Xth Rencontre du Vietnam Physics at LHC and Beyond: Theory Summary and Grand Vision
 Benjamin Grinstein

Xth Rencontre du Vietnam Physics at LHC and Beyond: Theory Summary
 Benjamin Grinstein

Physics at LHC and Beyond

The LHC is primarily a discovery machine
It can be and has been used for other purposes

- top factory
- heavy ions
- $\mathrm{B}_{\mathrm{d}} / \mathrm{B}_{\mathrm{s}}$ factory
- pp total elastic/inelastic cross section
- precision "standard" physics

Physics at LHC and Beyond

The LHC is primarily a discovery machine
It can be and has been used for other purposes

- top factory
- heavy ions
- $\mathrm{B}_{\mathrm{d}} / \mathrm{B}_{\mathrm{s}}$ factory
- pp total elastic/inelastic cross section
- precision "standard" physics

The LHC did make a discovery: a $\mathrm{J}^{\mathrm{PC}=} 0^{++}$resonance at $\sim 125 \mathrm{GeV}$

Physics at LHC and Beyond

The LHC is primarily a discovery machine
It can be and has been used for other purposes

- top factory
- heavy ions
- $\mathrm{B}_{\mathrm{d}} / \mathrm{B}_{\mathrm{s}}$ factory
- pp total elastic/inelastic cross section
- precision "standard" physics

The LHC did make a discovery: a $\mathrm{J}^{\mathrm{PC}=} 0^{++}$resonance at $\sim 125 \mathrm{GeV}$

We would like a roadmap to further discoveries
How we look is informed by

- Computation of signal \& background
- New Observables
- New Techniques
- New Tests
- ? (what am I missing)

Where to look is informed by

- Precision physics
- EWPD
- Flavor
- QED, ...
- ? (what am I missing?)
- Theoretical Prejudice
- EFT
- Models
- Anomaly driven
- Principled

Example: $\quad \operatorname{Br}(H \rightarrow \bar{f} f \bar{f} f) \neq \operatorname{Br}(H \rightarrow V V) \times \operatorname{Br}^{2}(V \rightarrow \bar{f} f)$
This holds exactly in the narrow width approximation. At best

$$
\text { correction } \sim 2 \frac{\Gamma_{V}}{M_{V}} \approx 6 \% \text { for } V=Z, W
$$

Much worse: "Dalitz Decay"

$$
\mathbf{H} \rightarrow \overline{\mathbf{f}} \mathrm{fNLO} \quad \text { or } \quad \mathbf{H} \rightarrow \overline{\mathbf{f}} \boldsymbol{f} \boldsymbol{\gamma} \mathrm{NLO}
$$

Tremendous progress

NLO "Revolution"

Automated NLO:

- Generic: QCD corrections to $2 \rightarrow 4$-anything
- On-Shell: Specific processes at $2 \rightarrow 5 / 6$ specific (eg, W?Z + jets)

[Giampero Passarino, Simon Badger]
Peak under the hood: amplitude methods

Much progress in algorithmic computation of coefficients by:

$$
p p \rightarrow \gamma \gamma
$$

$$
p p \rightarrow W H
$$

$$
g g \rightarrow g g
$$

$$
p p \rightarrow t \bar{t}
$$

$$
g g \rightarrow H g
$$

$$
p p \rightarrow Z \gamma
$$

$$
p p \rightarrow t j
$$

$$
p p \rightarrow Z Z
$$

$$
\begin{aligned}
& p \rightarrow-H \\
& p p \rightarrow H
\end{aligned}
$$

$$
p p \rightarrow Z H
$$

[Catani, Cieri, de Florian, Ferrera, Grazzini (201 I)]
[Ferrera, Grazzini,Tramontano (201I)]
[Currie, Gehrmann de Ridder, Gehrmann, Glover, Pires (20|3)]
[Czakon, Fiedler, Mitov (20|3)]
[Boughezal, Caola, Melnikov, Petriello, Schulze (2013)]
[Grazzini, Kallweit, Rathlev, Torre (20|3)]
[Bruchseifer, Caola, Melnikov (20|4)]
[Cascioli, Gehrmann, Grazzini, Kallweit, von Manteuffel,
Pozzorini, Rathlev, Tancredi, Weihs (2014)]
[de Florian, Mazzitelli (20|4)]
[Ferrera, Grazzini, Tramontano (20|4)]

Ex: dijets

NNLO $2 \rightarrow 3$ needs new tools

Future

unknown loop integrals
highly non-trivial kinematics reduction algorithms
flat scale dependence

A daunting task!

