

SUSY: Expectations for Run 2, HL-LHC, VLHC

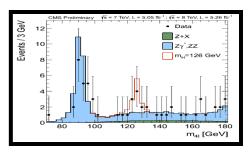
Loukas Gouskos

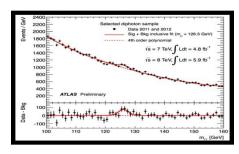
University of California, Santa Barbara

on behalf of the ATLAS and CMS collaborations

Outline:

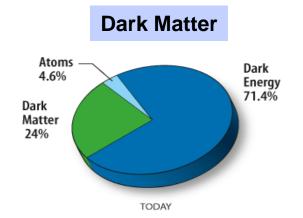
- Introduction
- The search for SUSY at the LHC: Run 2 to the HL-LHC
- ◆ SUSY expectations with a 100 TeV hadron collider
- Summary

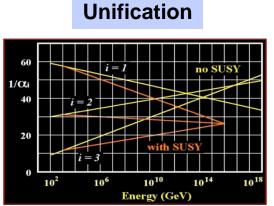

Introduction



Introduction

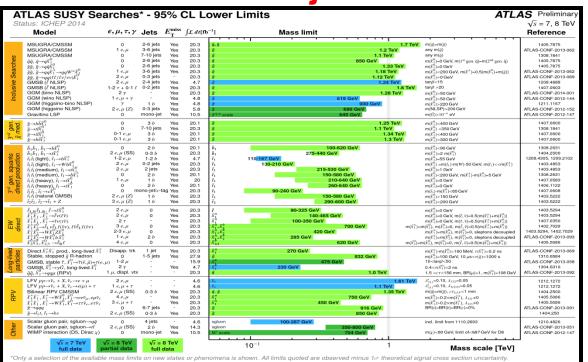
Discovery of a BEH scalar@ ~125 GeV completes SM

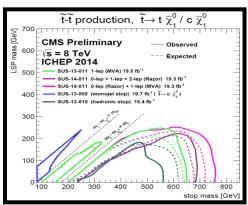


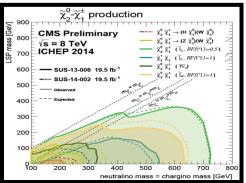


- Still many open questions
- SUperSYmmetry; very appealing extension:

Papucci et al. hep-ph 1110.6926 $\frac{\tilde{B}}{\tilde{W}} = \frac{\tilde{L}_i, \tilde{e}_i}{\tilde{Q}_{1,2}, \tilde{u}_{1,2}, \tilde{d}_{1,2}}$ $\frac{\tilde{g}}{\tilde{b}_L} = \frac{\tilde{b}_L}{\tilde{b}_L} = \frac{\tilde{L}_i, \tilde{e}_i}{\tilde{W}} = \frac{\tilde{C}_i, \tilde{e}_i}{\tilde{Q}_{1,2}, \tilde{u}_{1,2}, \tilde{d}_{1,2}}$ - TeV $\frac{\tilde{H}}{\tilde{b}_L} = \text{natural SUSY} \qquad \text{decoupled SUSY}$





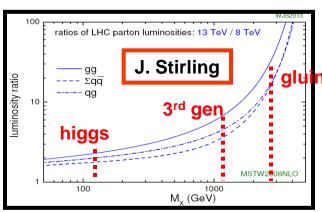

Introduction (2)

... but SUSY not "just around the corner"

- M[g] > ~1.4 TeV
- M[sq1,2 (3)]> ~1.3 (0.6)TeV
- M[gauginos] > ~0.3-0.7 TeV

NB.

