


Towards HL-LHC 
Ø  Design for operation at 5×1034 cm-2s-1 

instantaneous luminosity, with leveling 
²  Translated to 140 <PU> 

Ø  Ultimate target 3000 fb-1 integrated 
over more than 10 years 

§  N.B. Operation at higher <PU> still under discussion 
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Only EYETS (19 weeks)   (no Linac4 connection during Run2)  
LS2  starting in 2018 (July) 18 months + 3months BC (Beam Commissioning) 
LS3 LHC: starting in 2023 => 30 months + 3 BC 
 injectors: in 2024       => 13 months + 3 BC 
 

LHC schedule beyond LS1 

Run 2 Run 3 

Run 4 

LS 2 

LS 3 
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LHC schedule  approved by CERN management and LHC experiments spokespersons and technical coordinators 
Monday 2nd December 2013 
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The challenges 
Ø  Radiation tolerance   

²  Survive 10× higher integrated dose/fluence than the present design 
§  Very difficult requirement for the innermost detectors 

Ø  Reconstruction in high pileup 
²  Higher granularity 

§  Electronics channels and bandwidth 

Ø  Trigger/readout in high pileup 
²  More information to form the L1 trigger decision 

§  Even more bandwidth from the front-end 
²  More time and processing power to process that information 

§  Longer latency, more elaborate trigger electronics and more complex algorithms 
²  Higher accept rate 

§  Again, more bandwidth… 

Ø  The trigger upgrade is a major challenge, driving several aspects of 
the upgrade strategy 

Ø  In addition: evolve the detector design according to up-to-date 
physics interests 
²  E.g. study of Vector Boson Scattering would profit of improved performance in the 

(very) forward region 
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CMS Phase 2 Upgrades   

Trigger/DAQ 
•  L1 (hardware) with tracks and 
   rate up  ∼  500 kHz to 1 MHz 
•  Latency ≥ 10 µs 
•  HLT output up to 10 kHz 

Muons 
•  Replace DT FE electronics 
•  Complete RPC coverage in forward 

region (new GEM/RPC technology) 
•  Investigate Muon-tagging up to η ∼ 4 

New Endcap Calorimeters 
•  Radiation tolerant - high granularity  
•  Investigate coverage up to η ∼ 4 

New Tracker  
•  Radiation tolerant - high granularity - less material  
•  Tracks in hardware trigger (L1) 
•  Coverage up to η ∼ 4 

Barrel ECAL 
•  Replace FE electronics 
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The Tracker Upgrade 
To be installed in LS3 
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Tracker - motivations for the upgrade 
Ø Pixel detector 

²  Loss of charge collection translates to degraded hit resolution  
§  After 500 fb-1 IP resolution degraded by 50% 

²  7% data loss at 140 <PU> in barrel layer 1, due to limitations in FE buffers 

Ø Strip Tracker 
² Most prominent effect is the increased of leakage current 

§  Increasing number of modules that cannot be operated 
§  Highly degraded tracking performance 

Ø Both detectors 
²  L1 latency limited to ~4 µs and L1 accept rate limited to ~100 kHz 
²  Prevent any substantial trigger upgrade! 

D. Abbaneo - CERN August 15, 2014 6 



Tracker - motivations for the upgrade 

Ø  Map of modules that cannot be operated after 1000 fb-1 for a 
coolant temperature of −20°C 
²  Almost all double-sided modules are dead 
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Tracker - motivations for the upgrade 
Ø Performance degradation for 140 <PU> and 1000 fb-1 

²  Strip Tracker aging only 

D. Abbaneo - CERN 
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Tracker Upgrade - requirements 
Ø Radiation tolerance 

²  3000 fb-1 for Outer Tracker 
²  Preserve possibility of replacing inner parts of the Pixel detector 

Ø  Increased granularity 
² Occupancy ~1% 

Ø  Improved two-track separation  
²  Smaller pixels 

Ø Reduced material in the tracking volume 
²  As good as we can 

Ø Robust pattern recognition 
²  Seeding capabilities in Outer Tracker 

Ø Support Level-1 trigger upgrade 
²  Latency of 12.5 µs, L1A rate ~ 750 kHz 
²  The Outer Tracker contributes information for the L1 trigger decision 