LO		1 diagram	1 integral
NLO		10 diagrams	1 integral
NNLO		381 diagrams	18 integrals
N3LO		26565 diagrams	~ 500 integrals

But under way: NNNLO Higgs soft-virtual

Some new strategies needed, eg, "threshold expansion"

$$
\begin{aligned}
& \hat{\sigma}(z)=\sigma_{-1}+\sigma_{0}+(1-z) \sigma_{1}+\mathcal{O}(1-z)^{2} \\
& \quad \text { where } \quad z=\frac{m^{2^{2}}}{s}
\end{aligned}
$$

Source of ambiguity:

$$
\begin{gathered}
\int d x_{1} d x_{2}\left[f_{i}\left(x_{1}\right) f_{j}\left(x_{2}\right) z g(z)\right]\left[\frac{\hat{\sigma}_{i j}(s, z)}{z g(z)}\right]_{\text {threshold }} \\
\lim _{z \rightarrow 1} g(z)=1
\end{gathered}
$$

NLO is the new standard for SM simulations

Precise SM backgrounds
shower matching
MC@NLO,POWHEG

Frixione, Webber, Nason
multi-jet merging
MEPS@NLO, FxFx, UNLOPS, MiNLO, Geneva

Hoeche, Krauss, Schoenherr, Siegert, Frixone, Frederix, Lonnblad, Prestel, Platzer, Hamilton, Nason, Oleari, Zanderighi, Alioli, Baur, Berggren,

Hornig, Tackmann, Vermilion, Walsh, Zuberi

$$
\begin{aligned}
& \text { now being implemented into Mcs } \\
& \text { SHERPA, HERWIG++/MATCHBOX, POWHEG-BOX, } \\
& \text { GENEVA, MADGRAPH5_aMC@NLO,... }
\end{aligned}
$$

$$
p p \rightarrow H \rightarrow \gamma \gamma
$$

mild dependence on smooth isolation cone parameters

How we look is informed by ... New Observables

There are many examples. In QCD many types of transverse masses are now common.
Time allows for two:

[Sanjay Swain, George Hou]
CLEAN observable: zero
q_{0}^{2} such that $A_{\mathrm{FB}}\left(q_{0}^{2}\right)=0$
G. Burdman, PRD 57, 4254 (1998).
non-resonance interference:
BG \& Pirjol, PRD 73, 094027 (2006)

New approach for the precision measurement of the W and t-quark masses

The time tried standard:
$M_{T}^{2}=2 P_{T}^{l} P_{T}^{\nu}\left(1-\cos \left(\phi^{l}-\phi^{\nu}\right)\right.$

Include info on longitudinal (along beam) momentum

$$
\tilde{M}_{W}^{2}=\left(P_{\mu}^{\ell}+\tilde{P}_{\mu}^{\nu}\right)^{2}=2 P_{T}^{\ell} P_{T}^{\nu}\left(\cosh \left(\eta_{\ell}-\tilde{\eta}_{\nu}\right)-\cos \left(\phi_{\ell}-\phi_{\nu}\right)\right)
$$

Neutrino rapidity reconstructed by collective stochastic optimization process through a genetic algorithm

Preliminary test for 10 independent sets of 200 events

After 100 evolutions

After 500 evolutions

After 2000 evolutions

How we look is informed by ... New Techniques

$h c \bar{c}$ coupling measurement by interference
[Stoyan Stoynev]
Various models exist where this coupling alone could be enhanced relative SM, eg, 2HDM and General Minimal Flavor Violation Scenario with one Higgs Doublet.

"There needs to be a significant improvement in c-tagging for direct use for Higgs. Many people consider this hard to do. Work is on-going in both ATLAS and CMS."

$$
\Gamma(H \rightarrow V \gamma)=\frac{1}{8 \pi} \frac{m_{H}^{2}-m_{V}^{2}}{m_{H}^{2}}\left|\mathcal{A}_{\text {direct }}+\mathcal{A}_{\text {indirect }}\right|^{2}
$$

Theory well understood. Errors under good control:

$$
\Gamma_{\mathrm{SM}}(H \rightarrow J / \psi+\gamma)=1.17_{-0.05}^{+0.05} \times 10^{-8} \mathrm{GeV}
$$

Experimental sensitivity ($\mathrm{H} \rightarrow \mathrm{J} / \Psi+\gamma$)

We estimate that if both lepton and muon channels are reconstructed with 50% acceptance x efficiency we'll see ~ 50 signal events from combined ATLAS and CMS data from $3000 \mathrm{fb}^{-1}$ LHC. This is $\sim 14 \%$ statistical error on the Br and $\sim 40 \%$ on k_{c}.

