Rare Top Quark Decays Yeng-Ming Tzeng (National Taiwan University) on behalf of the ATLAS and CMS Collaborations Quy-Nhon 2014 Conference -08/11/2014 ### Introduction ### ❖ In the standard model (SM): - The top decays to bW with branching ratio~1 due to $|V_{tb}|$ ~0.9991 - Flavor changing neutral currents (FCNC) are forbidden at tree level, and only allowed via high order corrections like penguin diagrams (suppressed by GIM mechanism). ### * Rare top quark decays Studies of rare top quark decays can not only test the SM, but also probe if a new physics exists. This talk includes rare decays via three kinds of ways, - Via charged current: A challenge to measure B(t \rightarrow Wd) or B(t \rightarrow Ws), and more straightforward to measure $R = \frac{\mathcal{B}(t \rightarrow Wb)}{\mathcal{B}(t \rightarrow Wa)}$ - Via FCNC: Including qg, qγ, qZ, and qH decays. Enhanced by new physics(MSSM, 🗷 SUSY..) - Via baryon number violation (BNV): Baryon number conserves in the SM, but a small violation can arise from non-perturbative effects[1]. Also, it can naturally occur with a new physics. $$t \rightarrow \bar{b}\bar{u}e^+ (\bar{t} \rightarrow bue^-)$$ and $t \rightarrow \bar{b}\bar{c}\mu^+ (\bar{t} \rightarrow bc\mu^-)$ [1] PhysRevLett.37.8 (1976) # Rare Decays via Charged Current # $R = B(t \rightarrow W + b)/B(t \rightarrow W + q)$ ### Motivation: - SM prediction (Phys. Rev. Lett. 37(1976) 8-11) $$R = \frac{\mathcal{B}(t \to Wb)}{\mathcal{B}(t \to Wq)} = \frac{\mid V_{tb} \mid^2}{\mid V_{tb} \mid^2 + \mid V_{ts} \mid^2 + \mid V_{td} \mid^2} = 0.99830^{+0.00006}_{-0.00009}$$ - A tension with SM from D0 measurement (PhysRevLett.107.121802) $$R = 0.90 \pm 0.04(\text{stat} + \text{syst})$$ $|V_{\text{tb}}| = 0.95 \pm 0.02$ ### Event selection : 2 isolated leptons (e or μ), \geq 2 jets, and MET ### \diamond Profile likelihood (λ): - Composed of signal purity, jet mis-assignment and probability of b-tagging as a function of R. - R obtained by maximizing the profile likelihood. ### Result: - Limit bands obtained from the Feldman-Cousins methods. - If R \leq 1, we obtain R > 0.955 at 95%C.L. $|V_{\rm tb}| > 0.975$ # Rare Decays via Flavor Changing Neutral Current (FCNC) ### Search for single top-quark production via FCNC $B(t \to g + q)$ # ATLAS ### **Single top Production** ### Motivation: - FCNC top decays suppressed by SM (~10⁻¹⁴) - Enhanced by new physics (new exotic quarks, SUSY, or technicolor) up to $\sim 10^{-3}$ - \Leftrightarrow B(t \rightarrow g + q) performed by searching for anomalous single top production (qg \rightarrow t) - **\Leftrightarrow** Event selection : g Isolated lepton (e or μ), 1 b-jet, and MET - Resulting plot: Neutral network output used to distinguish signal from background. #### * Result: - B(t → g + u) < $3.1x10^{-5}$ (assuming B(t → gc)=0) - B(t → g + c) < $1.6x10^{-4}$ (assuming B(t→ gu)=0) (Compared to 7TeV result: $B(t \rightarrow gu) \le 0.56\% \& B(t \rightarrow gc) \le 7.12\%$, reference to CMS PAS-TOP-12-021) ## Search for single top-quark production via FCNC $B(t \to \gamma + q)$ ### **Single top Production** #### Motivation : - FCNC top decays suppressed by SM (~10⁻¹⁴) - Enhanced by new physics (two-Higgs doublet model (2HDM), SUSY, or technicolor) up to ~10⁻⁵ - Analysis performed using single top production ***** Event selection : Isolated muon with a photon, 1 b-jet, and MET - ❖ Background estimation : - Wγ / W + jets obtained using a data-driven method (template fit) - Others from simulation - A boosted decision tree (BDT) used to distinguish signal