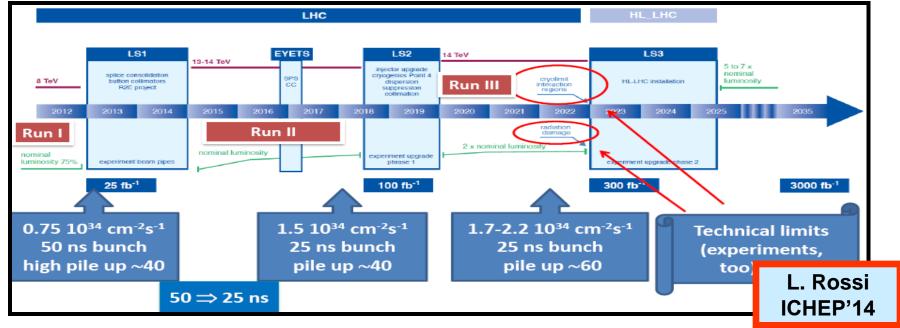
- (a) Assume BR~100%
- (b) Probed regions depend strongly on mass parameters [i.e. $m(\chi^0)$]



Introduction (3)

- However, many SUSY scenarios remain open
 - ◆ SUSY at higher mass scales [i.e. not probed @ 7/8 TeV]
 - Benefit from the increase in energy
 - Low cross section SUSY processes [i.e. EWK production]
 - Benefit from the increase in L_{int}
 - Compressed spectra [i.e. small mass dif. between sparticles]
 - SM-like signature: dedicated searched, benefit from E & L_{int}
- Access these scenarios [and more] with hadron colliders: LHC@14 TeV [Run2], HL-LHC, V-LHC [100 TeV]

- Big [or Huge] gain in production of heavy particles
 - i.e. factor of 30-40 for gluinos ~1.5 TeV
- SM gains a factor of 2-4
- ♦ With ~2 fb⁻¹ @13 TeV reach 8 TeV sensitivity
 - New territory reached early in 2015



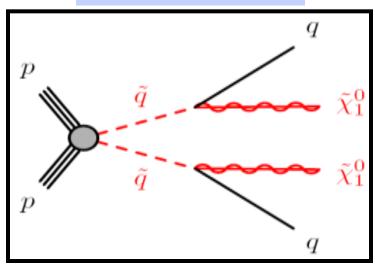
The search for SUSY at the LHC: Run 2 to the HL-LHC

LHC & HL-LHC roadmap

- End of Run 2 [~300 fb⁻¹]: some detector subsystems and much of the front-end electronics, trigger, need to be replaced
- Replacements with improved physics capabilities are in the pipe-line
 - details on upgrades from M. Nagel [ATLAS] & D. Abbaneo [CMS]

Making the case...

- Projected results based on 8 TeV searches with optimized selection to account for increased E and L_{int}
 - ◆ Conservative approach, we will very likely do better
- Several scenarios for background (BKG) systematics
- Realistic [as possible] detector and response based on LHC Run 1 data-taking
- Interpretation of results using Simplified Model Spectra [SMS]
 - generic description; few free parameters [i.e. sparticle mass, and production x-section]
 - study specific processes: assume 100% BR for each process
- Results should be interpreted as indicative of the performance expected; not quite detailed predictions yet (at this early stage)

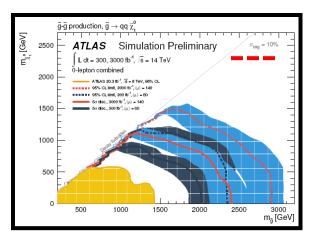


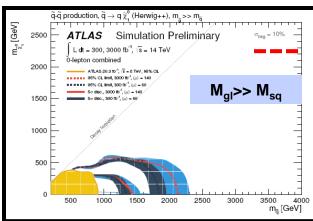
Strongly produced SUSY $[\widetilde{g} \rightarrow \widetilde{q}]$

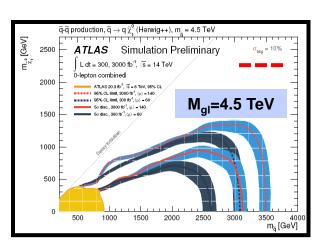
- Early access of new territory in gluino-gluino (gl-gl) & squark-squark (sq-sq) production
- Signature: jets (two to many) & large ME_T
 - ◆ 0-lepton final state dominates search for 1st and 2nd generation squarks

direct squark production

Gluino-mediated squark production

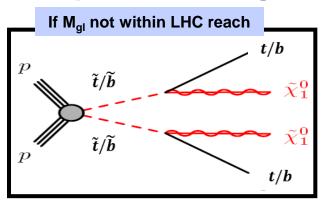


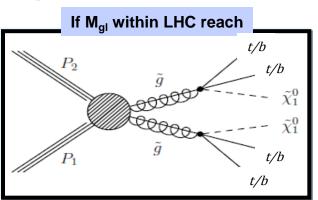



Strongly produced SUSY $[\widetilde{g} \rightarrow \widetilde{q}]$ (2)