Defining Sensitivity as $\mathrm{S} / \mathrm{sqrt}(\mathrm{B}+\mathrm{S})$ and using the $\mathrm{k}=\mathrm{B} / \mathrm{S}$ we can try to judge about the experimental perspectives. The observation in the $\mathrm{H} \rightarrow \gamma \gamma$ channel was announced at Sensitivity ~ 40\%

- The main uncertainty will be statistical (from background)
- We can assume $\mathrm{k}<40$ as a current working estimate
- Categorization of events and kinematic handles against background typically (in past) increase sensitivity by 10-20\%
- On the other hand it may be more difficult to get high efficiency for the electron channel (both trigger and off-line)

We are at the limit to observe the (SM) decay with full LHC data.
In any case strong limits on the Hccbar Yukawa coupling can be set.

Top Mass: New techniques

[Hiroshi Yokoya]
Good experimental determination however ... of something not understood theoretically
(ie, how to relate to MS, or any SD, mass)

Need

- Avoid to use jet momenta to determine the well-defined top-quark mass.
- Good for cross check by various methods which have different systematic errors.
- Kinematical Endpoint ($\mathrm{M}_{\mathrm{T} 2}$)

$$
m_{t}=173.9 \pm 0.9(\text { stat })_{-1.8}^{+1.2}(\text { syst }) \mathrm{GeV}
$$

 CMS, EPJC73,2494

- B-hadron lifetime (L_{xy}) Hill,Incandela, Lamb (05)

$$
m_{t}=173.5 \pm 1.5 \text { (stat) } \pm 1.3 \text { (syst) } \pm 2.6\left(p_{T}^{\text {top }}\right) \mathrm{GeV}
$$

CMS-PAS-TOP-12-030

- J/ Ψ method Kharchilava (00)
- tt + 1-jet invariant-mass distribution Alioli et. al (13),
- Boost invariant energy peak Agashe,Franceschini,Kim (13)
- J/ ψ methods : $\quad M_{\mu \mu \ell}, \mathrm{J} / \psi$ frag fnc from b-quark

Kharchilava (00)

- Mellin moments of $\mathrm{E}_{\mathrm{T}}, \mathrm{p}_{\mathrm{T} \mid}$,":

Frixione,Mitov (14), Biswas,Melnikov,Shulze (10),

- Weight function methods :

$$
I(m)=\int d E_{\ell} \mathcal{D}\left(E_{\ell}\right) W\left(E_{\ell}, m\right) \quad \mathrm{D}\left(\mathrm{E}_{\mathrm{l}}\right) \text { : energy distribution of lepton. }
$$

The point: one can construct weight function such that $I\left(m=m_{\text {true }}\right)=0$

- Free from production mechanism (top has to be unpolarized)
- Free from the PDF uncertainty, initial-state radiation
- Free from hadronization modeling (because it uses only lepton)

Simulation analysis in LO
Uncertainties [GeV] ($100 \mathrm{fb}^{-1}, \mathrm{e}+\mu$)

Signal stat. error	0.4
μ_{F} scale	$+1.5 /-1.6$
Jet energy scale	$+0.0 /-0.1$
BG stat. error	0.4

How we look is informed by ... New Tests

$W_{L}^{+} W_{L}^{-} \rightarrow W_{L}^{+} W_{L}^{-} \quad$ Perturbative Unitarity, a la Lee-Quigg-Thacker, but allowing for many "higgses"

Precision test: If $\left|a_{1}\right|>1$ a doubly charged higgs must exist if $\left|a_{1}\right|<1$ a second neutral higgs must exist

$$
W_{L}^{+} W_{L}^{-} \rightarrow t \bar{t} \quad \text { similarly gives } \quad \sum_{i} a_{i} c_{t i}=1
$$

Suppose there are two neutral higgs:

$$
a_{h^{\prime}} c_{t}^{\prime}=1-a_{h} c_{t} .
$$

Is the 125 GeV -scalar the higgs? (the minimal, 1 HDM , of the SM)

$$
V(H)=\frac{1}{2} M_{H}^{2} H^{2}+\lambda_{H H H} v H^{3}+\frac{1}{4} \lambda_{H H H H} H^{4}
$$

