

Run 1 legacy performance: electrons/photons.

The challenge:

<u>Daniele Benedetti (Purdue University)</u> on behalf of the CMS collaboration

The CMS detector: the electromagnetic calorimeter and the tracker

Homogeneous, hermetic, high granularity PbWO₄crystal calorimeter

Density of 8.3 g/cm³, radiation length 0.89 cm, Molière radius 2.2 cm.

Barrel: 61200 crystals in 36 super-modules, Avalanche Photo-Diode (APD) readout

Endcaps: 14648 crystals in 4-Dees, Vacuum Photo-Triode (VPT) readout + Preshower.

ECAL performance from test beam:

$$\frac{\sigma(E)}{E} = \frac{2.8\%}{\sqrt{E}} \oplus \frac{0.128}{E} \oplus 0.3\%$$

- constant term to be kept ≪ 1%
- stochastic term also affected by the material upstream

Pixels and Silicon Strip detectors

Pixels: $(100x150\mu m^2) \sim 1 m^2$ for 66M of channels

Si Strips: $(80-180\mu m^2) \sim 200m^2$ for $\sim 9.6M$ of

channels

Electron track reconstruction efficiency > 98% in the barrel for p_T > 10 GeV.

Electron track resolution \sim 4% in the barrel for $p_T \sim 10$ GeV.

ECAL calibration

75848 crystals to calibrate in situ during operations.

Light yield variations:

crystal transparency → radiation dose-rate dependence

Electronics stability:

temperature and voltage dependence

Validation of the correction with E/p

Inter-calibration

- φ-symmetry of energy flow in crystals at given η
- 2. $\pi^0/\eta \rightarrow \gamma \gamma$ invariant mass
- 3. Z→e⁺e₋ invariant mass and E/p with electrons from W→e_V

Barrel: <1% (~0.4% for $|\eta|$ <1)

Endcaps: ~2% (almost everywhere)

Electron/photon reconstruction and material budget

Electron/Photon reconstruction and energy correction

Electron/Photon reconstruction and energy correction

Electron/Photon reconstruction and energy correction

Dedicated electron track reconstruction and fitting (Gaussian Sum Filter)

From ECAL only parametric correction to multivariate technique for energy correction and for ECAL-track combination

Performance: energy resolution

With electron from Z: DATA and simulation

Main electron/photon identification variables

- Track-ECAL-HCAL-Preshower matching observables
 - ✓ Energy matching (eg. E/P, Hcal/Ecal ...)
 - Geometrical matching in η and φ directions and at vertex or calorimeter surface

Pure ECAL observables

- ✓ Cluster shapes:
 - \checkmark in η-direction, more effective for signal-background separation.
 - in φ-direction, helpful to categorize correctly bremming and not-bremming electrons.

Pure tracking observables

- p_{in}-p_{out}/p_{in} (Electron-Track) = bremsstrahlung emission seen by the tracker
- ➤ Combining several variables is the typical optimization to be performed with a multivariate analysis (MVAs).
- ➤ With MVAs the background that model the fakes needs to be carefully chosen, taken from data control samples.

Training and MVAs output

The particle-based isolation

- ➤ Particle-flow resolve the correlations among track and cluster energy measurements
- Charged hadrons can be fully matched to the primary vertex.

Correction of isolation for PU

 $\begin{array}{l} \rho = \text{energy density estimate} \\ \text{in the event} \\ \alpha = \text{effective correction needed} \\ \text{to neutral particles in the isolation cone} \end{array}$

Data and Simulation comparison & efficiency

Photons: good agreement for both signal and background for the multivariate estimator.

Electron data/simulation efficiency are compared down to 7 GeV: good agreement is observed

Conclusions

From $H \rightarrow \gamma \gamma$:

 $m_H = 124.70 \pm 0.31(stat) \pm 0.15(syst) GeV$

Excellent results on mass resolution thanks to a deep understanding of the ECAL performance with careful scrutiny of all the details and to the use of energy correction with multivariate techniques.

From $H \rightarrow ZZ \rightarrow 4I$:

~30% improvements

on the H->ZZ->4e channel object selection from first publication to analysis for discovery, thanks to a multivariate identification and particle-based isolation

Questions?

daniele.benedetti@cern.ch

Lessons learned: resolution

- Long journey to improve the energy resolution:
 - √ improved calibration of the ECAL detector
 - ✓ improved description of the ECAL simulation with a run-dependent Monte Carlo description of the detector that follows the evolving conditions during data taking in 2012, and includes the simulation of out of time pileup over the time windows [-300 ns, +50 ns]
 - ✓ improved multivariate energy correction using a semi-parametric likelihood technique in order to construct a prediction for the full distribution of E-True/E-Raw.

Lessons learned: identification

- Multivariate techniques fully exploited during Run1
 - √ The choice of the background training/testing samples plays a crucial role in final performance.
 - CMS choice is to get the background directly from DATA
 - ✓ Test the efficiency differences between DATA and simulation is very challenging for low-pt electrons due to the high background.

Backup

ECAL-related systematic uncertainties on m_H

From $H \rightarrow \gamma \gamma$: $m_H = 124.70 \pm 0.31(stat) \pm 0.15(syst)$ GeV

◆ Electron/photon differences in the simulation	0.10 GeV
✓ material distribution	0.07 GeV
✓ longitudinal light-yield non-uniformity	0.02 GeV
✓ Geant4	0.06 GeV
♦ Residual non-linearity in scale	0.10 GeV
♦ Photon energy scale corrections	0.05 GeV
♦ Z line shape	0.01 GeV