- Search carried out in multiple signal regions based on:
 - $M_{eff}[= ME_T + \Sigma p_T(jet)]; ME_T/M_{eff}; ME_T/(H_T)^{1/2}$

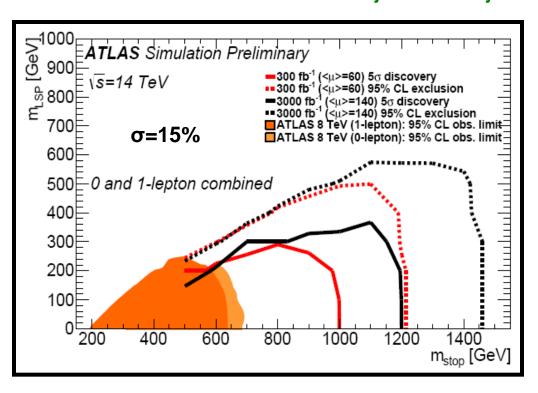
	M[gl] (2σ/5σ) [Tev]	M[sq] (2σ/5σ) [Tev]	M[sq] (2σ/5σ) [Tev] (M[gl]=4.5 TeV)
Run 2	2.4 / 2.0	1.4 / 1.9	3.1 / 2.7
HL-LHC	2.8 / 2.4	2.1 / 1.5	3.5 / 3.1


□ Any hints from new particles in Run 2 become observations at the HL-LHC



Strongly produced SUSY $[\tilde{t}/b]$

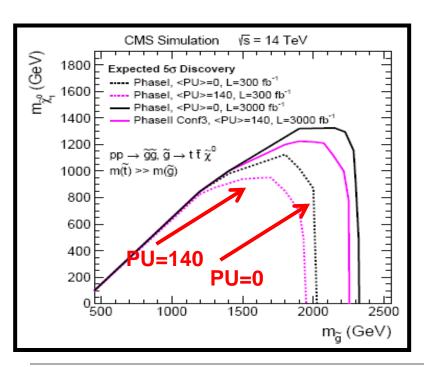
- "Naturalness" requires light [~TeV] stop/sbottoms
 - Direct production or gluino-induced production

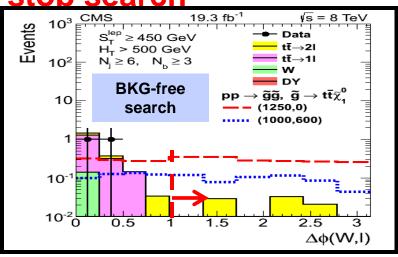

- Most "Natural" SUSY scenarios predict light 3rd gen squarks [<1-1.2 TeV] and gluinos [<2 TeV]
- Dedicated searches exploit these scenarios
 - ◆ 0 & 1 lepton final states in the case of stops, for instance, drive the sensitivity
- Results provide important tests of the viability of Natural SUSY

Strongly produced SUSY $[\tilde{t}/\tilde{b}]$ (2)

- 0 & 1 lepton final states for direct-stop production
 - ◆ Search regions based on ME_T, ME_T/(H_T)^{1/2}, M_T[I,ME_T]
 - 0-lep: $M_T[b,ME_T]$, $N_{its}>=6$, $N_{bjets}>=2$
 - 1-lep: $M_T[I,ME_T]$, $N_{its}>=3$, $N_{biets}>=1$

- Run 2 can set tight limits on direct-stop [Naturalness]
- Following BEH particle discovery, best motivated region probed with HL-LHC
 - ~1.2 TeV stops discoverable with HL-LHC
- HL-LHC powerful for challenging models