$\mathrm{SM}: \quad \lambda_{H H H}^{S M}=\lambda_{H H H H}^{S M}=\left(M_{H}^{2} / 2 v^{2}\right) \approx 0.13$

$$
\text { (we'll use } \lambda=\lambda_{H H H} / \lambda_{H H H}^{S M} \quad \text { here) }
$$

Traditional method:
fitting a distribution
A few events in a few bins: poor statistics
idea:
from
sensitive
observables
$\mathrm{pp} \rightarrow \mathrm{hh}$, @ 14 TeV LHC

$$
\begin{aligned}
\sigma_{H H}^{b \bar{b} x x} & \equiv \sigma_{H H} \times 2 \times \mathrm{BR}(b \bar{b}) \times \operatorname{BR}(x x) \\
\sigma_{H}^{b \bar{b}} & \equiv \sigma_{H} \times \operatorname{BR}(b \bar{b})
\end{aligned}
$$

$$
C_{H H}^{\exp .}=\left.\frac{\sigma_{H H}^{b \bar{b} x}}{\sigma_{H}^{b \bar{b}} \times 2 \times B R(x x)}\right|_{\exp .}
$$

- Given an assumption for the "true" value of the self-coupling ($\lambda_{\text {true }}$) what is the constraint we can impose on λ ?

$$
\begin{aligned}
& 1 \sigma: \lambda \in(0.57-1.64) \\
& 2 \sigma: \lambda \in(0.22-4.70)
\end{aligned}
$$

$1 \sigma: \lambda \in(0.54-1.78)$
$2 \sigma: \lambda \in(0.17-4.75)$

This method:

Process	$600 \mathrm{fb}^{-1}(2 \sigma)$	$600 \mathrm{fb}^{-1}(1 \sigma)$	$3000 \mathrm{fb}^{-1} 2 \sigma$	$3000 \mathrm{fb}^{-1} 1 \sigma$
$b b \tau^{+} \tau^{-}$	$(0.22,4.70)$	$(0.57,1.64)$	$(0.42,2.13)$	$(0.69,1.40)$
$b b W^{+} W^{-}$	$(0.04,4.88)$	$(0.46,1.95)$	$(0.36,4.56)$	$(0.65,1.46)$
$b b \gamma \gamma$	$(-0.56,5.48)$	$(0.09,4.83)$	$(0.08,4.84)$	$(0.48,1.87)$

"Traditional"
LHC: (0.26-I.94) $\sqrt{s}=14 \mathrm{TeV}, 600 \mathrm{fb}^{-1}(1 \sigma)$
method:

Digresion.
Fun remark:
(and an instance of bad choice of example as illustration of a valuable new idea:
BG\&Trott
PRD 76, 073002 (2007))

Tougher for larger coupling!
On the other hand
At large enough coupling
higgs mediated Yukawa potential
binds $h h$ into "higgsinium"
(hissonium?)
This is little understood:
1 . is binding time shorter than lifetime
2. search phenomenology

How we look is informed by ... ?? what am I missing

is mil the iat Ler amextan

How we look is informed by ... ?? what am I missing

The minimal (1HDM) Electroweak Standard Model is in FINE SHAPE!

Even at high precision, which requires theory to NNLO!!
Fit is overconstrained. With 125 GeV resonance as Higgs, all parameters known precisely.

7 (+10) free fit parameters:

- $M_{H}, M_{Z}, \alpha_{S}\left(M_{z}^{2}\right), \Delta \alpha_{\text {had }}{ }^{(5)}\left(M_{z}{ }^{2}\right)$,
m_{t}, m_{c}, m_{b}
- 10 theory nuisance parameters
- e.g. $\delta \mathrm{M}_{\mathrm{w}}(4 \mathrm{MeV}), \delta \sin ^{2} \theta_{\text {eff }}^{1}\left(4.7 \times 10^{-5}\right)$

