter of the SM

T

1
GrVv2sin Oy v1—AR
Radiative corrections AR ~ 4%:

My =

H
i W |
VAP UR VIR

U

ARNmf AR ~ logmpg

myy = 80385115 MeV, m;=173.2+0.9 GeV
current p-value for (data|SM)=0.2
(need to improve myy, my and myy)

|GFitter group, arX|v 1407.3792] NQLO test

5 i
8 : 68% and 95/ cL comours m:: 'dﬂ:';be \: :
= 805 — M fitw/o M, and m, measurements [ =0.76 GeV —
Eg C fitw/o MW, m_and M, measurements |} — =076 ®0. 5“; Gy 7
- direct M, and m, measurements i a1
80.45 — —]
80.4 |- ~
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Precision tests of further
consistency of the SM are
mandatory!
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m LHC Up To 2021 and Beyond

New LHC / HL-LHC Plan

LHC
LS1 EYETS 14 TeV LS3
13-14 TeV o
; 5to7x
injector upgrad I
splice consolidation T cryogenics Point 4 . . H.,.H‘ ir :I.
8TeV button collimators iy dispersion i HL-LHC installation luminosity
— R2E project ppressiol y;.jﬁ"hg P
collimation ﬁ‘
radiation
damage
2 x nominal luminosit *
nominal nominal luminosity | 1| experiment upgrade |F— 1
uminosity 759 | experiment beam pipes / phrase 1 experiment upgrade phase 2
-1
S 100" | 300" | 3000 fb

The exploitation of the full potential of the LHC is the highest priority
of the Energy Frontier in both Europe and US

15> LHC approved running to deliver 15> Experiments will undergo a series of
300 fb~' by 2021 detector and trigger upgrades

1= Post LS3 operation: w to cope with radiation damage
3000 fb~' over 10 years and high pileup (140 PU events)

i Major upgrades required on the LHC " to maintain or enhance the
(replace more than 1.2 km): current physics performance
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LHC Upgrade Challenges

| 1" Increase Ipeam: 8 T—11 T Nb3Sn dipoles
15 Reduce beam size: IR-quads, triplets 13T, 8m

| i HTS links (2x100 kA, 500m) to protect DFBX
™~

1 Crab crossing improves further the luminosity

o1}/ effective cross gection T
o by maximizing overlap of the 2 beams (technology
p pioneered successfully on KEKB, Japan)
R = 1 m also help to mitigate the harsh PU conditions
0.0
L+ (572)

Thanks to NbsSn technology
successful magnet R&D is ongoing

29 distinct vertices have been
reconstructed corresponding to 29
distinct collisions within a single
crossing of the LHC beam
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a HL-LHC as Higgs Factory

CEA - Saclay

HL-LHC is the benchmark
Higgs factory
(a couple of Higgs per sec)

15> Most of the exclusive final
states are accessible

- 20K H — 727 — 4l
m 30K H — pp
w50 H — J /¢y

CMS Projection

Channel o, pb Rate, Hz Events, Events ,
L=50pb~ !t s~! L=3ab~! L=30fb"!
(14 TeV) (14TeV) (14TeV)  (8TeV)
ggH 50.4 2.52 150M 600K
VBF 4.2 0.21 13M 48K
WH 1.5 0.08 4 5M 21K
/H 0.9 0.04 2.6M 12K
ttH 0.6 0.03 1.8M 4K

HL-LHC enable to probe most of the
couplings including direct ttH observation

Expected uncertainties on
Higgs boson couplings

Systematics: o
Scenario 1 L e —
Ky —+——
unchanged K
Scenario 2 K
Kt

scaled 1/v/L K.

‘ T T T T ‘ T T
— 3000 at f5= 14 TeV Scena

— 3000f"at fs= 14 TeV Scenal

rio 1

rio 2

\O-OOI 1 I \OIOSI 1 I

| ‘ 1 | 1 | ‘ | 1
0.10 0.15

expected uncertainty

Events/GeV / 3 ab-1
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130
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140
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Theoretical uncertainties affects the ultimate precision achievable by LHC
experiments (2-5%) Reducing them it is for sure worth the effort!

S.Ganjour
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Yukawa Couplings

f 19.7 b (8 TeVv) + 5.1 fb* (7 TeV)
Ef Z S C T T T T T T T TTegTT
: L ofems 9= v2(%) :
2 N Preliminary 2(14¢)
) i aa 2 g =2(%e)
S [ |=68%cCL W ]
: . < [ |—95%cL ]
1 L HC potential to probe 3 generations B e
C CMS““
w3 few % precision for 3"¢ generation i o e ]
I 1 I T 0.0; \/\\ \\\\\\
=> Higgs decays to fermions (77, bb) 102k @
m access to 2"9 generation fermions r ]
. . . b °§ooz£oziozéo§ﬂé?ee\?)oo
=> possibly test lepton unlversallty.2 5 54590 20 100" 25
OH—rr/OHopy = (M7 /my,) mass (GeV)
w 15 generation is out of LHC reac % 107 ks Sorao vy
>l T T ] S 9§\x=14Tev
9 1 H % ee event IS eXpeCted 1; ATLAS Simulation Preliminary . t gé 31083“[“:3000%4 !;j:ﬁ,mfuseev
E — JLdt-300 b /i_/z E 3 £ 10°¢ B
. ol — [Ldt=3000 fo! W ] 2 B WW_s vy
1= Many models can be probed via
the 1°¢ and 2°¢ generations e o~ E
10°L /// Is=14TeV
m push energies and luminosity ORI
10 1 10 107 10780 100 120 140 160 180 200
my [GeV]

m production through leptons requires
high beam quality AE/E < 10~4

m,, [GeV]

Even observation of H — uu at

LHC is tough!