Ø Extended tracking acceptance 
²  Up to about η=4 
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The Outer Tracker: basic concept 
Ø Novel trigger functionality implemented with “pT modules” 

²  Two closely-spaced sensors readout by one same front-end 
²  pT of the particle measured over the sensor spacing 
²  Stubs from particles with pT > 2 GeV are sent out at each BX 

§  One order of magnitude data reduction 
²  Requires programmable acceptance window + different sensor spacing 
“stub” pass fail 
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Two types of modules 
Ø Modules with 2 Strip sensors (2S modules) 

²  Two sensors with 90 µm × 5 cm strips 
²  No precise measurement of the z coordinate 
²  All auxiliary electronics (power and readout optical link) integrated on board 
²  Used in the Outer Layers (1.8 mm and 4.0 mm sensors spacing) 

D. Abbaneo - CERN 
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Mounting points / 
cooling contacts 1.  2S silicon sensors 

2.  Al-CF spacer 
3.  Al-CF tab 
4.  CF support 
5.  Foam spacer 
6.  CF stiffener 
7.  Al-CF short spacer 
8.  Service Hybrid 
9.  FE Hybrid 
10.  CBC 
11.   CIC 
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Two types of modules 
Ø  Modules with a macro-Pixel sensor and a Strip sensor (PS modules) 

²  One sensor with 100 µm × 1.5 mm macro-pixels (for the z coordinate) 
²  One sensor with 100 µm × 2.5 cm strips 
²  All auxiliary electronics (power and readout optical link) integrated on board 
²  Used in the Intermediate Layers (1.6 mm, 2.6 mm and 4.0 mm sensors spacing) 

D. Abbaneo - CERN 
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2.  PS-p silicon sensor 
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Ongoing developments 
Ø  Suitable sensor materials and technologies identified 

²  FZ or MCz, 200 µm active thickness, n-in-p 

Ø  Development of FE electronics in progress 
Ø  Several module prototypes have been produced 
Ø  Design of mechanical structures started 
Ø  CO2 cooling 

²  Need ~ 100kW – Common development with ATLAS 

Ø  Back-end electronics for L1 track reconstruction  
²  Pattern recognition with Associative Memories or propagation 

from layer to layer in FPGA followed by fit in FPGA 
§  Demonstrators being developed with existing high BW processing boards 

D. Abbaneo - CERN 
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Pixel Upgrade 
Ø  Radiation tolerance is a big challenge 

²  Unprecedented levels of ~2×1016 1MeV neq /cm2 

²  Difficult for both sensors and electronics 
Ø  Sensors: thin planar silicon 

²  Requires chip with low-threshold and small pixels 
²  Possibly 3D sensors in the inner layer 
²  A lot of R&D still needed 

Ø  Readout chip: 65 nm CMOS technology 
²  Radiation qualification ongoing 
²  Common development with ATLAS (RD53) 
²  Considering pixels as small as 25×100 µm2 or 50×50 µm2 

Ø  Readout and power require dedicated R&D 
²  Bandwidth ×20 or more compared to Phase-1 

§  Higher PU × Higher L1A rate 

²  Likely higher power at lower voltage! 
²  All services in the tracking volume 

§  Because of the rapidity extension 
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The Tracker Layout 

D. Abbaneo - CERN 

2S Modules 
 
 
PS Modules 
 
Pixels 

Phase-1 
Pixel 

Outer Tracker 
substantially lighter! 
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tracking volume 
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Estimated performance - online 
Ø Stub finding efficiency in Front-End electronics 

² With optimized sensor spacing and acceptance window 
§  Tuned to obtain ~99% efficiency for pT = 2 GeV muons 
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Estimated performance - online 
Ø  L1 track finding performance 

²  N.B. Not yet demonstrated in hardware! 
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Estimated performance - offline 
Ø Good tracking performance in high pileup 

²  Substantial improvement in pT resolution from reduced material 

D. Abbaneo - CERN 
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The calorimeter upgrade 
Also for LS3 
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Calorimeters: some requirements 
Ø  Latency of 12.5 µs, L1A rate ~ 750 kHz 
Ø  Operation at 140 <PU> 

²  Need higher granularity, both for trigger and full reconstruction 
Ø  Retain good photon resolution and efficiency 

²  Mitigate degradation where most severe 
Ø  Good efficiency and low fake rate for VBF Higgs tagging jets 

