

Physics at the LHC and Beyond Quy Nhon, Aug 10-17, 2014

The LHCb Upgrades

Olaf Steinkamp

on behalf of the LHCb collaboration

[olafs@physik.uzh.ch]

Physics at the LHC and Beyond Quy Nhon, Aug 10-17, 2014

The LHCb LS2 Upgrade

Olaf Steinkamp

on behalf of the LHCb collaboration

[olafs@physik.uzh.ch]

LHCb Motivation

- primary goal: "indirect" search for New Physics
 - new heavy particles can enter in internal loops and have sizeable effect on observables
 - CP violating phases, rare FCNC decays
- B^0 and B^0 systems are an ideal hunting ground
 - rich phenomenology, precise predictions from theory
- LHCb: confront predictions with <u>precise measurements</u>

[see also Ulrik Egede's talk on Wednesday]

- LHCb layed out as forward dipole spectrometer
- forward geometry offers additional advantages:
 - larger Lorentz boost → better decay time resolution
 - higher momentum for same $p_{\scriptscriptstyle T} \to {\sf lower} \; p_{\scriptscriptstyle T}$ thresholds

extra benefit: unique potential for production studies in forward direction

LHCb Motivation

- primary goal: "indirect" search for New Physics
 - new heavy particles can enter in internal loops and have sizeable effect on observables
 - CP violating phases, rare FCNC decays
- B^0 and B^0 systems are an ideal hunting ground
 - rich phenomenology, precise predictions from theory
- LHCb: confront predictions with <u>precise measurements</u>

[see also Ulrik Egede's talk on Wednesday]

- $b\overline{b}$ production at LHC peaks at small polar angles
 - LHCb layed out as forward dipole spectrometer
- forward geometry offers additional advantages:
 - larger Lorentz boost → better decay time resolution
 - higher momentum for same $p_{\scriptscriptstyle T} \to {\sf lower} \; p_{\scriptscriptstyle T}$ thresholds

Requirements

- impact parameter resolution
 - to identify secondary vertices
- proper time resolution
 - to resolve fast $B_s^0 \overline{B}_s^0$ oscillations
- momentum & invariant mass resolution
 - to suppress combinatorial backgrounds

- K/π separation
 - to suppress peaking backgrounds
 - for flavour tagging
- selective and efficient trigger, also for hadronic final states

Run I/II Detector

2012 Trigger

40 MHz bunch crossing rate

LO Hardware Trigger: 1 MHz readout, high E_T/P_T signatures

450 kHz

400 kHz μ/μμ 150 kHz e/y

Software High Level Trigger

29000 Logical CPU cores

Offline reconstruction tuned to trigger time constraints

Mixture of exclusive and inclusive selection algorithms

5 kHz Rate to storage

2 kHz Inclusive Topological 2 kHz Inclusive/ Exclusive Charm

1 kHz Muon and DiMuon

Hardware level (L0):

$$E_{T}(e/\gamma) > 2.7 \text{ GeV}$$

$$E_{T}(h) > 3.6 \text{ GeV}$$

$$p_{\tau}(\mu) > 1.4 \text{ GeV}$$

Software level (HLT):

event reconstruction similar to offline

Combined efficiency L0+HLT (2012):

- ~ 90 % for di-muon channels
- ~ 30 % for multi-body hadronic final states

[LHCb run II trigger: Karol Hennessy's talk earlier today]

Luminosity

- LHCb designed to operate at lower instantaneous luminosity than ATLAS/CMS
 - very high particle density in forward region
 - large pile-up could affect reconstruction performance (e.g. B decay length, flavour tagging)
- achieved by displacement of LHC beams
 - luminosity leveling: adjust displacement throughout fill, operate at constant instantaneous luminosity
 - optimal use of beams + stable operation conditions

2011: 1 fb⁻¹ pp at 7 TeV

2012: 2 fb⁻¹ pp at 8 TeV

2013: 1.6 nb⁻¹ *p*Pb / Pb*p*

[run I performance: Giacomo Graziani's talk on Monday]
[run I operation: Clara Gaspar's talk on Monday]

Run I Physics Output

- 200+ submitted papers and counting
 - CP violating phases, rare heavy-quark decays
 - production & spectroscopy, exotics searches, Lepton Flavour Violation, ...

Run I Physics Output

- 200+ submitted papers and counting
 - CP violating phases, rare heavy-quark decays
 - production & spectroscopy, exotics searches, Lepton Flavour Violation, ...