S.Ganjour
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m FExploration of EWSB at High Energy

Several models predict SM-like
Higgs but different physics at high
energy

V1,V — V1, Vy, violates unitarity
at TeV scale without Higgs
exchange diagram

1= Direct access to EW theory in the un-

w+ W+ w+ w+
broken regime (/s > v = 246 GeV) is Z,y _h
a crucial closure test of the SM

W- w- W- W-

I 2 I L I o I SR IULIULE I R I UL I I
does H(125) regularize the theory 2 3ol ATLAS iy o E
" or s there any new dynamics- anoma- T - 20.3fb" \s=8TeV B Syst Uncertalnty ]
. 25— m, > 500 GeV W* W—” Electroweak™
I I C W*W*jj Strong

lous quatric couplings or resonances oo | — R E
C : Conversions ]
15:_ Bl Other non-prompt 3

plao 10|

g8 9

q /
Need || > 6 at 100 TeV * Ayl
10% precision on the SM VBS Evidence 3.6 o for EW VBS having
cross-section (discovery if NP observed 2 same-sign leptons and 2 high mass
at 1 TeV) can be reached with HL-LHC forward jets

S. GaﬂjOlll“ Physics Motivations for Future Machines 10



m Search for New Particles

CEA - Saclay

NP at TeV-scale are put under the
pressure by the LHC limits

Parton Luminosities:
rise due to steep fall-off of the lower

i LHC explored a very vast range of masses, energy PDE at large x

parameters, signatures including By — u*u™ 1000 e .
ratios of LHG parton luminosities: ,"
. . + 14 TeV/8TeVand 33 TeV /8 TeV !
i | HC reuse with 14 TeV will be a new game e
. .. Qo 100F % I E
m improve sensitivity on mass scale ® | ]
about x2 with respect to 8 TeV searches &
£ __
m modest improvement in limit from = :
1.2 TeV to 1.4 TeV with 10x s-top e .
" wus2012 . L = 008NLO
production at 14 TeV so far oo oo . on” 10000
. . : <1000 F——————————————— -
1= |f NP exists at the TeV scale and is discovered g oo THAS Smiatonpreimiary 0
° l_(.% ; s=14 TeV --ggg fb'lrg: :;gg) gg%léclf\éiz:lusion E
at the LHC running at 14 TeV (] ZEh e,
= TIATLAS 8 TeV (0-lepton): 95% &t obe. ::m =
. . . 600F- [T E
m jts mass spectrum is quite heavy 50010 and lpion combined 4 3
: . 400F- o ’ R
e its full spectrum is likely out of reach o3 % 3
200; é
Whatever is found or not, pushing 100F- : i
L] L] L] L] 07 - * * I * e I S =
energy frontier is inevitable ? o0 B Gey]
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m Toward Higher Energy Frontier

t —
H I/’ '\\

AMI%[N H - H H B H "N ”_|_O(E2) EWKino -

. Stops/sbottoms ~ BHE-LHC33
15 Search for new particles up to 10 TeV

= HL-LHC14
. . Squarks/gluinos
w no NP at 1 TeV — 1% fine-tuning " - Wy CLHCH

m no NP at 10 TeV — 10~ fine-tuning 0 1 5 a
Mass Reach, TeV

Never seen 10~ fine-tuning in PP!

T 10E ER

e ¢

1= More precise SM measurements ° L 8
w top Yukawa: Agpie/Aguie ~ 1% - 1

) 10 GO e IO Nt

- self-coupling: AA/A < 10% - Qa\ﬁ_aygﬁ%f%?g- Tl

i TN 2T T .

: . 1| S IRE NLO =t Do - =

1 Extend mass reach to verify that unitar- R 5 e
. . . I el i

ity is preserved (V1,Vy, scattering) ok e w -

F M =125 GeV 3

. i MSTW2008 -

102 =

Very high energy (> 50 TeV) T | L
hadron collider is needed to 7 8910 20 % 40 w0 e noEn 10

explore E-scale up to ~10 TeV
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How Precisely Do We Need to Measure EWSB?

Effect of New Physics on couplings:

Best IFit Plredi;tinns

1 TeV 2
Agnxx/gaxx < 5% X (5, ) |
1 SUSY model modifies tree level couplings
and predict largest effect for b and 7 h—ZZ}
2
i o 1+ 40% (V) h—WW
1 Loop induced couplings are modified due h—gq|

to a scalar top-partner contribution as

SM
kg

1= Compositness models reduce couplings
according to compositness scale (£ = ()

k
I~ 1+1.4%<

1 TeV

=
=
=

a

mo

2 Kk 1 TeV )2
) 7 :1-0.4%( ° )

’
k,‘?M m

1111l

CMSS5M high mass
CMS5M low mass
NUHM1

LHC

HL-LHC

ILC

TLEP

SM unc. Higgs WG

-15 -10 -5 0 5 10
(BR—BRgyy)/ BRgy (%)

kiV kf 1— (]_ + n)£
. SM VI—&, ksM T —¢ =0,1,2 . . .
v i Ak/k ~0.1-1% precision is
needed for discovery!
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ﬂ Future Large Scale Accelerators

Possible High Energy Frontier Machines

1= Next generation linear collider in Japan

m International Linear Collider-ILC:
eTe” collisions up to 1 TeV

1 Post-LHC accelerator projects at CERN

m Future Circular Collider-FCC:
FCC-hh (100 TeV), FCC-ete™ (350 GeV), possibly ep

w Compact LInear Collider-CLIC:
eTe™ collisions up to 3 TeV

1= Circular Collider project in China

wm Circular Electron Positron Collider-CEPC:
CEPC ete™ (250 GeV), SppC pp collider (70-90 TeV)

= | Mluon collider <5 TeV, US (Neutrino Factory first step)

