

Rare Top Quark Decays

Yeng-Ming Tzeng (National Taiwan University) on behalf of the ATLAS and CMS Collaborations Quy-Nhon 2014 Conference -08/11/2014

Introduction

❖ In the standard model (SM):

- The top decays to bW with branching ratio~1 due to $|V_{tb}|$ ~0.9991
- Flavor changing neutral currents (FCNC) are forbidden at tree level, and only allowed via high order corrections like penguin diagrams (suppressed by GIM mechanism).

* Rare top quark decays

Studies of rare top quark decays can not only test the SM, but also probe if a new physics exists. This talk includes rare decays via three kinds of ways,

- Via charged current:

A challenge to measure B(t \rightarrow Wd) or B(t \rightarrow Ws), and more straightforward to measure $R = \frac{\mathcal{B}(t \rightarrow Wb)}{\mathcal{B}(t \rightarrow Wa)}$

- Via FCNC:

Including qg, qγ, qZ, and qH decays. Enhanced by new physics(MSSM, 🗷 SUSY..)

- Via baryon number violation (BNV):

Baryon number conserves in the SM, but a small violation can arise from non-perturbative effects[1]. Also, it can naturally occur with a new physics.

$$t \rightarrow \bar{b}\bar{u}e^+ (\bar{t} \rightarrow bue^-)$$
 and $t \rightarrow \bar{b}\bar{c}\mu^+ (\bar{t} \rightarrow bc\mu^-)$ [1] PhysRevLett.37.8 (1976)

Rare Decays via Charged Current

$R = B(t \rightarrow W + b)/B(t \rightarrow W + q)$

Motivation:

- SM prediction (Phys. Rev. Lett. 37(1976) 8-11)

$$R = \frac{\mathcal{B}(t \to Wb)}{\mathcal{B}(t \to Wq)} = \frac{\mid V_{tb} \mid^2}{\mid V_{tb} \mid^2 + \mid V_{ts} \mid^2 + \mid V_{td} \mid^2} = 0.99830^{+0.00006}_{-0.00009}$$

- A tension with SM from D0 measurement (PhysRevLett.107.121802)

$$R = 0.90 \pm 0.04(\text{stat} + \text{syst})$$

 $|V_{\text{tb}}| = 0.95 \pm 0.02$

Event selection :

2 isolated leptons (e or μ), \geq 2 jets, and MET

\diamond Profile likelihood (λ):

- Composed of signal purity, jet mis-assignment and probability of b-tagging as a function of R.
- R obtained by maximizing the profile likelihood.

Result:

- Limit bands obtained from the Feldman-Cousins methods.
- If R \leq 1, we obtain R > 0.955 at 95%C.L. $|V_{\rm tb}| > 0.975$

Rare Decays via Flavor Changing Neutral Current (FCNC)

Search for single top-quark production via FCNC

 $B(t \to g + q)$

ATLAS

Single top Production

Motivation:

- FCNC top decays suppressed by SM (~10⁻¹⁴)
- Enhanced by new physics (new exotic quarks, SUSY, or technicolor) up to $\sim 10^{-3}$
- \Leftrightarrow B(t \rightarrow g + q) performed by searching for anomalous single top production (qg \rightarrow t)

- **\Leftrightarrow** Event selection : g Isolated lepton (e or μ), 1 b-jet, and MET
- Resulting plot:

 Neutral network output used to distinguish signal from background.

* Result:

- B(t → g + u) < $3.1x10^{-5}$ (assuming B(t → gc)=0)
- B(t → g + c) < $1.6x10^{-4}$ (assuming B(t→ gu)=0)

(Compared to 7TeV result: $B(t \rightarrow gu) \le 0.56\% \& B(t \rightarrow gc) \le 7.12\%$, reference to CMS PAS-TOP-12-021)

Search for single top-quark production via FCNC

 $B(t \to \gamma + q)$

Single top Production

Motivation :

- FCNC top decays suppressed by SM (~10⁻¹⁴)
- Enhanced by new physics (two-Higgs doublet model (2HDM), SUSY, or technicolor) up to ~10⁻⁵
- Analysis performed using single top production

***** Event selection :

Isolated muon with a photon, 1 b-jet, and MET

- ❖ Background estimation :
 - Wγ / W + jets obtained using a data-driven method (template fit)
 - Others from simulation
- A boosted decision tree (BDT) used to distinguish signal from background.
- * Result:
 - B(t $\rightarrow \gamma$ + u) < 0.0161% (assuming B(t $\rightarrow \gamma$ c)=0)
 - B(t $\rightarrow \gamma$ + c) < 0.182% (assuming B(t $\rightarrow \gamma$ u)=0)