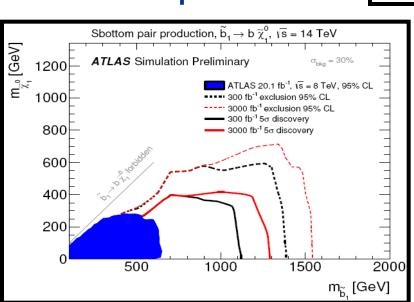

Strongly produced SUSY $[\tilde{t}/\tilde{b}]$ (3)

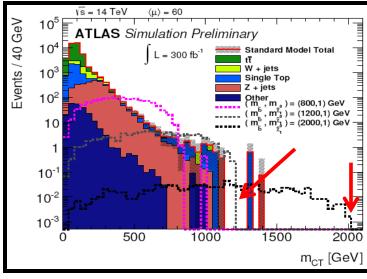
1 lepton channel important for stop search

- Gluino-induced stops based on S_T^{lep} =p_T[I]+ME_T & Δφ(I,W)
- $N_{jts} > = 6$,
- ◆ Multiple SR in: N_{bits} and S_T^{lep}

- Energy increase significant impact in gluino production
- Run2: probe gluinos → 2 TeV
 - Results important for Natural SUSY
- small gain with HL-LHC ~0.3 TeV
 - But extends reach to more compressed spectra
- Robust search against PU

Strongly produced SUSY $[\tilde{t}/\tilde{b}]$ (4)



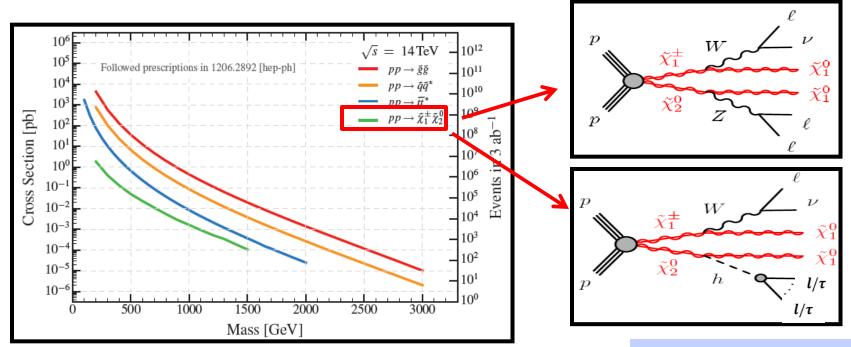

- Dedicated searched for direct sbottom production
- Search utilizes M_{CT}:

$$M_{CT}^{2}(J_{1}, J_{2}) = [E_{T}(J_{1}) + E_{T}(J_{2})]^{2} - [\mathbf{p_{T}}(J_{1}) - \mathbf{p_{T}}(J_{2})]^{2}$$

= $2p_{T}(J_{1})p_{T}(J_{2})(1 + \cos \Delta \phi(J_{1}, J_{2})),$

- Important variable to characterize signal
 - Endpoint at the mass of the sparticle:

$$m_{\text{CT}}^{\text{max}} = \frac{m^2(\tilde{b}) - m^2(\tilde{\chi}_1^0)}{m(\tilde{b})}.$$

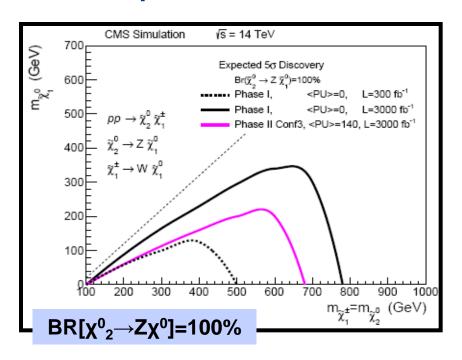

- Sbottoms up to 1.4 TeV in Run2
 - Still [some] for Natural SUSY
- HL-LHC important to discover heavy sbottoms or significantly constraint naturalness