S. Ganjour Physics Motivations for Future Machines 14



Toward Very-High-Energy Machine

Maximum exploitation of CERN
accelerator complex is Europe’s
top priority: injectors, LEP/LHC
tunnel, infrastructure, etc

15 Two possible cases toward higher energy

m yse existing LEP/LHC 27 km tunnel
to reach 33 TeV collisions HE-LHC

w build (or reuse) new 100 km tunnel to
reach 100 TeV collisions FCC-hh

[m] Existing colliders i [HE-L HC

100 |- [ ] Collider concepts
(or cancelled)

Ecm[TeV]

Both cases require innovative SC R&D
to build 16-20 Tesla magnets

4

Arwdis

Praeaips

Ring, km Field, T /s, TeV L, 10*

LHC 27 8.3 14 <5
HE-LHC 27 16 26 5
HE-LHC 27 20 33 5
SppC-1 50 12 50 2
SppC-2 70 19 90 2.8
FCC-hh 80 8.3 42 -
FCC-hh 80 20 100 >5
FCC-hh 100 16 100 >5

Nb3Sn up to 16 T; HTS needed for 20 T!

S.Ganjour
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ﬂ FCC-hh Conceptual Design

1 Beam parameters are not too different

Parameter HL-LHC FCC-hh
from those for the HL-LHC ERere e e T4 100
: : : Luminosity (103tcm™2s71) | 5.0 5.0
m the machine design looks feasible! Circumference (km) 7 100
w25 ns bunch spacing as baseline Dipole Field (T) 8.2 20
_ o Stored energy (MJ) 390 8400
=> 5 ns considered to mitigate PU E-loss/turn (keV) 7 5000
SR Power (kW) 3.6 5800
1 Energy of each beam above 8 GJ Bunch spacing (ns) 25 25 (5)
(Airbus 380 at 780 km/h) Bunch population (10'1) 2.2 1(0.2)
Number of bunches 2808  10600(53000)
m extremely demanding project for Pile-up/bx 140 170 (34)
machine protection issue!
m collimation to protect experiments Power to refrigeratarvs oeam sreen temperature
2000
% protection against quenches 1800 by surfact mpedance.
. . . . . 1600
w high radiation at IP (shielding) o
ngOO e
15 Approximately x1000 more SR £ 10 Sl
. P . gsoo | |—aow/m| |
- significant power for cooling 2 w0
T, At 50 K beam screen
Design takes a reasonable compromise 200 need 100 MW for cooling
between feasibility and some aggressive ° 50 100 150 200 250

T beam screen [K]

choices to avoid excessive cost
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Development of Dipole Fields

Dipole design uses forefront
multiple SC material technology
(cost is critical!)

80

r Nb,Sn || Nb,sn
60 [ lowj

highj

Nb;Sn
high j

Nb,Sn
lowj

Nb,Sn

HTS high Nb-Ti

Nb,Sn
lowj

INb,Sn

highj Nb-Ti

20
.\HTS
0

0 20 40 60 80 100 120

1= A 20 T dipole poses big challenges:

> obtain with compact coil
> shield it with limited dimensions iron

" manage the stresses to avoid degra-
dation of the conductor

X (mm)

from L. Rossi

Material No Coill Peak Joverall
turns | fraction (%) | field (T) | (A/mm?)|
Nb-Ti a1 27 8 380
NbsSn (high J.) | 55 37 13 380
NbsSn (low J.) | 30 20 15 190
HTS 24 16 20.5 380

Dipole Field for Hadron Collider

N
o

HE-LHC
18 -
HTS -
16 S
E 14 | =
= HL-LHC
3 2 Nbsn s
10 —
© -
p - - ’
E 8 Nb-Ti ’,." LHC
S 6 o
Tevatron . HERA RHIC
4 = &
2 e~
3 SPS & Main Ring (resistive)

1975 1985 1995 2005 2015 2025 2035

Year

Vigorous R&D program is needed to
demonstrate the viability of HTS-based
cables and magnet engineering design

Magnets for HL-LHC is an
indispensable first step!

S.Ganjour
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ﬂ Challenges in Detector Design

Detector designed for radiation

hardness and pile-up rejection
P b T 50% of signal at /s = 100 TeV has jets

= Major challenges (few examples): with |n| > 5 (ATLAS, CMS: |n| < 5)

0.06

w yltra-granular, fast, rad-hard, low power

0.04 1 100TeV

m calorimeter coverage over || > 6 »
0.03 -

w CMS inspired design: 15m> ~ 120kTons ol
(>250M € raw material) of iron ool

- B,, = 8.3 T main solenoid with o5
active shield B,y = 2.3 T

=> combination of solenoid and torroids

18 m shield coil
Stored energy 65 GJ
muon ‘

tracking
chambers

=27

-
i~
il

=l

Very high forces

(optimization is needed!) |
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Physics at Lepton Colliders

1= Point-like elementary particles

- well-defined and tunable energy

m yses full COM energy

% nossible polarization of
incoming particles

= Only EW interactions

m low SM background

> no selective trigger needed

m detectors designed for precision
measurements (PFA concept)

w mostly fully reconstructed events

Vs (GeV) Physics program
90 Z-pole EW measurements beyond LEP
160 WW precision physics at threshold
250 precision Higgs couplings (HZ)
350 precision Higgs couplings (HZ, Hvv)

top precision physics at threshold
>500 ttH, HH (self-couplings)

direct searches for NP

—i
-
ra

o

LI ITTIII

sle*e — HX) [fb]

10"

LU

LI llIIIII

LI TTIIIII

LI IIITITI

[l .l.l.llIlII 1 III.I..lIII 1 IIIIIIII L 1ill

11 III.I.I.I.I

0

L1\
200

5000
s [GeV]
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ﬂ International Linear Collider (ILC)