from background. - * Result: - B(t $\rightarrow \gamma$ + u) < 0.0161% (assuming B(t $\rightarrow \gamma$ c)=0) - B(t $\rightarrow \gamma$ + c) < 0.182% (assuming B(t $\rightarrow \gamma$ u)=0) (Compared to HERA result: $B(t \rightarrow \gamma u) < 0.64\%$, Phys. Letters B 678 (2009) 450–458) # Searching for FCNC in $t \rightarrow Z + q$ ### Motivation: - Highly suppressed in the SM by GIM $(\sim 10^{-14})$ - Enhanced in R-parity violating SUSY, top color assisted technicolor models (~10⁻⁴) ### Event selection : Two opposite-site isolated leptons (e or μ), one extra lepton, and exactly 1 b-jet ### Mass reconstruction : $m(l+v)=m_W$, $m(b+l+v) \leftrightarrow m_{Wb}$, m(Z(ll)+another j) ### **❖** Background Estimation : $$N_{all} = N_{0b} + N_{1b} + N_{2b},$$ $N_{0tag} = \alpha_1 N_{0b} + \alpha_2 N_{1b} + \alpha_3 N_{2b},$ α_i : b-tag efficiency $N_{1tag} = \beta_1 N_{0b} + \beta_2 N_{1b} + \beta_3 N_{2b},$ β_i : fake rate ### Result: observed (expected) limit on $B(t \rightarrow Z + q) < 0.05\% (0.09\%)$ (Compared to 7TeV result: $\dot{B}(t \rightarrow Zq) \leq 0.73\%$, JHEP09(2012)139) Phys. Rev. Lett. 112 (2014) 171802 (CMS) m_{zi} (GeV) 200 300 # Searching for FCNC in t → H + c #### Motivation: Relatively large σ_{tt} and top having the largest coupling to the Higgs sector FCNC top decay including: $$\mathbf{t} \rightarrow \mathbf{c} + \begin{bmatrix} \mathbf{H} \rightarrow \mathbf{W}\mathbf{W}^* \rightarrow \ell\nu\ell\nu, \\ \mathbf{H} \rightarrow \tau\tau, \\ \mathbf{H} \rightarrow \mathbf{Z}\mathbf{Z}^* \rightarrow jj\ell\ell, \nu\nu\ell\ell, \ell\ell\ell\ell, \\ \mathbf{H} \rightarrow \gamma\gamma. \end{bmatrix}$$ Event selection : Multi-leptons (≥3leptons) Di-photons+lepton Background estimation : Multi-leptons (≥3leptons) Use fake rate to estimate dominant bkg(Z+jets) Di-photons+lepton Use the sidebands around $M\gamma\gamma$ using an exponential function Result: observed (expected) limit on B(**t** \rightarrow **H** + **c**)<0.56% (0.65%) --> $\sqrt{|\lambda_{tc}^H|^2 + |\lambda_{ct}^H|^2}$ < 0.14 ### **Multi-leptons** **Pair Production** | OSSF pair | $N_{ au_{ m had}}$ | E _T miss [GeV] | H _T [GeV] | N _{b-jets} | data | background | signal | efficiency [10 ⁻⁵] | |-----------|--------------------|---------------------------|----------------------|---------------------|------|---------------|----------------|--------------------------------| | below Z | 0 | 50-100 | 0-200 | ≥ 1 | 48 | 48 ± 23 | 9.5 ± 2.3 | 10.3 ± 2.5 | | n/a | 0 | 50-100 | 0-200 | ≥ 1 | 29 | 26 ± 13 | 5.9 ± 1.3 | 6.4 ± 1.4 | | below Z | 0 | 0-50 | 0-200 | ≥ 1 | 34 | 42 ± 11 | 5.9 ± 1.2 | 6.4 ± 1.3 | | n/a | 0 | 0-50 | 0-200 | ≥ 1 | 29 | 23 ± 10 | 4.3 ± 1.1 | 4.7 ± 1.2 | | below Z | 0 | 50-100 | > 200 | ≥ 1 | 10 | 9.9 ± 3.7 | 3.0 ± 1.1 | 3.3 ± 1.2 | | below Z | 0 | 0-50 | > 200 | ≥ 1 | 5 | 10 ± 2.5 | 2.8 ± 0.8 | 3.1 ± 0.9 | | below Z | 0 | 50-100 | 0-200 | 0 | 142 | 125 ± 27 | 9.7 ± 2.1 | 10.6 ± 2.3 | | n/a | 1 | 0-50 | 0-200 | ≥ 1 | 237 | 240 ± 113 | 13.1 ± 2.6 | 14.3 ± 2.8 | | n/a | 0 | 50-100 | 0-200 | 0 | 35 | 38 ± 15 | 4.3 ± 1.1 | 4.7 ± 1.2 | | above Z | 0 | 0-50 | 0-200 | ≥ 1 | 17 | 18 ± 6.7 | 2.8 ± 0.8 | 3.1 ± 0.9 | Assuming $B(t \rightarrow H + c)$ at 1% ### **Di-photons + lepton** | Ī | $N_{ au_{ m had}}$ | E _T miss [GeV] | $N_{ ext{b-jets}}$ | data | background | signal | efficiency [10 ⁻⁵] | |---|--------------------|---------------------------|--------------------|------|---------------|-----------------|--------------------------------| | | 0 | 50-100 | ≥ 1 | 1 | 2.3 ± 1.2 | 2.88 ± 0.39 | 3.1 ± 0.4 | | | 0 | 30-50 | ≥ 1 | 2 | 1.1 ± 0.6 | 2.16 ± 0.30 | 2.4 ± 0.3 | | | 0 | 0–30 | ≥ 1 | 2 | 2.1 ± 1.1 | 1.76 ± 0.24 | 1.9 ± 0.3 | | | 0 | 50-100 | 0 | 7 | 9.5 ± 4.4 | 2.22 ± 0.31 | 2.4 ± 0.3 | | | 0 | > 100 | ≥ 1 | 0 | 0.5 ± 0.4 | 0.92 ± 0.14 | 1.0 ± 0.2 | | | 0 | > 100 | 0 | 1 | 2.2 ± 1.0 | 0.94 ± 0.17 | 1.0 ± 0.2 | | | 0 | 30-50 | 0 | 29 | 21 ± 10 | 1.51 ± 0.22 | 1.6 ± 0.2 | | | 1 | 30-50 | ≥ 1 | 2 | 2.1 ± 1.2 | 0.43 ± 0.09 | 0.5 ± 0.1 | | | 1 | 0–30 | ≥ 1 | 6 | 6.4 ± 3.3 | 0.48 ± 0.12 | 0.5 ± 0.1 | | | 1 | 50-100 | ≥ 1 | 1 | 1.5 ± 0.8 | 0.30 ± 0.08 | 0.3 ± 0.1 | Assuming $B(t \rightarrow H + c)$ at 1% **CMS PAS-HIG-13-034** # Searching for FCNC in t → H + q ♣ Enhanced by Quark-singlet model(QS), 2HDM of type I with explicit flavour conservation (FC-2HDM), or 2HDM of type II (like MSSM), 2HDM without explicit flavour conservation (2HDM-III) | Process | SM | QS | 2HDM-III | FC-2HDM | MSSM | |--------------------|--------------------|---------------------|---------------------|----------------|-----------| | $t \rightarrow cH$ | $3 \cdot 10^{-15}$ | $4.1 \cdot 10^{-5}$ | $1.5 \cdot 10^{-3}$ | $\sim 10^{-5}$ | 10^{-5} | - ❖ Top quark decays to an up-type (c,u) quark + a Higgs - Event selection : Hadronically decaying top quark 2γ , ≥ 4 jets, and ≥ 1 b-jet Leptonically decaying top quark 2γ , an isolated lepton(e or μ), ≥ 2 jets, and ≥ 1 b-jet ❖ Signal & Background modeling for M_{YY}: Signal shape: Gaussian + Crystal Ball Bkg shape: Polynomial function Result observed (expected) limit on B($\mathbf{t} \rightarrow \mathbf{H} + \mathbf{q}$)<0.79% $$(0.51\%) --> \sqrt{\lambda_{tcH}^2 + \lambda_{tuH}^2} < 0.17$$ (0.14) # Rare Decays via Baryon Number Violation (BNV) ### Search for baryon number violating top decays $t \rightarrow b + u + e \text{ (or } b + c + \mu\text{)}$ **Pair Production** #### Motivation: - Small BNV can arise from non-perturbative effects in the SM ~ too small to be realistically measurable (BNV top decays ~1fb ~B(10-6), arXiv:1107.3805). - Naturally occurs in new physics (SUSY, grand unified theories, and black hole) $$\clubsuit$$ BNV top decays : $$t \, \to \, \bar{b}\bar{u}e^+ \, (\bar{t} \, \to \, bue^-)$$ $$t \rightarrow \bar{b}\bar{c}\mu^+ (\bar{t} \rightarrow bc\mu^-)$$ Event selection : An isolated lepton (e or μ), \geq 5 jets, and lower MET * Background modeling: Top and electro-weak backgrounds (MC) QCD background (data-driven) $$N_{QCD} = R(N_{data}^{anti-iso} - N_{non-QCD}^{anti-iso})$$ ### Result: R = f/(1-f) | Channel | 95% CL | Expected | 68% CL exp. range | |------------------------------|----------------------------|----------------------------|--| | Muon
Electron
Combined | 0.0016
0.0017
0.0015 | 0.0029
0.0030
0.0028 | [0.0017, 0.0046]
[0.0017, 0.0047]
[0.0016, 0.0046] | | | | | | # Summary - The ATLAS and CMS collaborations have performed a number of studies for rare top quark decays. - No significant excess of events over the expected yields from the SM processes - Set limits on the (branching) ratios : | Interaction | Model | Result | | |--------------------|--------------------|--|---| | Charged
Current | B(t→Wb)
B(t→Wq) | > 0.955 | Phys. Lett. B 736 (2014) 33 (CMS) | | | t→gc(u) | < 1.6x10 ⁻⁴ (3.1x10 ⁻⁵) | ATLAS CONF-2013-063 | | FONO | t→γc(u) | <0.182% (0.0161%) | CMS PAS-TOP-14-003 | | FCNC | t→Zq | < 0.05% | Phys. Rev. Lett. 112 (2014)
171802 (CMS) | | | t→Hc(q) | < 0.56% (0.79%) | CMS PAS-HIG-13-034
(ATLAS JHEP06(2014)008) | | BNV | t→bue
(orbcμ) | < 0.15% , 5,5,60 | Physics Letters B 731 (2014) 173
(CMS) | Thank you for your attention!