Fit Inputs

$M_{H}[\mathrm{GeV}]^{(\circ)}$	125.14 ± 0.24	LHC
$M_{W}[\mathrm{GeV}]$	80.385 ± 0.015	Tevatron
$\Gamma_{W}[\mathrm{GeV}]$	2.085 ± 0.042	
$M_{Z}[\mathrm{GeV}]$	91.1875 ± 0.0021	
$\Gamma_{Z}[\mathrm{GeV}]$	2.4952 ± 0.0023	
$\sigma_{\mathrm{had}}^{0}[\mathrm{nb}]$	41.540 ± 0.037	LEP
R_{ℓ}^{0}	20.767 ± 0.025	
$A_{\mathrm{FB}}^{0, \ell}$	0.0171 ± 0.0010	
$A_{\ell}(\star)$	0.1499 ± 0.0018	SLC
$\sin ^{2} \theta_{\mathrm{eff}}^{\ell}\left(Q_{\mathrm{FB}}\right)$	0.2324 ± 0.0012	
A_{c}	0.670 ± 0.027	
A_{b}	0.923 ± 0.020	SLC
$A_{\mathrm{FB}}^{0, c}$	0.0707 ± 0.0035	
$A_{\mathrm{FB}}^{0, b}$	0.0992 ± 0.0016	LEP
R_{c}^{0}	0.1721 ± 0.0030	
R_{b}^{0}	0.21629 ± 0.00066	
$\bar{m}_{c}[\mathrm{GeV}]$	$1.27_{-0.11}^{+0.07}$	
$\bar{m}_{b}[\mathrm{GeV}]$	$4.20_{-0.07}^{+0.17}$	
$m_{t}[\mathrm{GeV}]$	173.34 ± 0.76	Tevatron
$\Delta \alpha_{\mathrm{had}}^{(5)}\left(M_{Z}^{2}\right)^{(\dagger \triangle)}$	2757 ± 10	+ LHC

Global EW fit
Indirect detern
ination

Black: direct measurement (data)
Orange: full fit
Light-blue: fit excluding input from the row

- No individual value exceeds 3σ
- Largest deviations in b-sector: $\mathrm{A}^{0, \mathrm{~b}} \mathrm{FB}$ with 2.5σ
- \rightarrow largest contribution to χ^{2}
- Small pulls for $\mathrm{M}_{\mathrm{H}}, \mathrm{M}_{\mathrm{Z}}, \Delta \alpha_{\text {had }}{ }^{(5)}\left(\mathrm{M}_{\mathrm{Z}}{ }^{2}\right)$, $\bar{m}_{\mathrm{c}}, \overline{\mathrm{m}}_{\mathrm{b}}$ indicate that input accuracies exceed fit requirements
- Goodness of fit - p-value:
- $\chi^{2}{ }_{\text {min }}=17.8 \rightarrow \operatorname{Prob}\left(\chi_{\text {min }}^{2}, 14\right)=21 \%$
- Pseudo experiments: 21 ± 2 (theo) $\%$
- Only small changes from switching between 1 and 2-loop calc. for partial Z widths and small M_{W} correction.
- $\chi^{2}{ }_{\text {min }}(1$-loop Z width $)=18.0$
- χ^{2} min $\left(\right.$ no M_{w} correction $)=17.4$
- $\chi^{2}{ }_{\text {min }}($ no extra theory errors $)=18.2$

LHC/Tevatron should test for asymmetry (charge/FB) in $Z \rightarrow b b$
The Tevatron anomaly in A_{FB} in $\mathrm{Z} \rightarrow \mathrm{tt}$ is not completely resolved.

[Martin Holthausen]
fate of the vniverse

FATE OF THE UNIVERSE

[Martin Holthausen]

FAte of the vniverse

[Martin Holthausen]

Fate of the Universe

Big assumption:

 NO NEW PHYSICS$\mu \frac{d}{d \mu} \lambda \approx \frac{1}{16 \pi^{2}}\left(24 \lambda^{2}-6 y_{t}^{4}\right)$

NNLO:
2-loop matching 3-loop running

Caveat:
top-mass uncertainty

```
no reason to worry about vacuum decay from a practical point of view
interesting question: is the SM stable, metastable or what?
```

Many have suggested classical scale invariance at Planck Scale.

Where to look is informed by ... precision physics: Flavor

Agh!! A killer!

Flavor suggests, GENERICALLY, no $\boldsymbol{q} \mathbf{D}$ angufiere we are lonfing
nor anywhere we are likely to look in the foreseeable future

Generic EFT bounds

EFT bounds with flavor alignment (Minimal Flavor Violation)