(Compared to HERA result: $B(t \rightarrow \gamma u) < 0.64\%$, Phys. Letters B 678 (2009) 450–458)

Searching for FCNC in $t \rightarrow Z + q$

Motivation:

- Highly suppressed in the SM by GIM $(\sim 10^{-14})$
- Enhanced in R-parity violating SUSY, top color assisted technicolor models (~10⁻⁴)

Event selection :

Two opposite-site isolated leptons (e or μ), one extra lepton, and exactly 1 b-jet

Mass reconstruction :

 $m(l+v)=m_W$, $m(b+l+v) \leftrightarrow m_{Wb}$, m(Z(ll)+another j)

❖ Background Estimation :

$$N_{all} = N_{0b} + N_{1b} + N_{2b},$$

 $N_{0tag} = \alpha_1 N_{0b} + \alpha_2 N_{1b} + \alpha_3 N_{2b},$ α_i : b-tag efficiency

 $N_{1tag} = \beta_1 N_{0b} + \beta_2 N_{1b} + \beta_3 N_{2b},$ β_i : fake rate

Result:

observed (expected) limit on

 $B(t \rightarrow Z + q) < 0.05\% (0.09\%)$

(Compared to 7TeV result: $\dot{B}(t \rightarrow Zq) \leq 0.73\%$, JHEP09(2012)139)

Phys. Rev. Lett. 112 (2014) 171802 (CMS)

m_{zi} (GeV)

200

300

Searching for FCNC in t → H + c

Motivation:

Relatively large σ_{tt} and top having the largest coupling to the Higgs sector

FCNC top decay including:

$$\mathbf{t} \rightarrow \mathbf{c} + \begin{bmatrix} \mathbf{H} \rightarrow \mathbf{W}\mathbf{W}^* \rightarrow \ell\nu\ell\nu, \\ \mathbf{H} \rightarrow \tau\tau, \\ \mathbf{H} \rightarrow \mathbf{Z}\mathbf{Z}^* \rightarrow jj\ell\ell, \nu\nu\ell\ell, \ell\ell\ell\ell, \\ \mathbf{H} \rightarrow \gamma\gamma. \end{bmatrix}$$

Event selection :

Multi-leptons (≥3leptons)

Di-photons+lepton

Background estimation :

Multi-leptons (≥3leptons)

Use fake rate to estimate dominant bkg(Z+jets)

Di-photons+lepton

Use the sidebands around $M\gamma\gamma$ using an exponential function

Result:

observed (expected) limit on B(**t** \rightarrow **H** + **c**)<0.56% (0.65%) --> $\sqrt{|\lambda_{tc}^H|^2 + |\lambda_{ct}^H|^2}$ < 0.14

Multi-leptons

Pair Production

OSSF pair	$N_{ au_{ m had}}$	E _T miss [GeV]	H _T [GeV]	N _{b-jets}	data	background	signal	efficiency [10 ⁻⁵]
below Z	0	50-100	0-200	≥ 1	48	48 ± 23	9.5 ± 2.3	10.3 ± 2.5
n/a	0	50-100	0-200	≥ 1	29	26 ± 13	5.9 ± 1.3	6.4 ± 1.4
below Z	0	0-50	0-200	≥ 1	34	42 ± 11	5.9 ± 1.2	6.4 ± 1.3
n/a	0	0-50	0-200	≥ 1	29	23 ± 10	4.3 ± 1.1	4.7 ± 1.2
below Z	0	50-100	> 200	≥ 1	10	9.9 ± 3.7	3.0 ± 1.1	3.3 ± 1.2
below Z	0	0-50	> 200	≥ 1	5	10 ± 2.5	2.8 ± 0.8	3.1 ± 0.9
below Z	0	50-100	0-200	0	142	125 ± 27	9.7 ± 2.1	10.6 ± 2.3
n/a	1	0-50	0-200	≥ 1	237	240 ± 113	13.1 ± 2.6	14.3 ± 2.8
n/a	0	50-100	0-200	0	35	38 ± 15	4.3 ± 1.1	4.7 ± 1.2
above Z	0	0-50	0-200	≥ 1	17	18 ± 6.7	2.8 ± 0.8	3.1 ± 0.9