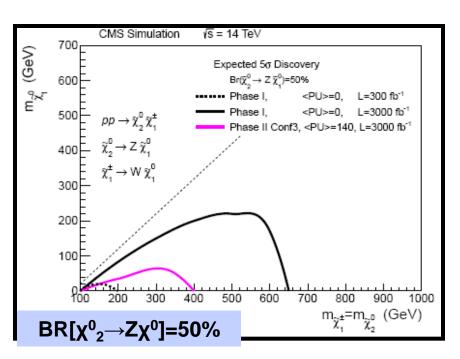
EWK SUSY $[\widetilde{\chi}^{\pm}/\widetilde{\chi}^{0}]$

- Naturalness arguments suggest light χ⁰/χ[±]
- If gluinos/squarks heavy [outside LHC reach], EWK-ino processes would dominate SUSY production

Multi-lepton final states drive sensitivity

 χ^0_2/χ^{\pm}_1 : Wino-like χ^0_1 : Bino-like

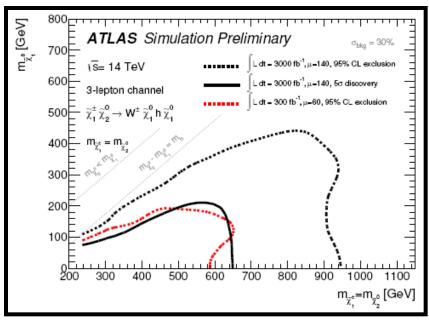


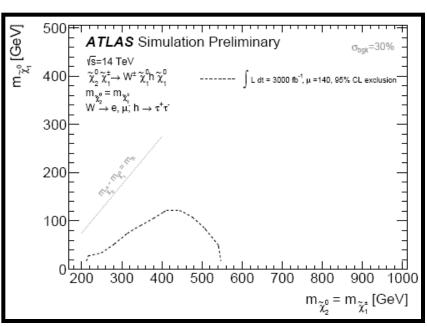


EWK SUSY $[\widetilde{\chi}^{\pm}/\widetilde{\chi}^{0}]$ (2)

- WZ-mediated direct production of χ⁰/χ[±]
- Multiple search regions with large ME_T and M_T[I_W,ME_T]:
 - 3 lepton final state

- HL-LHC: significant impact on mass reach [→TeV scale]
 - ◆ Realistic scenario with BR=50% accessible only through HL-LHC

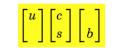



EWK SUSY $[\widetilde{\chi}^{\pm}/\widetilde{\chi}^{0}]$ (3)

- WHiggs (Wh)-mediated direct production of χ⁰/χ[±]
- Multiple search regions with large MET:
 - "3 leptons" & "1 lepton + tau-pair" final states

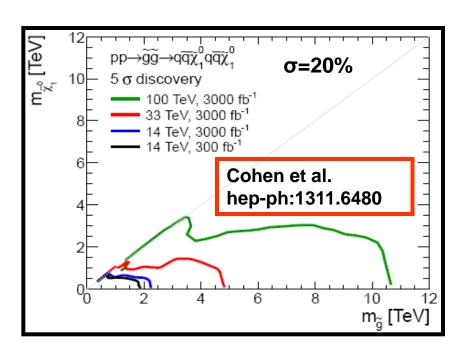
BR 100%

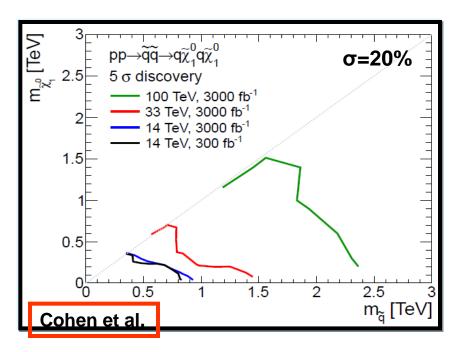
- HL-LHC: significant impact on mass reach [→TeV scale]
 - ◆ 3-lepton final state discoverable only with HL-LHC
 - 1-lepton + tau-pair accessible only through HL-LHC


SUSY expectations with a 100-TeV hadron collider

Run2, HL-LHC; What's next?

