expectation for e⁺e⁻colliders

Mihoko Nojiri KEK & IPMU

Collider physics should address big questions

Because it is very costly

existing Mystery

Constraints

Matter content
&gauge
interaction
Why Higgs boson
is light?

dark matter

baryons in our Universe

SUSY

dynamical
symmetry
breaking

LHC

B factroy

no large EW correction

no extra FCNC

no proton decay

no extra CP violation

ILC Physics

- Higgs coupling precision at future collider
- SUSY and Higgs boson
- SUSY direct searches at LHC and beyond
- Dynamical models

Is this outstanding project?
I don't draw any conclusion. you decide.

Success of LHC

Higgs boson as a window of new physics

Higgs boson is a "new window" but..

- Large statistics
 - 2018年 14TeV L~2x10³⁴ cm⁻²s⁻¹ 25ns (Phse 1)
 - 2022年 L~5x10³⁴ cm⁻²s⁻¹ (Phase II)
- big systematical errors in $\sigma(gg \rightarrow h)$
- Hopes in "ratios"

3000 fb^{-1} :

Observable	ATLAS-HL	CMS-HL-1	CMS-HL-2
$\sigma(gg) \cdot BR(\gamma\gamma)$	$5 \oplus 19$	$4 \oplus 12.3$	$0.9 \oplus 6.2$
$\sigma(WW) \cdot BR(\gamma\gamma)$	$15 \oplus 15$	$10 \oplus 2.4$	$4.4 \oplus 1.2$
$\sigma(gg) \cdot BR(WW)$	$5 \oplus 18$	$6 \oplus 12.3$	$1.6 \oplus 6.2$
$\sigma(WW) \cdot BR(WW)$	$9 \oplus 8$	$24 \oplus 2.4$	$8.9 \oplus 1.2$
$\sigma(gg) \cdot BR(ZZ)$	$4 \oplus 11$	$4 \oplus 12.3$	$1.6 \oplus 6.2$
$\sigma(WW) \cdot BR(ZZ)$	$16 \oplus 13$	$7 \oplus 12.3$	$1.9 \oplus 6.2$
$\sigma(WW) \cdot BR(\tau\tau)$	$12 \oplus 15$	$8 \oplus 2.4$	$2.8 \oplus 1.2$
$\sigma(Wh) \cdot BR(b\overline{b})$		$8 \oplus 3.8$	$4.4 \oplus 1.7$
$\sigma(t\overline{t}h)\cdot BR(b\overline{b})$	_	$35 \oplus 11.7$	$16 \oplus 5.9$
$\sigma(t\bar{t}h) \cdot BR(\gamma\gamma)$	$17 \oplus 12$	$28 \oplus 11.7$	$12 \oplus 5.9$
$\sigma(Zh) \cdot BR(invis)$	<u>—</u>	$10 \oplus 4.3$	$3.5 \oplus 2.2$

from 1312.4974

ATLAS Preliminary (Simulation)

 \sqrt{s} = 14 TeV: $\int Ldt = 300 \text{ fb}^{-1}$; $\int Ldt = 3000 \text{ fb}^{-1}$

With e+e- collider

Higgs Couplings (1/2)

W coupling error reduces significantly with 500 GeV e+e- colliders access to tth (and ttZ), and WWh (250GeV $4.6\% \rightarrow 500$ GeV 0.46%

Higgs precision measurement and new physics

SUSY two Higgs doublet model h, A0, H,H+

Heavy Higgs Mass Reach

- LHC: Heavy Higgs direct search
- ILC: Indirect search via effect on Higgs couplings BR(h→WW)/BR(h→bb) and BR(h→WW)/BR(h→ττ)

* One loop correction from the SUSY sector gives additional twist to the SUSY prediction

g(Hbb) - mA and $tan\beta x \mu x M_3/M_{SUSY}$ g(Hgg) -squark effects have not decouple even for Msusy~4TeV

arxiv 1407.7021 Chill-Rowley et al

probing

(stop)

Some models are more constrained by Higgs Mass

SUSY spectrum on market

light higgsino or stop **MSUGRA** heavy scalar degenerate for naturalness classic AM (KKLT) no FCNC Light SUSY still viable Small cross section no cosmological still possible problem very hard to access →ILC? sq/gl gluino stop2 stop2 stop1 stop1 higgsino wino LSP higgsino gaugino

SUSY searches at Hadron colliders

colored partner squark, gluino, g1, q1, extra quarks gauge partners Lepton partners

Dark matter

LSP, LKK, LOT

- "SUSY signature"
 - "Models with new colored particles decaying into a stable neutral particle--LS
- Signal: High P_T jets hiph P_T leptons and E_{Tmiss}

assume mass difference is large

Production of W, Z, and top with additional jets would be significant background

Controlling backgrounds

The bound is model independent

exclude up to the region where mstop~mLSP+mt +30GeV

stop 350GeV and LSP 150GeV There are no region with S/N>0.1 in this plot!