²  Region 2.0 < η < 4.0 
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Calorimeters: limitations and need for upgrades 
Ø Preshower 

²  Incompatible with trigger upgrade 
§  Although sensors would still work 

²  Not kept for Phase-2 
Ø ECAL crystals 

²  Significant damage 
§  Both electomagnetic and hadronic 

²  Unacceptable darkening at high η, EB is ~OK 

Ø ECAL photodetectors 
²  EB APD degrade significantly 

§  Higher dark current → noise. Requires mitigation. 
²  EE VPT could work 

Ø ECAL electronics 
²  Incompatible with trigger upgrade – 

replacement needed 

Ø HCAL scintillator 
²  Significant loss of signal in first HB layers an 

substantial fraction of HE 
§  Requires replacement or upgrade 
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EB Upgrade 
Ø Replace FE electronics 

²  Full readout at 40 MHz 
§  Trigger primitives calculated off-detector 

²  Faster shaping 
§  Helps for out of time pileup and “spike” mitigation 

²  Requires rework of all supermodules in LS3! 

Ø  Lower operating temperature (e.g. 18°C → 8°C) 
²  Reduce APD dark current and noise 
²  Requires new pipework (foreseen anyway) and some engineering 

D. Abbaneo - CERN August 15, 2014 22 



EE/ES replacement option: Shashlik 

Ø Similar structure as current EE 
Ø  LYSO Crystals + W absorber 
Ø Wave-Length Shifter capillaries to collect light 

²  Four photodetectors / module 

Ø More compact / higher granularity 
²  Radiation length: 8.9 → 5.1 mm 
² Moliere radius: 21→ 13.7 mm 
²  Lateral size: 28.6 → 14 mm 
²  Length: 220 → 114 mm 

Ø Complemented by new HE 
²  Located closer to the IP 
²  Electronics behind HE 

§  Plus space for new muon detector 
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Simulation 
(standalone) 

Shashlik: performance and outlook 
Ø  Good intrinsic electromagnetic energy resolution 
Ø  Better resolution than current system for jets 
Ø  Results for high pileup in preparation 

 
Ø  R&D still ongoing on all main aspects 

²  Development of the WLS system, radiation qualification of crystals and 
fibers, photodetectors, global optimization and performance estimate 
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EE/ES replacement option: HGC 
Ø  High-Granularity silicon-based sampling Calorimeter 
Ø  Electromagnetic calorimeter (25 X0) 

²  30 layers of Si sensors + W absorber 
²  10 × 0.5 X0, 10 × 0.8 X0, 10 × 1.2 X0 

Ø  Hadron calorimeter (3.5 λ)  
²  12 layers of Si sensors + brass (12 × 0.3 λ) 

Ø  Radiation levels very challenging 
²  Requires cold operation (expect −30°C) 
²  Develop CO2 cooling 

Ø  Complemented by a “smaller HE” 
²  Scintillator/brass, 5.5 λ 

§  Less demanding radiation/granularity requirements 

D. Abbaneo - CERN 

(*) Assuming use of 8” wafers 
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E-HGC H-HGC Total 

Region 1.48<|η|<1.75 1.75<|η|<2.15 2.15<|η|<3.0 R>860 mm R<860 mm 

Max 1MeV neq fluence 6×1014 2.5×1015 1×1016 6×1014 2.5×1015 

Active Si thickness (µm) 300 200 100 300 200 

Area of Silicon (m2) 420 241 661 

Channels (M) 6.0 2.7 8.7 

Detector modules(*) 18.2 10.5 28.7 



HGC: performance and outlook 
Ø  FE amplifier with logarithmic response 

² Good resolution and dynamic range  

Ø  Expect electromagnetic energy 
resolution around 20% / √E 

Ø  3D shower reconstruction 
Ø GBT-based data transmission. Optical 

conversion behind HE 
Ø R&D on sensors, module design, 

system aspects 
Ø Substantial engineering for cooling, 

thermal enclosure and service 
feedthroughs 
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HB/HE upgrade 
Ø HB refurbishment 

²  Limited replacement of scintillators 
§  Restore performance 

²  Upgrade of Back-End electronics 

Ø HE full replacement 
²  Rebuild including absorber 

§  Mandatory because of LS3 planning/logistics 
o  Assemble and commission detector on the surface 

§  Design coherently with EE option selected 

²  Different active materials may be used in different parts  
§  Optimize performance / cost according to different radiation requirements 
§  Under study: liquid scintillator, quartz, doped LuAG fibers…. 