A linear collider (LC) is P
the way to push energy of
lepton collisions

(circular e*e™ colliders much
beyond LEP energy is — __
challenge!) T

_ _ _ V5 (GeV) 250 500 1000

1 Charged particles on bent trajectories Luminosity (10%cm 25 1) | 0.75 1.8 3.6
emit synchrotron radiation (SR) Beam size (0/oy nm) | 730/8 470/6 480/3
Cavity Gradient (MV/m) | 147 315 45

> energy loss per turn Pulse duration (ms) 075 075 0.9

: Bunch population (101°) 2 2 1.7

n repl RF): Pop

( eeds to be P aced by ) # bunches/train 1312 1312 2450

oy Frequency (Hz) 5 5 4

AFE; . n X " Total AC power (MW) 158 162 300

t= A LC has (almost) no radiation losses ¥ ILC is planned with two experiments

m no bending magnets, lots of RF power m energy range (baseline design): 250-
500 GeV (upgradeable to 1 TeV)

I 2 |uminOSityZ 500 fb_l (ﬁl’St 4 years)
w polarization: 80(30)% for e~ (e™)

S. GCL’I?jOUT Physics Motivations for Future Machines 20
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m ILC" Technology Challenge

High electric field gradients are realized by 9-cell
superconducting (SC) niobium cavities, cooled by 2
K Helium (needs mass production ~ 15000)

1 SC cavities absorbs little power

w reach higher gradient (1.3 GHz)
w need high efficiency

1" Low rate requires squeezing beams

to nm size: L o< 1/ay < VE

w Jow emitance damping rings
> |arge beamstrahlung

30

1 Industrialization of technology

Maximum field

10}

e 17.5 GeV prototype: XFEL facility
at DESY is about 5% of ILC

20

- ATF2 operating at KEK, currently
achieved oy = 45 & 3nm

30

40 50
Gradient MV/m

Cavity gradient performance is not
1> Demonstraition of eT-source feasibility
S.Ganjour
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CLIC Beam Acceleration Technology

CLIC CDR released in 2012

326 klystrons
33MW,139ps | | |

drive beam accelerator
2.38 GeV, 1.0 GHz

. 326 klystrons
circumferences | | | 33 MW, 139 ps
delay loop 73.0 m

CR1146.1m drive beam accelerator
CR24383m 2.38GeV, 1.0 GHz

1km 1km

4 delay loop

&)

¥ Mf m ¥ Mf m BC2
BDS BDS | | |
2.75km P 2.75km 245
TA radius =120 m

Y Fam

delay loop »

)

BC2 m ¥ m ¥ m ¥ m ¥
- - - |
45 nt
o . .
TAr=120m € main linac, 12 GHz, 100 MV/m, 21.02 km

48.3 km

decelerator, 24 sectors of 876 m

e* main linac

CR combiner ring

TA turnaround

DR damping ring

PDR predamping ring

BC bunch compressor
BDS beam delivery system
IP interaction point

Y dump

booster linac, 6.14 GeV

e’ e*
DR PDR
493 mJ{398 m

e injector,

e* injector,
2.86 GeV

2.86 GeV

<B
e e
PDR DR
398 mJ 493 m

5 (GeV) 500 3000
Luminosity (10%*cm™2s71) | 2.3 5.9
Beam size (0 /oy nm) |40/3 40/1
Cavity Gradient (MV/m) | 80 100
#bunches/train 354 312
Pulse duration (ns) 05 05

Frequency (Hz) 50 50

Total AC power (MW) 600

2-beam-acceleration concept:

12 GHz RF power is generated by

low-E high intensity drive beam

and transferred to accelerate the
main beam

1= Main challenges:

m 100 MV /m gradient (50 km)
- stable deceleration of drive beam
m production of RF power
> 156 ns beam trains
> (0.5 ns bunch spacing
m small emitance main beam
-> precise alignment

s keep nm beam size at P

Although a lot of progress achieved,
still a lot of R&D needed!

S.Ganjour
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Circular Machines

Primary cost driver for the

FCCee storage ring is the tunnel!

> Main features:

m very high luminosity
w multi-interaction region
> [ow beamstrahlung

b excellent Epeam knowledge
Profit from LEP, PEPIl, KEKB

> super-KEKB has even more
stringent requirements

2-rings option with crab-waist

FCCee/TLEP Booster ring

2-ring scheme

Collider ring

CEPC is

» an Circular Electron Positron Collider
» proposed to carry out high precision study on Higgs bosons
~ to be upgraded to a super proton-proton collider

Single-ring scheme: N

max
bunches

e~e* Higgs Factory (phase 1)

~ 50

pp collider

concept (multi-bunch mode) [ FCCee-Z | FCCee-W | FCCee-H | FCCee-t | CEPC |
_ V5 (GeV) 90 160 240 350 | 240
we required for Z-pole and WW || L (10%cm2s1) 28 12 6 1.8 | 1.8
. 7 bunches 16700 | 4490 1360 93 50
threshold operation Total RF voltage (GV) | 2.5 5.5 11 6.9
Vertical beam size (nm) 250 130 44 45 160
m E-range : 90-350 GeV Beam lifetime (min) 200 50 21 15 60
Total AC Power (MW) | 250 250 260 300 | 250
Lint (ab ! /year/IP) 2.8 1.2 0.6 018 | 0.18
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ﬁ ee™ Clircular Machines Challenge

Luminosity increases at low

energy! z "UF |
- . § E —FCCee Vrr = 35GV
1= The maximum SR power is set to S olbwee | 7 |

Psrg = 50 MW /beam

Energy Loss U

> drive the machine design

m determine the maximum beam cur- 101 g
rent at each energy (pare =~ 11km) .
(SR limits number of bunches to be w0z ofi bt L
accelerated for given RF power) Beam Energy [GeV]

w aiming for SC RF cavities with gmi \ e
20 MV /m gradient 2 =m0 \ < Beamsirahiung
-> RF frequency of 400 MHz - 200 \\\

= Large bunch population and beam- o ‘\\.
strahlung at IP limit 7eam ~20-15 min- e \_\
utes at high energy 5"2 z W s
R EEEEENEEY.