LHCb Upgrade

- run 1 has been a great success for the LHC, LHCb, ... and the Standard Model
 - but current measurement precision in the flavour sector still allows significant contributions from New Physics
- precision of most LHCb results will still be limited by statistics after run 2
 - leading systematic uncertainties will often decrease with available statistics
- after run 2 would need > 10 years with current LHCb to double precision again

LHCb upgrade after run 2 increase annual event yields by

- increasing instantaneous luminosity
 - increasing trigger efficiencies

2010		0.037 fb ⁻¹ @ 7 TeV	
2011	run 1	1 fb ⁻¹ @ 7 TeV	
2012		2 fb ⁻¹ @ 8 TeV	
2013	LS 1	minor maintenance	
2014	LSI	work	
2015			
2016	run 2	5 fb ⁻¹ @ 13 TeV	
2017			
2018	LS 2	> LHCb upgrade	
2019	L3 Z	> Lifeb upgrade	
2020			
2021	run 3	15 fb ⁻¹ @ 14 TeV	
2022			
2023			
2024	LS 3	?	
2025			
2026++	run 4	5 fb ⁻¹ / year @ 14 TeV	

"Physics" Goal

approach theory uncertainties in quark flavour sector, e.g.:

	LHCb up to LS2		LHCb upgrade		Theory
	Run 1	Run 2	Run 3	Run 4	Theory uncertainty
Integrated lumi	$3 fb^{-1}$	$8 fb^{-1}$	$23~fb^{-1}$	$46\ fb^{-1}$	
$\frac{Br(B_d \rightarrow \mu \mu)}{Br(B_s \rightarrow \mu \mu)}$	-	110 %	60%	40%	5%
$q_0^2 A_{FB}(B_d \to K^{*0} \mu \mu)$	10%	5%	2.8%	1.9%	7%
$\phi_s(B_s \to J/\psi \phi, B_s \to J/\psi \pi \pi)$	0.05	0.025	0.013	0.009	0.003
$\phi_s(B_s o \phi\phi)$	0.18	0.12	0.04	0.026	0.02
γ	7°	4°	1.7°	1.1°	negl.
$A_{\Gamma}(D^0 \to KK)$	$3.4 \ 10^{-4}$	$2.2 \ 10^{-4}$	$0.9 \ 10^{-4}$	$0.5 \ 10^{-4}$	-

[M.H.Schune at Heavy Flavour in the HL-LHC Era, Aix les Bains, 2013]

- ALSO: reinforce LHCb as a general purpose forward detector
 - e.g. electroweak boson production, exotic searches, proton-ion physics

Collect them all ...

Final Upgrade TDR submitted and under review – all others are approved

[CERN-LHCC-2012-007]

[CERN-LHCC-2013-001] [CERN-LHCC-2013-021] [CERN-LHCC-2014-001] [CERN-LHCC-2014-016]

Particle Identification

Technical Design Report

Trigger

- to collect 5 fb⁻¹ / year: operate at up to 5 × higher instantaneous luminosity
- final states with muons: event yields scale linearly with luminosity
- fully hadronic final states: in current trigger scheme have to increase p_T
 thresholds to stay within 1 MHz limit of L0 trigger → no further gain in yield

readout full detector at 40 MHz full software trigger with 20 kHz output rate

40 MHz Readout

Estimated Yields

Detector

- upgrade to 40 MHz front-end electronics
 - need to replace sub-systems with embedded front-end electronics
- adapt where needed to maintain excellent performance at 5× higher luminosity

VErtex LOcator

Run I/II: silicon micro-strip detectors

• r/φ strip geometry, strip pitch 83-101 μm

Operating in secondary vacuum inside LHC vessel

300 μm Al foil separates detector from beam vacuum

Two retractable halves

silicon at 7 mm from beam during data taking

Upgrade challenges and goals:

- cope with increased radiation level
 - up to 8×10¹⁵ n_{eq} / cm² for 50 fb⁻¹,
 highly non-uniform across surface
- improve current performance
 - decrease material budget (thinner Al foil)
 - get even closer to beam (→ 5.5 mm)

55×55 μm² silicon pixel detector

- Velopix readout chip (evolution of TimePix chip)
- micro-channel CO₂ cooling

Expected Vertexing Performance

Expect superior performance in essentially every aspect compared to current VELO operating at high luminosity

- better impact parameter resolution due to reduced material budget
- reduced ghost rate due to pixels
- improved efficiency over full range in p_τ, φ, η

Main Tracker

Run I/II: silicon micro-strips upstream of magnet, silicon and 5 mm Ø straw drift tubes downstream

- granularity / segmentation across detector surface adjusted to forward peaked particle densities
- excellent momentum resolution due to small material budget → crucial for background suppression

Upgrade challenges and goals:

- cope with increased particle density
 - too high in inner region of straw detector
- improve speed of track reconstruction
 - crucial for trigger performance
- improve forward acceptance in upstream station
 - approach closer to beam pipe

keep current setup with 1+3 stations
upstream: silicon strip detector
with finer readout granularity
downstream: scintillating fibres