Minimally flavour-violating dimension-six operator	Main observables	$\Lambda[\mathrm{TeV}]$		
		-	+	
$\mathcal{O}_{0}=\frac{1}{2}\left(\bar{Q}_{L} \lambda_{\mathrm{FC}} \gamma_{\mu} Q_{L}\right)^{2}$	$\epsilon_{K}, \Delta m_{B_{d}}$	6.4	5.0	
$\mathcal{O}_{\mathrm{F} 1}=H^{\dagger}\left(\bar{D}_{R} \lambda_{d} \lambda_{\mathrm{FC}} \sigma_{\mu \nu} Q_{L}\right) F_{\mu \nu}$	$B \rightarrow X_{s} \gamma$	9.3	12.4	
$\mathcal{O}_{\mathrm{G} 1}=H^{\dagger}\left(\bar{D}_{R} \lambda_{d} \lambda_{\mathrm{FC}} \sigma_{\mu \nu} T^{a} Q_{L}\right) G_{\mu \nu}^{a}$	$B \rightarrow X_{s} \gamma$	2.6	3.5	
$\mathcal{O}_{\ell 1}=\left(\bar{Q}_{L} \lambda_{\mathrm{FC}} \gamma_{\mu} Q_{L}\right)\left(\bar{L}_{L} \gamma_{\mu} L_{L}\right)$	$B \rightarrow(X) \ell \bar{\ell}, \quad K \rightarrow \pi \nu \bar{\nu},(\pi) \ell \bar{\ell}$	3.1	2.7	*
$\mathcal{O}_{\ell 2}=\left(\bar{Q}_{L} \lambda_{\mathrm{FC}} \gamma_{\mu} \tau^{a} Q_{L}\right)\left(\bar{L}_{L} \gamma_{\mu} \tau^{a} L_{L}\right)$	$B \rightarrow(X) \ell \bar{\ell}, \quad K \rightarrow \pi \nu \bar{\nu},(\pi) \ell \bar{\ell}$	3.4	3.0	*
$\mathcal{O}_{\mathrm{H} 1}=\left(\bar{Q}_{L} \lambda_{\mathrm{FC}} \gamma_{\mu} Q_{L}\right)\left(H^{\dagger} i D_{\mu} H\right)$	$B \rightarrow(X) \ell \bar{\ell}, \quad K \rightarrow \pi \nu \bar{\nu},(\pi) \ell \bar{\ell}$	1.6	1.6	*
$\underline{\mathcal{O}_{q 5}=\left(\bar{Q}_{L} \lambda_{\mathrm{FC}} \gamma_{\mu} Q_{L}\right)\left(\bar{D}_{R} \gamma_{\mu} D_{R}\right)}$	$B \rightarrow K \pi, \quad \epsilon^{\prime} / \epsilon, \ldots$			

From G. D'Ambrosio et al. NPB 645 (2002) 155-187, outdated (sorry no time to find update)

There is hope: with MFV and weak coupling, and assuming NP only through loops $\frac{1}{\Lambda_{\mathrm{UV}}^{2}} \sim \frac{g^{2}}{16 \pi^{2} M_{\mathrm{NP}}^{2}}$

$$
M_{\mathrm{NP}} \sim \frac{g \Lambda_{\mathrm{UV}}}{4 \pi}=\left(\frac{g}{0.3}\right)\left(\frac{\Lambda_{\mathrm{UV}}}{10 \mathrm{TeV}}\right)=240 \mathrm{GeV}
$$

This is much like in any SUSY-model with flavor-blind SUSY breaking (eg, gauge mediation).
(This is why flavor-blind SUSY breaking is a must).
And even then:

Note: if $B_{d} \rightarrow \mu \mu$ is high, SM4 and MSSM-LL favored
[George Hou] (MSSM-LL is Hall and Murayama's all left handed currents in Phys. Rev. Lett. 75 (1995) 3985)

This suggests (at least SM4) to test Unitarity Triangle more precisely.
Already impressive:

Largest uncertainties are coming from left side $\left(\left|\mathrm{V}_{\mathrm{ub}}\right| /\left|\mathrm{V}_{\mathrm{cb}}\right|\right)$ and the angle γ

- Angle γ : Best in $B^{-} \rightarrow D^{0}\left(\bar{D}^{0}\right) K^{-}$followed by $D^{0}\left(\bar{D}^{0}\right) \rightarrow K^{+} \pi^{-}, K^{+} \pi^{-} \pi^{0}, \ldots$ Statistical reach for Belle-II is 2 degrees, for LHCb 1 degree.
- V_{ub} is theory limited, at the momen'

Exclusive measurement: $\mathrm{B}^{0} \rightarrow \pi^{-} \mu^{+} v$ Inclusive measurement : $\mathrm{B}^{0} / \mathrm{B}^{+} \rightarrow \mathrm{X}_{\mathrm{u}} \mu^{+} v$