The beams must be topped up
continuously!

Beam Energy [GeV]
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Characteristics of et e~ Machines

l-El‘;‘wlL(-: released TDR in 2013

;; 107
m x10% of SLC performance  §
= FCC aims for a CDR in 2018 =
2 10
w 100 TeV pp: ultimate goal 8
m- 90-350 GeV eTe: first step %
- 3.5-6 TeV ep: option 1
ILC is more advanced in R&D
program aimed to demonstrate its
feasibility
Param. | Size| /s | RF |Lumi/IP|+# | Rate | 0, | 0, | Lumi | Polarization Cost Start
units km | GeV |MV/m | 10** |IP| Hz | um |nm | 1% of 5| et /e, % estimate | approx.
FCC-ee | 100 | 240 20 6 2 12x107| 22 | 45 | >99% | <161 GeV | tunnel 60% | >2030
CEPC 54 | 240 20 1.8 4 |4x10°| 74 160 | > 99% | <161 GeV 3 BS 2028
ILC-1 31 | 250 | 14.7 0.75 1 5 07 | 77| 87% |80/30 3 BS 2026
ILC-2 | 31 500 315 | 18 |1| 5 |05 59 58% |80/30 (material) | >2030
CLIC 48 | 3000 | 100 6 1| 50 [0.04/ 1.0 33% |80/possible | 8+4 BCHF | >2030

Direct sensitivity to high-scale NP by search for new particles up to m ~ 4/s/2,
Indirect via precision measurements up to A ~ O(100) TeV

S.Ganjour
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ﬂ Statistical Power

“%= FCC-ce Tera-7Z factory:
w1012 Z: LEP1 dataset every 15’

Detector design for eTe™ colliders profit
from 15 years dedicated R&D program

10'3 Z possible with crab sextupoles scheme

[Phys.Rev.ST Accel.Beams 17, 041004 (2014)]

of LC experiments (ILD, SiD, CLIC)

E (MeV)
mw 5 .107 WW = Amy < IMeV R e TN
= 10° t6 = Am, < 10MeV S R
1> Polarization is possible up to WW - D_ g o
w energy calibration at AE ~ 0.1MeV - ;4'82 L =
m physics with longitudinal polarization v- 101 il
ﬁ (TeV) L (ab_l) Ny (106) Nitg Ny
FCCee 0.24+0.35 10 2 - —
ILC(500) 0.25+0.5 0.75 0.2 1000 100
ILC(1000) |0.2540.5+1| 1.75 0.5 3000 400
CLIC(3000) |0.35+1.4+3| 3.5 1.5 3000 3000
ttyy, ttdl | bbyy
HL-LHC 14 3+3 180 | 3600 ttyy | 250
FCC-hh 100 3 5400 | 12000 tt4l| 20000

S.Ganjour
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FCC-hh Physics Potential

A 100 TeV pp collider is the most M, (TeV)
promising instrument to explore 10 TeV

E-scale directly

1

10
| IIIIIII| [

Ef »

EBy
E& v I
LRSN I
Alt. LRsH I
U
ssn I
7o I
LHe (T
E SLn —
AFSLHM I

a3 oDy I

LHC 8 TeV (5/b)

LHC 8 TeV (15/fb) E

3 ab~! provides very significant
sensitivity to NP

LHC 14 TeV (100/fb)

my [TeV]

probing Vi, Vi, — VL Vy,

Particl f Limit (TeV i —
article o ( 2) t (TeV) LHC 14 TeV (300/fb) = g—
Excited quark q*| 10~ 50
) B _ —
4 (Z’ — 171 ) [4-10 . 30 HL-LHC 14 TeV (300010) [
squark q 0.4 8
gluino g 9 13 HE-LHC 30 TeV (3000/fb) E
stop t 0.2 6
— , , | VHE-LHC 100 TeV (100(]!1’?::}2
s W T 3 SRR
@ | pp-GE-amxa, 1T B gl PPTriTiX X |
o | 95% CLexclusion . gx’ 5_0d:§:i‘ﬁripuj 2000 1"
- 10— ZAS"TZEYsSSS‘iJ? ] — BTewaoru 0t VLHC 100 TeV (3000/fb) i
r : 1:%&‘ 2882;91 4 —141’er 50 PU, :!Oofb“
i 1 L ool L1
17 Extend mass reach up to
10 TeV to verify unitarity b
) . Y y DYy

S.Ganjour
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m Total Waidth 'y Measurements

EA - Sacla{

Extracting Higgs couplings requires et
assumptions at LHC

i ¢"¢~ machine provides a direct ac-
cess to the ['y through the Z recoil

o(ete” — ZH) x gi,, et
_ T(H—>Z7Z) g7z
I'n = 501522) € Bis72) g

1 Can also be measured with VBF process

T — rH->WW) _ o(vvH;H—bb)
H — BH-S>WW) — B(H—WW)B(H—bb)
O, X B(H — bb)
Process FCCee | ILC
ete” — ZH (H — Z7Z) 3.1% | 20% V5 (GeV) | FCCee | ILC
WW — H (H — bb)@250 GeV | 2.4% | 12% 250 2.2% 110.5%
WW — H (H — bb)@350 GeV | 1.2% | 7.0%
WW — H (H — bb)@500 GeV - | 7.0% 350 0.6% | 1.0%
WW — H (H — bb)@1000 GeV | - | 11.7% 500 — 0.7%
Combined ATy /Ty 1.0% | 4.6% 1000 _ 0.5%
FCC-ee is more powertul for overall I'y due Both FCC-ce and ILC can

to higher statistics Bxx o« o(HZ,H — XX)