- Both LHC-Run2 & HL-LHC important for SUSY hunting
- Optimistic scenario [or scenario 1]:
 - Discover/Observe SUSY at LHC [~TeV scale] and then of course get the mechanism for the "hierarchy problem" [and for dark matter if R-Parity Conserving]
 - Need a SUSY-factory to study the properties [mass spectrum, branching fractions, etc..]
 - SUSY-factory: Very High Energy collider [i.e. 100 TeV p-p]
 - → i.e. 10³ increase in prod. x-sec of 1 TeV stop wrt 14 TeV
- Pessimistic scenario [or scenario 2]:
 - No hints from SUSY after HL-LHC
 - Natural-SUSY in trouble [though not dead]
 - Other SUSY models alive [i.e. split-SUSY]
 - SUSY mass spectrum very high [>O(10 TeV)]
 - Need a powerful hadronic collider to really explore the FT issue
 - And since SUSY is to this day the best remaining explanation, to continue SUSY-hunting

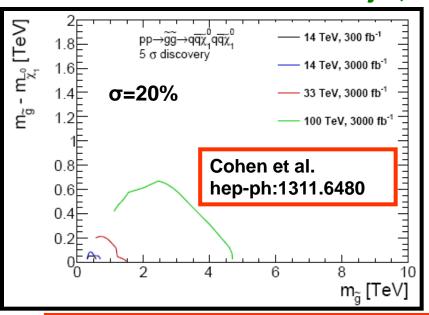


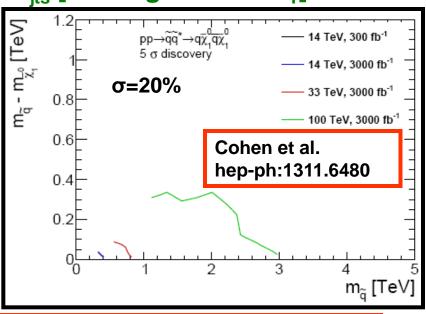


Run2, HL-LHC; What's next? (2)

- HL-LHC [14 TeV] : probe theories ~1% fine tuning
- Collider @100 TeV: probe theories ~0.01% fine tuning [N. Arkani-Hamed FCC Feb'14]

 100 TeV collider significantly boosts the reach for strongly produced SUSY



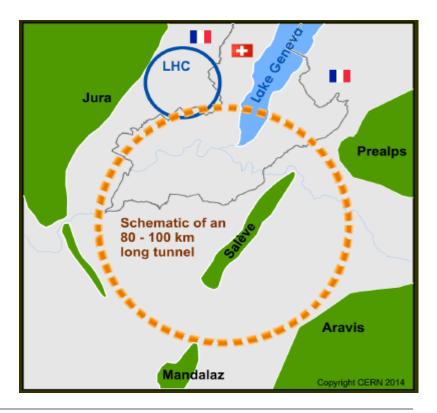

Run2, HL-LHC; What's next? (3)

- Compressed spectra: challenging scenarios
 - Need excellent understanding of uncertainties, usage of shape fits or multivariate techniques

Selection: 1 hard ISR jet, low N_{its} [not aligned to ME_T]

A Very high energy Large Hadron Collider [V-LHC] would be the ultimate push of the frontier in HEP [independently of what we learn from LHC]

V(ery high energy)-LHC


- A VLHC is important for SUSY [or any kind of New Physics] and for SM rare processes
- An 80-100 km circular tunnel is one option under consideration
 - p-p, e-p, e-e [more details in M. Klute talk]

F. Gianotti LHCP 2014

CERN FCC: international design study for Future Circular Colliders in 80-100 km ring:

- □ 100 TeV pp: ultimate goal (FCC-hh)
- □ 90-350 GeV e⁺e⁻: possible intermediate step (FCC-ee)
- □ 1s= 3.5-6 TeV ep: option (FCC-eh)

Goal of the study: CDR in ~2018.