Assuming $B(t \rightarrow H + c)$ at 1%

Di-photons + lepton

Ī	$N_{ au_{ m had}}$	E _T miss [GeV]	$N_{ ext{b-jets}}$	data	background	signal	efficiency [10 ⁻⁵]
	0	50-100	≥ 1	1	2.3 ± 1.2	2.88 ± 0.39	3.1 ± 0.4
	0	30-50	≥ 1	2	1.1 ± 0.6	2.16 ± 0.30	2.4 ± 0.3
	0	0–30	≥ 1	2	2.1 ± 1.1	1.76 ± 0.24	1.9 ± 0.3
	0	50-100	0	7	9.5 ± 4.4	2.22 ± 0.31	2.4 ± 0.3
	0	> 100	≥ 1	0	0.5 ± 0.4	0.92 ± 0.14	1.0 ± 0.2
	0	> 100	0	1	2.2 ± 1.0	0.94 ± 0.17	1.0 ± 0.2
	0	30-50	0	29	21 ± 10	1.51 ± 0.22	1.6 ± 0.2
	1	30-50	≥ 1	2	2.1 ± 1.2	0.43 ± 0.09	0.5 ± 0.1
	1	0–30	≥ 1	6	6.4 ± 3.3	0.48 ± 0.12	0.5 ± 0.1
	1	50-100	≥ 1	1	1.5 ± 0.8	0.30 ± 0.08	0.3 ± 0.1

Assuming $B(t \rightarrow H + c)$ at 1%

CMS PAS-HIG-13-034

Searching for FCNC in t → H + q

♣ Enhanced by Quark-singlet model(QS), 2HDM of type I with explicit flavour conservation (FC-2HDM), or 2HDM of type II (like MSSM), 2HDM without explicit flavour conservation (2HDM-III)

Process	SM	QS	2HDM-III	FC-2HDM	MSSM
$t \rightarrow cH$	$3 \cdot 10^{-15}$	$4.1 \cdot 10^{-5}$	$1.5 \cdot 10^{-3}$	$\sim 10^{-5}$	10^{-5}

- ❖ Top quark decays to an up-type (c,u) quark + a Higgs
- Event selection :

Hadronically decaying top quark

 2γ , ≥ 4 jets, and ≥ 1 b-jet

Leptonically decaying top quark

 2γ , an isolated lepton(e or μ), ≥ 2 jets, and ≥ 1 b-jet

❖ Signal & Background modeling for M_{YY}:

Signal shape: Gaussian + Crystal Ball

Bkg shape: Polynomial function

Result

observed (expected) limit on B($\mathbf{t} \rightarrow \mathbf{H} + \mathbf{q}$)<0.79%

$$(0.51\%) --> \sqrt{\lambda_{tcH}^2 + \lambda_{tuH}^2} < 0.17$$
 (0.14)

Rare Decays via Baryon Number Violation (BNV)

Search for baryon number violating top decays

 $t \rightarrow b + u + e \text{ (or } b + c + \mu\text{)}$

Pair Production

Motivation:

- Small BNV can arise from non-perturbative effects in the SM ~ too small to be realistically measurable (BNV top decays ~1fb ~B(10-6), arXiv:1107.3805).
- Naturally occurs in new physics (SUSY, grand unified theories, and black hole)

$$\clubsuit$$
 BNV top decays :

$$t \, \to \, \bar{b}\bar{u}e^+ \, (\bar{t} \, \to \, bue^-)$$

$$t \rightarrow \bar{b}\bar{c}\mu^+ (\bar{t} \rightarrow bc\mu^-)$$

Event selection :

An isolated lepton (e or μ), \geq 5 jets, and lower MET

* Background modeling:

Top and electro-weak backgrounds (MC) QCD background (data-driven)

$$N_{QCD} = R(N_{data}^{anti-iso} - N_{non-QCD}^{anti-iso})$$

Result: R = f/(1-f)

Channel	95% CL	Expected	68% CL exp. range
Muon Electron Combined	0.0016 0.0017 0.0015	0.0029 0.0030 0.0028	[0.0017, 0.0046] [0.0017, 0.0047] [0.0016, 0.0046]

Summary

- The ATLAS and CMS collaborations have performed a number of studies for rare top quark decays.
 - No significant excess of events over the expected yields from the SM processes
 - Set limits on the (branching) ratios :

Interaction	Model	Result	
Charged Current	B(t→Wb) B(t→Wq)	> 0.955	Phys. Lett. B 736 (2014) 33 (CMS)
	t→gc(u)	< 1.6x10 ⁻⁴ (3.1x10 ⁻⁵)	ATLAS CONF-2013-063
FONO	t→γc(u)	<0.182% (0.0161%)	CMS PAS-TOP-14-003
FCNC	t→Zq	< 0.05%	Phys. Rev. Lett. 112 (2014) 171802 (CMS)
	t→Hc(q)	< 0.56% (0.79%)	CMS PAS-HIG-13-034 (ATLAS JHEP06(2014)008)
BNV	t→bue (orbcμ)	< 0.15% , 5,5,60	Physics Letters B 731 (2014) 173 (CMS)

Thank you for your attention!