Main Tracker - Upstream

Upstream Tracker (UT)

- four layers of 250 μm thin silicon micro-strip detectors
 - three readout strip geometries, adapted to particle densities across detector surface
- new 40 MHz readout chip
- silicon sensors and readout chips mounted on 130 cm long "staves"
 - detectors on both sides of stave to avoid gaps in acceptance
- bi-phase CO₂ cooling
 - thin cooling pipes in stave supports

Main Tracker - Downstream

Scintillating Fibres (SciFi) with Silicon Photo-Multiplier (SiPM) readout

- 2.5 m long fibres with 250 $\mu m \, \varnothing$
- each detection plane = five fibre layers to ensure full efficiency
 - typically 15-20 photo-electrons
- single technology advantageous for fast track reconstruction in trigger
 - uniform material distribution
 - avoid "left-right ambiguities" of straws
- region close to beam pipe might need further optimization for occupancy
- SiPM need to be cooled to –40°C to mitigate effects of radiation damage
- fibres look okay up to 50 fb⁻¹

Expected Tracking Performance

Improved efficiency from SciFi compared to existing Silicon/Straw combination

Reduction of rate of fake tracks (ghosts) from use of UT hits in track reconstruction

Track reconstruction fits into 50 % of estimated HLT time budget of 13 ms

- assumes 10 × current CPU farm
- option to further speed up by applying Global Event Cuts (GEC) on hit multiplicities to veto small fraction of very high multiplicity events

	CPU time[ms]		
Tracking Algorithm	No GEC	GEC = 1200	
VELO tracking	2.3	2.0	
VELO-UT tracking	1.4	1.3	
Forward tracking	2.5	1.9	
PV finding	0.40	0.38	
Total @29 MHz		5.6	
Total	6.6	5.4	

RICH

Run I/II: Hybrid photon detectors (HPD) with embedded 1 MHz front-end readout electronics

need to be replaced for 40 MHz readout

Upgrade:

- replace HPDs with commercial Multi-Anode PMTs
- re-optimize RICH1 mirror optics
 - spread out rings to compensate for higher occupancy
 - but stay within current gas enclosure

Expected K/π performance

Calorimeters

Run I/II: L0 trigger and e/γ reconstruction

 robust sampling calorimeters: absorber and scintillating fibres with photo-multiplier readout

Upgrade:

- remove pre-shower (PS) and scintillating pad detector (SPD)
 - not needed without L0 trigger
- replace readout electronics for 40 MHz
- compensate for higher occupancy
 - reduce photo-multiplier gains
 - revise cluster definition
- radiation damage
 - consider replacing innermost ECAL cells during LS3, otherwise okay up to 50 fb⁻¹

Muon System

Run I/II: L0 trigger and muon identification

- five detector stations (M1-M5) interleaved with absorber walls (M1 upstream of calorimeters)
- multi-wire proportional chambers, triple-GEMs in regions of highest particle density
- detectors read out at 40 MHz for L0 trigger

Upgrade:

- no need to change front-end readout ;-)
- remove M1 in front of calorimeters
 - too high occupancies, not crucial for muon ID
- add more shielding between HCAL and M2
 - to reduce background rate in innermost region
- possible replacement of detectors in innermost regions of M2 and M3 under consideration

Summary / Outlook

- excellent LHCb performance is leading to world best measurements in the beauty and charm quark sectors and many other interesting results
- expect to increase available data sample from 3 fb⁻¹ to ~8 fb⁻¹ by 2018
 - will allow LHCb to find or rule-out large sources of flavour symmetry breaking at the TeV scale
- LHCb upgrade is then mandatory to reach measurement precisions of the order of current theoretical uncertainties
 - goal is to collect ≥ 50 fb⁻¹ within ~10 years, with improved selection efficiency
 - software-only trigger with access to the full detector information
 - detector upgrade to 40 MHz readout, able to sustain a levelled luminosity of 2 × 10³³ cm⁻² s⁻¹ at 25 ns bunch spacing
- LHCb upgrade is fully approved, the last TDR is under review
 - to be installed in LS2 and operational at the beginning of 2020

Roadmap Towards the Upgrade

- 2011 LoI submitted & encouraged to proceed to TDRs
- 2012 "Framework TDR" submitted, endorsed & approved
 - □ "LHCb upgrade approved to be part of the long-term exploitation of the LHC"
- 2012 Submission of MoU for Common Projects
- 2012 /13 R&D towards technical choices
- 2013 Technical reviews & choice of technologies
- 2013/14 Technical Design Reports & MoUs of sub-systems
- 2014 Prototype validation & Engineering Design Reviews
- 2014-16 Tendering & serial production
- 2016-17 Quality control & acceptance tests
- 2018/19 18 months installation during LS2