Summary

Summary

- Discovery of BEH particle completes SM puzzle
- Many open questions; SUSY very appealing extension
 - SUSY has yet to join the party
 - .. But still a highly anticipated guest ©
- Increase in CM Energy at 13/14 TeV enhances production xsec, while increased L enhances small x-sec processes and challenging scenarios [e.g. compressed spectra]
- Full exploitation of the LHC capabilities [Run2 and HL-LHC] very important for SUSY [and much more!]
 - ◆ At the end of HL-LHC able to probe theories down to 1% FT
- An O(100 TeV) hadron collider should be the next step after HL-LHC [i.e. V-LHC]
 - ◆ Able to probe theories down to 0.01% FT

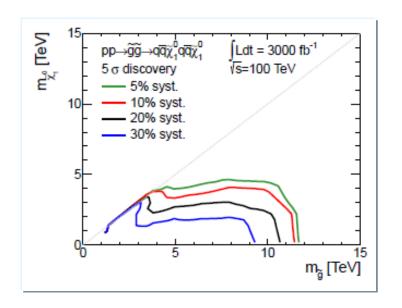
Programs in preparation and under consideration for years to come will be critical in our discovery or abandonment of SUSY

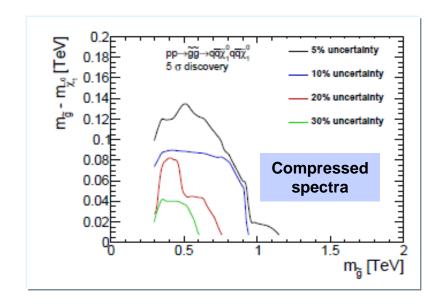
Additional material

Public results

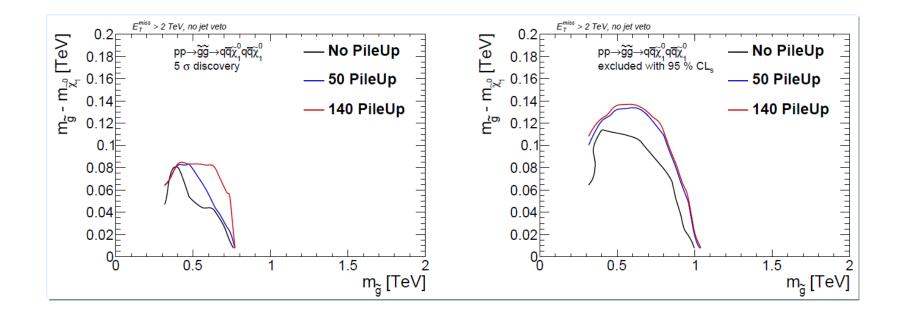
ATLAS:

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/UpgradePhysicsStudies

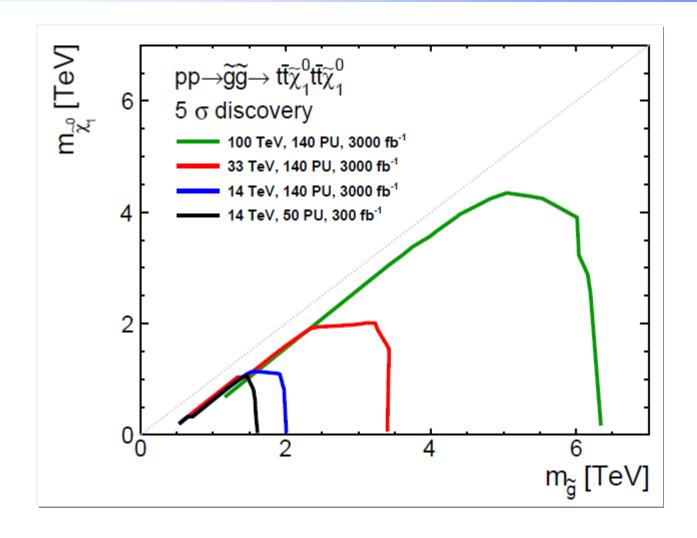

CMS:


https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsFP

FCC 100 TeV



FCC 100 TeV



FCC 100 TeV