Keyword: luminosity!

ultimately reach 0.5% precision for
VBE' process

S. GCL’I?jOUT Physics Motivations for Future Machines 28



m Precision EWSB Measurement

HL-LHC can ultimately reach 2-5% for most of couplings and observe couplings to
p and top, but assumes SM I'y (model dependent)

Coupling [[HL-LHQ[ FCCee | ILC(500) | ILC(1000) | CLIC(3000)

/5, GeV || 14000 || 2404350 |250+500| 1000 ++3000 FCC-hh:
Loab-' || 343 || 10426 |0.25+05 | 0.25+0.5+1 | 0.5+1.5+2 -hh:
= 25% || 0.19% 1.2% 1.2% 2.1% ki ~ 1%,
kz 2-4% 0.15% 1.0% 1.0% 2.1% A~ 8%
k, 3-5% 0.8% 2.3% 1.6% 2.29%

k, 2-5% 1.5% 8.4% 4.0% 5.9%

k, 7% 6.2% _ 16 5.6%

k, - 0.71% 2.8% 1.8% 2.2% ,
k., 2-5% 0.54% 2.3% 1.7% 25% FCC-he:
ks 47% || 0.42% 1.6% 1.3% 2.1% ky ~ 1%,
, 5% || 13%(indir.) | 14% 3.1% 45% ) < 10%
A ~30% || (indirect?) 83% 21% 10% o
BRyw || <10% || <02% | 09% 0.9% NA (absence of PU)
Ty _ 1.0% 5.0% 4.6% NA

ete” Higgs factories can go much beyond HL-LHC' and perform
model independent 'y measurement and access to all decay modes

Best precision (few 0.1%) at circular colliders (thanks to luminosity!), except for
heavy states (ttH and HH) where high energy (LC, FCC-hh) are required
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m Measurements at WW and tt-thresholds

15 Determine tt-threshold lineshape for
Oty Pt s ArB observables
w multi-parameter fit to mqp, [top and g
w [LC cross section is higher due to polarizaiton

b FCCee has precise beam-energy knowledge

Mtop 1_’top gHtt
TLEP | 10 MeV | 11 MeV | 13%
ILC |31 MeV |34 MeV | 40%

1= Present dm; and dm are responsible for
dominant parametric uncertainty on Amyy

LHC ILC FCCee
exp. | th. || exp. | th. || exp. | th.
Amy (MeV) | 10 | 4 7 ({10} 05|10
Amy,, (MeV) | 600 | 250 || 34 | 100 | 10 | 100

Amy (MeV) 100 35 7
Amy (MeV) || 19 [9.0] 6.6 [2.4] 1.8 2.8
(EWK fit)

Circular colliders can profit from precision
measurement of o, at Tera-Z and Oku-W

Fl4————— P . .
=" L tt threshold - 1S mass 174 GeV 4
S 1.2 [~ - TOPPIK NNLO - ISR only -
§ [ .- CLIC350 LS only — CLIC350 LS+ISR ]
» L 3
@ ]
© 08 =
o B ]
(& ]

N 25 T ‘ L L 50
< Present uncertail i -
Prospects for LHC | ]
20 [~ Prospects for ILC{Gi ]
- 21 Prospects for FC¢ 1 I s
S S W UENE BN P
15 1 1 ; F ]
10 - ) =
R N R (R o /A ol BES
5 . ]
e o | SRR R B B e 120
S A ¥ j,fr_Q,m,M,Baa,kf .
0 I 1 1 1 I 1 1 ‘ 1 1
60 80 1 00 120 1 40 1 80 1 80 200
M, [GeV]

Theoretical efforts are needed
to match present and future
precision on EW observables
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Search for Sterile Neutrinos

CP-violation generated by the SM in

quark sector is too small to explain BAU

1= |arge mixing 63 points to sizable
CP-violation in lepton sector
(needs very high intensity v-beam!)

15> Possible solution for neutrino mass term

- existence of (2 or 3) families of mas-
sive right-handed (sterile) neutrinos

i Manifestation of sterile neutri-
nos would be a sign of NP

» consequences in mixing with active

neutrinos, direct search (T2K, SHIP)

m possibly measurable in colliders if
mixing with EW sector is sizable
=> deficit in Z invisible decay width

- LEP: N, = 2.984 £ 0.008
(close to the systematic limit)

ete” —» HZ with Z — e*e” or p*p~

> 1800
o
~ 1600

CMS Simulation

m— Signal

i All backgrounds
— 27

—WW

— Zvv,Zee,Wev

I+1-

TLEP-240
1 year, 1 detector

20 0.9.9.9.9.9.9.94
e ototatetotetetos
SRR

5
LAY

ogetetetetozerere;
!

2
< 1400
&

1200

1000
800
600
400

TTITTT[TTT[TTT[TTT[TTT[TTT[TTT[TTT
AR R RN RN R RN RN R

200

%

Recoil Mass (GeV)

1= FCC-ee opens new possibility
for v counting in Z~y, ZZ and ZH

N(Xzinv)

'y
N, = N(Xzee,uu)/( I‘ll)SM

Statistical sensitivity of 0. N,, < 0.001
could be achievable and perhaps better
if run at 126 GeV is considered

Definitive measurement at future
Neutrino Factories (NF)

S.Ganjour
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Muon Accelerators for HEP

Muon accelerator facility can
address outstanding questions
spanning both Neutrino and
Higgs sectors

= Concept of v/Higgs-Factory:
w provide equal fractions of v, and v,
at very high intensity 10%! /year
pt — etvo,, p= — e D,
m SR is strongly suppressed
=> reach multi-TeV collision energy
=> high quality colliding beams
1= [mportant impact:
w short lifetime (2.2us at rest) limits
acceleration and storage time

w deal with decay background (new!)