D. Abbaneo - CERN August 15, 2014 27 



The Muon system upgrade 
LS2 and LS3 
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Muon Upgrades: overview 
Ø  Improvements of existing detectors 

²  Eletronics: DT minicrates, CSC inner MEx/1 readout 
§  Both are needed for compliance with trigger upgrade 

o  Independently: concern about aging of DT electronics 

Ø  Forward 1.6<|η|<2.4 upgrades 
²  L1 trigger rate reduction, enhance redundancy 
² GEMs: GE1/1 and GE2/1 

§  Ge1/1 to be installed in LS2 

²  iRPCs: RE3/1 and RE4/1 
§  Operation in higher rate 
§  Technology to be selected 

Ø Very forward extension 
²  Extend muon tagging  
² ME0 with GEMs  
²  6 layer stub  
²  Baseline 2.0<|η|<3.0 

§  Depends on calorimetry 
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GE1/1 in LS2 
Ø  Good progress in GEM technology over the past 

few years 
²  Single mask technique for GEM foils 

§  Allows to build large detectors 

²  Foils mechanically stretched in chamber assembly 
§  Assembly fast and simple 

²  No glue, and no spacers in the active volume 

Ø  Simple, large, cost-effective high-quality detectors 
Ø  Technology mature for a fairly large project! 
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GE1/1 performance 

Ø Excellent handle for 
trigger in Run 3 

D. Abbaneo - CERN 

²  Remains effective also after 
Track-Trigger is available 

August 15, 2014 31 



Trigger robustness 
Ø  Improvement of 

local primitives 
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 82% → 95% 

Ø  Improvement of global 
muon trigger efficiency 
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The Trigger Upgrade 
… to wrap up! 
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Summary of Phase-2 L1 features 
Ø Available latency 12.5 µs 
Ø Higher granularity information from Calorimeters… 

²  New EB electronics, new EE detectors 

Ø … and muon system, with higher rapidity coverage 
²  New DT electronics, new CSC electronics (at high η), improvement of HB 

back-end electronics, new RE*/1 GEM and RPC stations 

Ø Processing of L1 tracks (wish list) 
²  Use tracks to find primary vertices  
²  Associate tracks to primary vertices 
²  Associate tracks with calorimeter objects 
²  Associate tracks with muon tracks and refit 
²  Define track-correlated L1 objects 
²  Calculate isolation of calorimeter and muon objects 

§  Some 2.5 µs tentatively allocated to these tasks 

Ø Expect to produce a L1 accept rate well within 500 kHz for 
140 PU 
²  Assumed 750 kHz as safety margin / headroom for higher PU 

D. Abbaneo - CERN August 15, 2014 34 



Use of L1 tracks in the trigger 
Ø Example: single muons 

²  Improved pT resolution, sharper turn on curve 
²  Rate reduction of O(10) for a threshold of 20 GeV 
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Use of L1 tracks in the trigger 
Ø  Example: single electrons 

²  Rate reduction of O(10) with acceptable loss of efficiency 
²  Track-based isolation criteria 

Ø  Similar positive results for Photons, Tau jets, MET… 
²  Overall expected rate reduction >5 on the whole trigger menu 

Ø  N.B. No design for a hardware implementation yet! 
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Conclusions 
Ø CMS is detailing a program to improve the detector and make it 

suitable for High-Luminosity operation 
Ø A major upgrade is needed 

²  Complete new tracking system, electronics upgrade of the barrel detectors, new 
endcap calorimeters and some new forward muon detectors. 

²  Huge upgrade of the cavern infrastructures  
§  Not covered in this talk 

Ø Big effort, comparable to the original construction 
²  Difficult to find all the needed volunteers, while the Collaboration is analyzing 

data and building the Phase-1 Upgrades 

Ø We need to agree on a clear target for the operating 
parameters we should design for 
²  140 <PU> or 200 <PU> makes a difference for the optimization of the detector! 

§  The size of the beam spot is also relevant 

Ø  Looking forward to much more physics from the LHC! 
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