Need alternate methods for V_{ub} :

```
\Lambda b P ( }\mp@subsup{\mu}{}{-
        In progress with LHCb - rely on new }\mp@subsup{\Lambda}{b}{}->p\mathrm{ form factors from
        lattice
B+}->\mp@subsup{\tau}{}{+}
        At the moment statistics limited, Belle-II will much improve
Inclusive measurement
        Large gain in hadron tagged sample with Belle-II
Bc+}->\mp@subsup{D}{}{0}\mp@subsup{\mu}{}{+}
    Possible at LHCb or LHCb upgrade. Interesting?
```

Several other are discussed (including double ratios)

If a 1% determination in both is reached:

Where to look is informed by ... QED, ...
No talks here. But should not forget, for example, $g-2$

$$
a_{\mu} \sim\left(\frac{m_{\mu}}{\Lambda}\right)^{2} \Rightarrow \Lambda \sim 10 \mathrm{TeV} \quad \text { just as in Flavor Physics! }
$$

So we already know, for weakly coupled, radiative (loop) process $M_{\mathrm{NP}} \gtrsim 250 \mathrm{GeV}$

Speaking of QED, can you shine light through a wall?

ANS: Yes! Caveat: you have to have a coupling to axions. $P_{\gamma \rightarrow a \rightarrow \gamma} \sim N_{\text {pass }}\left(\frac{B L}{M}\right)^{4}$

And what if axions are the DM?

An extremely sensitive probe!!!

Of course, LHC experiments also place bounds on DM pair production

$$
\bar{\chi} \gamma^{\mu} \gamma^{5} \chi \bar{q} \gamma_{\mu} \gamma^{5} q \mid
$$

$$
\bar{\chi} \sigma^{\mu \nu} \chi \bar{q} \sigma_{\mu \nu} q
$$

(taken from Sarah Eno, Moriond 2014)

We would like a roadmap to further discoveries
How we look is informed by

- Computation of signal \& background
- New Observables
- New Techniques
- New Tests
- ? (what am I missing)

Where to look is informed by

- Precision physics
- EWPD
- Flavor
- QED, ...
- ? (what am I missing?)
- Theoretical Prejudice
- EFT
- Models
- Anomaly driven
- Principled

Theoretical Prejudice?

EFT:

- How can this be wrong?
- It can't be wrong if it contains all particles $m<\Lambda$
- It can place very strong bounds on C / Λ, with $C=$ dimensionless coefficient
- BUT, We can keep Λ TeVish by making C small, if necessary
- We can then find "principled reasons" for the smallness of C
- Example: Minimal Flavor Violation, brings Λ down from $10,000 \mathrm{TeV}$ to 10 TeV
- How can this be useful?
- Suggests NP has to satisfy the "principled reasons" that keep C small
- BUT, only "suggests."
- Examples exist of non-MFV TeVish physics that is not inconsistent with Flavor
- Gives correlated deviations from SM
- Many processes from same small set of operators (and their coefficients)
- Violations to these determine scale of NP (requires establishing deviation!), as in

Caveats:

- Scale of NP must be not too large, not too small (like Goldie Locks's soup, just right)
- Coefficients of X, Y/Z may be anomalously small/large

Digression

Many times in this conference: what precision?
Often answered 1% is $\Lambda_{\mathrm{NP}} \sim 1 \mathrm{TeV}$ (will call Λ_{NP} just Λ below)
This is back-of-the-envelope EFT.
And wrong!

To SM operator with coupling g add operator with additional H^{2} / Λ^{2} and coefficient C :

$$
\delta g \sim C \frac{v^{2}}{\Lambda^{2}} \quad \Rightarrow \quad \Lambda \sim \sqrt{\frac{C}{\delta g}} v=\sqrt{\frac{C}{g}} \frac{v}{\sqrt{\delta g / g}}
$$

So for 1% errors

$$
\Lambda \sim 2.5 \mathrm{TeV} \sqrt{\frac{C}{g}}
$$

SAME DAMNED BOUND AS FROM aligned-FLAVOR AND QED!!!!

But what if g is small, as in $h b b$ coupling? $\Lambda_{h b b} \sim 25 \mathrm{TeV} \sqrt{C_{h b b}} \quad \Lambda_{h \mu \mu} \sim 250 \mathrm{TeV} \sqrt{C_{h \mu \mu}}$ (Similar to flavor)

Theoretical Prejudice?