i P5: the US effort is ramping down

First stage: Neutrino Factory (NF)

Parameters vSTORM NuMAX NuMAX-+
Intensity (v/year) 3-10"  1.8-10%° 5.0-10%
Stored (ju/year) 8107  4.7-10° 1.3-10%
Ring momentum (GeV) 3.8 5.0 5.0
Circumference (m) 480 737 737
Bunch population 6.9-10° 2.6-10 3.5-10'°
Number of bunches - 60 60
Frequency (Hz) - 30 60

6D Cooling No Initial Initial
P-Driver Power (MW) 0.2 1 2.75

Muon collider goes beyond a NF
Facility and requires innovative

accelerator R&D (6D Cooling)

Parameters H-Factory Multi-TeV
Energy c.m. (GeV) 126 3.0
Luminosity (cm™2s71) 1032 5-10%
Circumference (km) 0.3 4.4
Beam size (um) 75 3
Bunch population 4 -1012 2102
Number of bunches 1 1
Frequency (Hz) 15 12
Energy Spread (%) 0.003 0.1
P-Driver Power (MW) 4 4

S.Ganjour
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Physics Potential of Muon Collider

Higgs Factory and Multi-TeV
colliders are long term facilities
beyond NF

5 Energy spread dE/E < 107°
m direct Higgs production via s-channel
(I'y measurement from natural scan)

% precision measurements at threshold
= Multi-TeV capability (< 10 TeV)

% yvery compact machine!
m measure self-coupling < 10%
m route to direct NP production via

leptons beyond LC energy reach

1" Feasible at FCC-ee due to exceptionally
high luminosity at 4/s = 126 GeV

> unique possibility to access 2Hee

Possible observation with 1(10)ab™!
if B/Bgy < 4.6(1.4)

ptu~ — H (o ~ 70 pb)

650 F
600 }
550 |4
g 500 }
5 450 F
400
350 F
30

o

Lytep=0.025 fb™!
R=0.01%

1800¢ 1
h-bb| ] 1600} T,= ]
2 1400} 421 MeV Lyep=
§ 1200l 0.05 fb! ]
8] R=0.003%
1000¢ 1
f 800

—03 =015 126 +015 +.03

Vs (GeV)

_03 —015 126 +.015 +.03
Vs (GeV)

o(e*e’—H) reduction factor

Convolution Breit-Wigner (I';=4.2 MeV)
with Gaussian beam spread X(MeV)

ete” - H |

# Breit-Wigner

125900 125950 126000 126050 126100
Vs (MeV)

AE ~ 30 MeV

| | | 1111 | 111 1 1 111 | | 1 1
15 20 25 35 40
Energy e* beam spread (MeV)

Additional 40% reduction due to ISR
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Colliders at Energy Frontiers

The facilities
being discussed

ete™ Linear Colliders
HE eTe™ Storage Rings
HE pp Colliders

Constituent Center-of-Mass Energy [GeV]

FCC-hh (20T magnets)
2 Sppl

Comparison of Colliders HE-LHC (20T magnety)
at the Energy Frontier
» LHC ® HL-LHC
v
10°F ‘o@{\ "
F OF ILC 500
Tevstron _ ILC 250-350
“ HERA .- - Cep
. " .+ LEP2 A2
" R - O
10°F SppS .- e LEP,SLC W
- e *.Tristan P
" o PETRA &
',_PEP
L s CESR (EK-B .
OF ISRT 0 Spear2 PEP-II RER
5 - o Doris
;- ® Spear
."* Adone
" VEP-2 \FN
1 F * ACO
-+ VEP-1
1
10 - | I I | | | l
1960 1970 1980 1990 2000 2010 2020 2030 2040...

Year of First Physics

from N. Walker
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m Conclusions

EA - Sacla{

LHC remains a main source of information and will continue to drive
initial observations in the coming years

5" HL-LHC is the highest-priority near-term large project supported by both Europe and US

1= The discovery of a Higgs boson completed the SM, but major questions remain
iz Powerful high energy frontier accelerators will be needed to address them

w cutting edge technologies are vital to pursuit the realization of our ambitious vision
m mitigation of technological risks would probably let the cost go up, but ...
w LHC has proven, one can firmly risk to advance our knowledge!

m the international participation is a must for any of the future projects

iz With the Higgs discovery the known path is over, we do not know what is beyond

> we will probably keep all options open by the time when physics results from
LHC running at 14 TeV will be available

A wise strategy is an opportunity for all possibilities and
not a restraint in a few choices
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Backup

Backup
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m Higgs Self-Coupling

Hadron Machines

Double Higgs production among the 0o AN H
° ° ° ° 8 ,’/
main objectives of HL-LHC, but this N ,‘, ,
process is very challenging . I N gesmssend o u
H t
1= Low rate makes high demands on detectors Higgs self coupling ~ SM Double Higgs

and integrated luminosity - Machi
e’ e aciines

m self coupling diagrams interferes de- e
structively with double Higgs processes

=> look for a deficiency in a small signal
L g O'HH(100 TeV)/O'HH(14 TeV) ~ 40

_ 7 e
Vs <1 TeV Vs > 1TeV

(¢

05 ey
—e'+e > ZHH

LHC | FCCee | ILC | ILC |CLIC|FCChh o5E e VTHE WWusion)

2 - e" + e = vwWHH (Combined) E

1000 | upgrade | 3000 c o4F MH)=125GeV P(ee) = (-0.8,4+03) i

AX/A | ~30% | indirect? | 21% | 13% |10% | ~8% || 2 | ]
One of the most difficult measurement both  § b O —

hadron and eTe~ machines, push energies is
pivotal!