[A. Schopper at Heavy Flavour in the HL-LHC Era, Aix les Bains, 2013]

Complementarity LHCb / Belle II

*) Caveat: I am probably missing "your" favored channel/field

[U.Uwer at Flavour Physics Conference, Quy Nhon, 2014]

DAQ Numbers

Event rate	$40\mathrm{MHz}$	LHC BX frequency
Mean nominal event size	$100\mathrm{kBytes}$	PCIe Gen3 protocol
Readout board bandwidth	up to $100\mathrm{Gbits/s}$	nower cooling
CPU nodes	up to 4000	power, cooling, space constraints

Instantaneous luminosity	$2 \times 10^{33} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	⟨pp collisions⟩
Pile-up	7.6	per BX
Input rate	$30\mathrm{MHz}$	non-empty BX
Maximum processing time per event	$13\mathrm{ms}$	· Hon-empty DX
Output bandwidth	$20\mathrm{kHz} \times 100\mathrm{kB} = 2\mathrm{GByte/s}$	

Versatile Links for DAQ	8800
Mean nominal total event-size	$100\mathrm{kB}$
PCIe40 boards for DAQ	500
Versatile Links / readout board (DAQ)	up to 48
Event builder-PCs	500
PCIe40 boards for ECS and TFC (SOL40)	77
Core switch ports (100 Gbit/s)	500
Event-filter nodes	up to 4000
Output rate	$20\mathrm{kHz}$
Nominal instantaneous output rate	$2\mathrm{GB/s}$

CPU × CPU power (assume 2011 × 16)

Micro-Channel Cooling

Thermal pyrolytic graphite (TPG)

Too much ΔT in simulations and thermal mock-up. Too much thermal expansion difference (delamination).

Pablo Rodríguez Pérez 8 TIPP'14

Micro-Channel Cooling

New approach: the cooling is underneath the heat source

Both satisfy the cooling requirements.

Both acts as mechanical support.

Micro-channel showed better IP resolution:

- Lower material budget.
- Thinner modules.

Pablo Rodríguez Pérez

TIPP'14

Micro-Channel Cooling

Fabrication

- Etch trenches into the surface of silicon wafer.
- Atomic bond a cover wafer to create the capillaries.
- · Practice exit and entry holes.
- Attach the connectors & electronics.

Si - Si direct bonding

Thinning

DRIE etching of fluidic inlets

Metalization for soldering connectors Pablo Rodríguez Pérez

Advantages

- Cooling is exactly under the heat source.
- Large heat exchange surface (many parallel channels).
- Small thermal gradients across the module (no heat path through the hybrid/sensor plane).
- Minimal material budget (thin silicon layer).
- No CTE difference between heat source and heat sink.

12

Multiplicities

Number of visible pp interactions per BX Poisson distributed with

2012: $\langle \mu \rangle = 2$ \rightarrow upgrade: $\langle \mu \rangle = 5$

Average number of tracks for bb events

2012: 72 **→** upgrade: 180

Fluence and Dose in UT

Figure 2.6: Expected fluence profile (left) and dose profile (right) after 50 fb⁻¹ of total integrated luminosity as a function of the vertical coordinate Y for X=0. (The LHCb coordinate system is a right handed Cartesian system with the positive Z-axis aligned with the beam line and pointing away from the interaction point and the positive X-axis following the ground of the experimental area, and pointing towards the outside of the LHC ring.) This slice represents the highest fluence region throughout the UT system.

SALT Chip

Figure 2.19: The SALT ASIC block diagram.

Silicon Photo Multiplier

- The SiPM pixel is a photo-diode (reverse-biased, above breakdown)
- a single free electron/hole-pair can trigger an avalanche of electrons
- 10⁶—10⁷ gain
- 40-50% photon detection efficiency

June 6, 2014

Blake D. Leverington - TIPP 2014

18/27

Radiation Damage in SiPM

- SiPMs create single photo-electron signals from thermal electrons, cross-talk between pixels makes 1 photo-electron look like 2+
- Neutron damage to silicon worsens thermal problem, expect 10¹² neutrons/cm²

Acceptable cluster rates require -40C cooling and +40C annealing

dark noise
$$\propto T^2 \exp(\frac{-E_g}{2k_B T})$$
 n

T(K)

June 6, 2014

Blake D. Leverington - TIPP 2014

24/27

Production of Fibre Mats

Fibre mats are produced from winding a single fibre onto a threaded wheel.

Need about 8km of fibre for one mat of 6 layers
 2.5 metres long

10,000 km of fibre in total ...

Radiation Damage in Fibres

 The scintillating fibres darken with radiation (up to 35 kGy expected near the beam pipe over the upgrade lifetime)