The limit is based on the understanding of background

LHC 13TeV

(a) $\tilde{q}\tilde{q}$ gluino mass up to 3TeV and LSP mass up to 1.5TeV

scalar top up to 1.4TeV and LSP mass 0.5TeV

Figure 5: The 95% CL exclusion limits (dashed) and 5σ discovery reach (solid) for 3 $3000\,\mathrm{fb^{-1}}$ (black) in the \tilde{t} , $\tilde{\chi}^0_1$ mass plane assuming $\tilde{t}\to t+\tilde{\chi}^0_1$ with a branching rational results are shown for the combination of the 1-lepton and 0-lepton analyses. The observables of 8 TeV data are also shown.

SUSY at 100TeV collider

VHE-LHC Reach

LSP mass up to $\sim 5(2)$ TeV at 100(33)TeV

LSP mass reduce to 2TeV for 30% sys error

overlap with the region covered by ILC g(hgg) measurements

1311.6480 Cohen et al

EW SUSY at HL-LHC

LHC will be sensitive to Lepton channel!

(with good lepton trigger rate)

 We now have a strong motivation to keep trigger rate as low as possible for Higgs physics

current limit

Problem: Not much sensitivity to EW SUSY particles decaying into Higgs boson

EW SUSY search via lepton decay mode

W and Z backgrounds

strong bound on wino decaying into sleptons (cross section) No serious bound if decaying into higgs boson limited bound on M_1 =0.5 M_2 line

ILC has very good sensitivity for doublet(Higgsino) or triplet(Wino) LSP and NLSP up to its kinematical reach

EW-ino at ILC

- Keep in mind that relevant parameters are more restricted now.
- covering some important model parameter regions that LHC cannot do
 - Heavy squark
 - Higgsino or Wino LSP
- discovery→ precision tells more

parameters that LSP is higgsino accessible at ILC wile others are not

→cross section measurement recover gaugino masses

Dynamical models

Minimal Composite Higgs Model (MCHM)

 $SO(5)xU(1)x \rightarrow SO(4)xU(1)_x$

building block of higgs sector

$$\Sigma = \Sigma_0 e^{\Pi/f}$$

$$\Sigma = (0, 0, 0, \sin \frac{h(x)}{f}, \cos \frac{h(x)}{f})$$

4 NG→SU(2) doublet 1 higgs + 3 NG

of strong dynamics

expected reach up to $v/f \sim 0.09$

top partners in Minimal Composite Higgs Model

$$\Psi = \frac{1}{\sqrt{2}} \begin{pmatrix} B - X \\ i(B + X) \\ T + U \\ i(T - U) \\ \sqrt{2}\tilde{T} \end{pmatrix}$$

field	T_L^3	T_R^3	X	$Y = T_R^3 + X$	$Q_{EM} = T_L^3 + Y$
X	1/2	1/2	2/3	7/6	5/3
U	-1/2	1/2	2/3	7/6 (9	2) 2/3
T	1/2	-1/2	2/3	1/6	$\frac{7}{2}$ $\frac{2}{3}$
B	-1/2	-1/2	2/3	1/6	-1/3
$ ilde{T}$	0	0	2/3	2/3 (1	(, 1) 2/3

MCHM5 arXiv:1110.5646

$$\mathcal{L}_{Yukawa+Mass} = \frac{-Yf(\bar{\Psi}_L\Sigma^T)(\Sigma\Psi_R)}{(\text{proto}) \text{ yukawa}} \frac{-M\bar{\Psi}_L\Psi_R}{\text{vector mass}} - \frac{\Delta_L\bar{q}_LQ_R - \Delta_R\tilde{T}_Lt_R}{\text{mixing}}$$

composite
$$Q = (T, B)^T$$
 T elementary(SM)

bigger representation such as 10, 14... may be strongly constrained by T, S, Zbb, higg potential interesting effect in Hgg, Hyy, Htt, ttZ

ttZ coupling in MCHM

from e+e- → ttbar ILC precision would be Left coupling 0.6% Right coupling 1.4%

Grojean et al 1306.4655

$$\delta g_{tL}/g_{tL} = -0.05 \sim -0.1$$

Carena et al 1402.2987 stop mixing angle in various models

Extra-dim: 0(10)TeV RS model with ILC

- 5dim RS with bulk Fermions → explain fermion mass via bulk profile
- not accessible at 14TeV LHC due to flavor constraint
- additional complexity Raidon-Higgs mixing.
 - KK contribution to Higgs decay though loop, large KK yukawa coupling
 - Radion: direct coupling to light gauge bosons.

Kubota Nojiri 1404.3013

(a)

conclusions

- LHC will prove BSM directly. Energy Upgrade explore new physics beyond 10TeV scale
- "A new Higgs window" for BSM. Precision study of the Higgs boson nature at high luminosity e+ecollider now looks viable future program.