Anomaly Driven Models:

- How can this be wrong?
- Anomaly disappears
- High-Y
- $\zeta(8.3)$
- mid-80s monojets
- Simpson's 17 keV neutrino
- ...
- How can this be useful?
- Gives idea of plausibility
- Challenges theorists to break with orthodoxy
- Theoretical Prejudice
- EFT
- Models
- Anomaly driven
- Principled
- Pushes principled models into unchartered regions of parameter space
[Andrey Tayduganov]

Theoretical Prejudice?

Principled Models:

- How can this be wrong?
- At most one is correct!
(I resist temptation to show much overused compilations of bounds on models ATLAS/CMS)
- How can this be useful?

- Keeps us entertained
- Keeps us busy
- Keeps us employed
- ...
- New particles: Suggest signatures (many HEX talks this conference)
- Low energies: Suggest further correlations
- Suggest observables (eg, black hole searches)

Principles

Big Questions

The two faces of Principles

Principles are cherished fundamental statements about reality
but only inasmuch as they are correct in describing reality!

P and then PC symmetries were principles that are no more

Experiment constantly puts us at risk of loosing principles.

Are we comfortable giving up...
\diamond Locality
\therefore Causality (there are serious examples
\bullet Principle of Relativity
\diamond Principle of Equivalence

- ...
and retain them only as emerging principles at "long" distances?

The answer is YES, but only if nature twists our arm.

Are we ready to introduce neW principles?
\bullet Naturalness
\bullet Typicality
[Yasunori Nomura]

- Anthropic (mandatory?)
\checkmark Complementarity
\bullet Doubly special relativity
${ }^{\circ}$...

Again, YES, but only if nature twists our arm.

- Eternal inflation

Inflation is (generically) future eternal \rightarrow populate all the vacua

... Anthropic considerations mandatory (not an option)
\Longrightarrow Eternally inflating multiverse

But in a somewhat bizarre turn of events, we have invented some principles (e.g., naturalness) to guide us in theory/experiment
.... before we have any evidence to support them!

Should we be surprised if, in the end, the higgs mass seems fine tuned to high accuracy?

The aloofness of Big Questions

Only sure bet there is New Physics (by definition!!)

Dark Matter
Accelerated Expansion of the Universe
Matter-Antimatter asymmetry in Universe

Big questions don't seem to care at what energy we build our accelerators.

Need to look everywhere
This is not easy

So, for example... what is the scale of baryogenesis?
[Kimmo Kainulainen]

In MSSM, "looks awkward at best. Probably not working."

(RGE-improved potential metastable against color breaking; from LHC, tension with light stop-enhanced gg-
 fusion Higgs production; phase transition may not be 1st order, or too weak; CPV insufficient form EDM constraints)

$$
\Omega_{\mathrm{b}} h^{2}=0.02205 \pm 0.00028
$$

P.Ade et al, ArXiv:1303.5076
(Planck 2013 Cosmological Parameters)

Electron EDM

But EW baryogenesis does not have to be the explanation for baryogenesis.

Some other process (leptogenesis?) at some other unknown scale could be at work.
[Norraphat Srimanobhas]
Likewise with DM.

WIMP "Miracle"

may very well be just numerology

Very Light or Heavy DM is a possibility.

[J. Jaeckel,Yasunori Nomura]
Axion (DM) with Planck/GUT scale f_{a}
... attractive possibility suggested by string theory eq. Suriek, witen, heperthooss206 (outside the standard "axion window")

Axion DM

[Jaeckel]

The Unknown

As we know,
There are known knowns.
There are things we know we know.
We also know
There are known unknowns.
That is to say
We know there are some things
We do not know.
But there are also unknown unknowns,
The ones we don't know
We don't know.

Donald Rumsfeld
-Feb. 12, 2002, Department of Defense news briefing

A Confession

Once in a while, I'm standing here, doing something.
And I think, "What in the world am I doing here?" It's a big surprise.

Donald Rumsfeld
-May 16, 2001, interview with the New York Times

No model is correct, not even close.

Run II discovers totally unexpected phenomena.

We stop Sudoku. We loose sleep.

No model is correct, not even close.

Run II discovers totally unexpected phenomena.

We stop Sudoku. We loose sleep.

So:

Go Home!
Continue the Good Work

Dream:

No model is correct, not even close.
Run II discovers totally unexpected phenomena.
We stop Sudoku. We loose sleep.

So:
Go Home! Continue the Good Work

See you soon in Quy Nhon.
Thank you Organizers.
Thank you Lydia and Amie.
And thank you Prof. and Mrs. Jean Tran Thanh Van