ot ot N BT BRI B B ]
400 600 800 1000 1200 1400
Center of Mass Energy / GeV
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Toward v-Factories and Muon Colliders

Muon based facility will require development of demanding technologies

and innovative concepts (M AP program)

Neutrino Factory (NuMAX)

A J

Proton Driver

Accumulator

Compressor

Capture Sol
Decay Channel

MW-Class Target

Front End

Buncher

Phase Rotator

Cool-
ing

|

Initial Cooling

Acceleration

p I— I
0.2-1 1-5
GeV GeV

Accelerators:
Single-Pass Linacs
(Opt. RLA or FFAG)

| Storage Ring
ut

D —— v‘

PETID)

e —— v
U

© 20.35 km

i

Share same complex

v Factory Goal:
0O(1021) n/year
within the accelerator
acceptance

u-Collider Goals:
126 GeV =
~14,000 Higgs/yr
Multi-TeV =
Lumi > 103¢cm2?s™

!

Proton Driver

Accumulator

O

Compressor

Capture Sol.
Decay Channel

MW-Class Target

Buncher

Phase Rotator

ECooHng

Initial Cooling

Muon Collider (Muon Accelerator Staéing Study)
Front End

!

Charge Separator,
6D Cooling
6D Cooling

Final Cooling

Acceleration

Accelerators:
Linac, RLA or FFAG, RCS

Collider Ring
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ﬂ Challenges of Muon Accelerator Facility

e

i yYSTORM project is a critical step to-

ward muon based accelerator complex

" no new technologies required

m® test muon storage ring

3 . 1017 decays per year

b precision v, xsection (systematics
issue for long baseline experiments)

s P5: the US effort is ramping down

1z Demonstration of cooling - MICE

 jonization cooling:
10% emitance reduction

m needs for a full 6D cooling:

=> 100 RF cavities (16MV/m)
-> 100 SC 0.15 m coils (2.8 T)

i 6D phase space cooling: reduc-
tion by 10° needed for muon collider

w very high field solenoids (~20 T)
> high gradient cavities operating

iz Multi-MW proton driver in multi-Tesla field

> high gradient SC cavities

S.Ganjour
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m Model Dependence and Uncertainties

Extracting Higgs couplings requires

assumptions at LHC

T, T k2 - k2
R osy - Bsw !
T K2,

" Total width I'y o< k% is not measurable
(zero width approximation!)

w assumed ky = k;BR;, only for i in SM
= no contributions from BSM

m ratios of couplings are model independent

1> ' is measurable directly at a eTe™ collider!

15 Most couplings will reach systematic limit at LHC

m experimental uncertainties are scaled

with luminosity... but how?

m» theoretical uncertainties affects the ultimate

precision

Reducing theoretical uncertainties it is for sure
worth the effort!

ATLAS Simulation

\s =14 TeV: : [Ldt=3000 b
JLdt=300 fo™" extrapolated from 7+8 TeV

\lf[\\\]\
FZ/FQH |

02 04 06 08
A /Ty) Ak [xy)
/Ty N Ky /Ky

CMS Projection

T T ‘ T T T T ‘ T T T T ‘ T T T T | T T
Expected uncertainties on F— 3000 at {5= 14 Tev Scenario 1
Higgs boson couplings — 3000167 at f§ = 14 TeV No Theory Unc.

K — |
Ky ——+—
Ky ———m+—

Kg ——+—

Il Il 1 Il 1 Il ‘ Il Il 1 Il | Il 1
0.00 0.05 0.10 0.15
expected uncertainty
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Coupling Fit Tools ﬂ

Extracting Higgs couplings requires
assumptions at LHC

CMS Projection, {s=14 TeV
T | T T “II T |
- —— L=300fb ", Scenario 1

= Total width I’y ~ k% is not measurable

==== L=300fb ", Scenario 2

2AInL
T

m not possible to measure directly a produc-
tion cross section as at a eTe~ collider

==== L=3000fb ", Scenario 2

—— L=3000fb ", Scenario 1
1= Follow recommendations and fit models de- e ¥ 7
scribed in Yellow Report 3 [arXiv:1307.1347] '

w assumed ky = > k;BR;, only for i in SM

=> total width controlled by H — bb i
=> H — cc is a 5% inaccessible contribu- I

tion (assumed to scale with bb) O
=> no contributions from BSM Ky

= Global fits targeting the k factors Results reported in terms of 68%
uncertainties (-2A1In L=1) on k

m do not resolve loops, effective coupling in-

stead (k,, k; and kz,)
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BSM (2HDM) ﬂ

[FTR-13-024]

Configuration 3 with <N,,>= 140

Many BSM models have extra

g 10"E cwis simulation 2013 II-IB_:BIJ',IBJ'IJ'-\I/be,IBE;,IBlIBBI
doublet (H, A, H"" H_) o 10° /$=14 TeV L=3000 fb* =E’t8'“’“5
g rmme Shomecomes
1= Search additional Higgs fields at high masses  § wfppge H = 22 m, =800 Gev)
W 10°
15 Performed full MC analysis of H — ZZ and 102
A — Zh resonances in Type | and [| 2HDM's 10
m type II includes MSSM 10"
w constrained 2HDM parameter space of 200, 00 00 00 Ion ml(zzog) [1G4§§’,]
tan 3 and COS(,B — a) CMS Simulation 2013 Vs =14 TeV  L=3000 fo~"
1007 - - - ' ' c
m indirect constrain from coupling fits favor 501
cos(f — a) — 0 (the SM Higgs boson)
10+
w H /A decays have tt threshold effect =
=> discovery potential my/x < 2my (type Il) S
Direct search can probe region close to the
alignment limit, that may still be allowed e Seniemee
by coupling fits —0.15 —0.10 —0.05 0.00 0.05 0.10 0.15

cos(f—a)
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