

Towards HL-LHC

The challenges

- Radiation tolerance
 - ♦ Survive 10× higher integrated dose/fluence than the present design
 - Very difficult requirement for the innermost detectors
- Reconstruction in high pileup
 - ♦ Higher granularity
 - Electronics channels and bandwidth
- Trigger/readout in high pileup
 - ♦ More information to form the L1 trigger decision
 - Even more bandwidth from the front-end
 - ♦ More time and processing power to process that information
 - Longer latency, more elaborate trigger electronics and more complex algorithms
 - ♦ Higher accept rate
 - Again, more bandwidth...
- The trigger upgrade is a major challenge, driving several aspects of the upgrade strategy
- In addition: evolve the detector design according to up-to-date physics interests
 - E.g. study of Vector Boson Scattering would profit of improved performance in the (very) forward region

CMS Phase 2 Upgrades

New Tracker

- Radiation tolerant high granularity less material
- Tracks in hardware trigger (L1)
- Coverage up to $\eta \sim 4$

Muons

- Replace DT FE electronics
- Complete RPC coverage in forward region (new GEM/RPC technology)
- Investigate Muon-tagging up to η ~ 4

New Endcap Calorimeters

- Radiation tolerant high granularity
- Investigate coverage up to n ~

Barrel ECAL

Replace FE electronics

Trigger/DAQ

- L1 (hardware) with tracks and rate up ~ 500 kHz to 1 MHz
- Latency \geq 10 µs
- HLT output up to 10 kHz

D. Abbaneo - CERN

The Tracker Upgrade

• • •

To be installed in LS3

D. Abbaneo - CERN

Tracker - motivations for the upgrade

Pixel detector

- Loss of charge collection translates to degraded hit resolution
 - After 500 fb⁻¹ IP resolution degraded by 50%
- ♦ 7% data loss at 140 <PU> in barrel layer 1, due to limitations in FE buffers

Strip Tracker

- Most prominent effect is the increased of leakage current
 - Increasing number of modules that cannot be operated
 - Highly degraded tracking performance

Both detectors

- \diamond L1 latency limited to ~4 μs and L1 accept rate limited to ~100 kHz
- ♦ Prevent any substantial trigger upgrade!

Tracker - motivations for the upgrade

Map of modules that cannot be operated after 1000 fb⁻¹ for a coolant temperature of -20°C

♦ Almost all double-sided modules are dead

D. Abbaneo - CERN

Tracker - motivations for the upgrade

Performance degradation for 140 <PU> and 1000 fb⁻¹
Strip Tracker aging only

Tracker Upgrade - requirements

- Radiation tolerance
 - ♦ 3000 fb⁻¹ for Outer Tracker
 - ♦ Preserve possibility of replacing inner parts of the Pixel detector
- Increased granularity
 - ♦ Occupancy ~1%
- Improved two-track separation
 - ♦ Smaller pixels
- Reduced material in the tracking volume
 - \diamond As good as we can
- Robust pattern recognition
 - ♦ Seeding capabilities in Outer Tracker
- - ♦ The Outer Tracker contributes information for the L1 trigger decision
- Extended tracking acceptance
 - \diamond Up to about η =4

D. Abbaneo - CERN

The Outer Tracker: basic concept \succ Novel trigger functionality implemented with "p_T modules" ♦ Two closely-spaced sensors readout by one same front-end \Rightarrow p_T of the particle measured over the sensor spacing \diamond Stubs from particles with p_T > 2 GeV are sent out at each BX $\odot \vec{B}$ One order of magnitude data reduction Requires programmable acceptance window + different sensor spacing "stub" fail pass AR I $\odot \vec{B}$ $1 \div 4 mm$ $R \blacktriangle$ $\Delta z = \Delta R / tg \vartheta$ ≤100 µm Level-1 accept Full data Track CMS Readout ~ 500 kHz oidirection Find Level-1 Stubs only CMS 40 MHz DAQ **Outer Tracker Front-end Tracker Back-end** CMS

Two types of modules

Modules with 2 Strip sensors (2S modules)

- $\diamond\,$ Two sensors with 90 μm × 5 cm strips
- \diamond No precise measurement of the z coordinate
- ♦ All auxiliary electronics (power and readout optical link) integrated on board
- ♦ Used in the Outer Layers (1.8 mm and 4.0 mm sensors spacing)

Two types of modules

Modules with a macro-Pixel sensor and a Strip sensor (PS modules)

- \diamond One sensor with 100 μ m × 1.5 mm macro-pixels (for the z coordinate)
- \diamond One sensor with 100 μ m × 2.5 cm strips
- ♦ All auxiliary electronics (power and readout optical link) integrated on board
- ♦ Used in the Intermediate Layers (1.6 mm, 2.6 mm and 4.0 mm sensors spacing)

Ongoing developments

- Suitable sensor materials and technologies identified
 FZ or MCz, 200 µm active thickness, n-in-p
- Development of FE electronics in progress
- Several module prototypes have been produced
- Design of mechanical structures started
- \succ CO₂ cooling
 - ♦ Need ~ 100kW Common development with ATLAS
- Back-end electronics for L1 track reconstruction
 - Pattern recognition with Associative Memories or propagation from layer to layer in FPGA followed by fit in FPGA
 - Demonstrators being developed with existing high BW processing boards

Cooling/support plate for PS modules

Pixel Upgrade

- Radiation tolerance is a big challenge
 - \diamond Unprecedented levels of ~2×10¹⁶ 1MeV n_{eq} /cm² ¹⁵
 - $\diamond\,$ Difficult for both sensors and electronics
- Sensors: thin planar silicon
 - \diamond Requires chip with low-threshold and small pixels
 - \diamond Possibly 3D sensors in the inner layer
 - ♦ A lot of R&D still needed
- Readout chip: 65 nm CMOS technology
 - ♦ Radiation qualification ongoing
 - ♦ Common development with ATLAS (RD53)
 - $\diamond\,$ Considering pixels as small as 25×100 $\mu m^2\, or\, 50\times 50\, \mu m^2$
- Readout and power require dedicated R&D
 - Bandwidth ×20 or more compared to Phase-1
 - Higher PU × Higher L1A rate
 - ♦ Likely higher power at lower voltage!
 - ♦ All services in the tracking volume
 - Because of the rapidity extension

FPIX

BPIX

D. Abbaneo - CERN

FPIX Service Cylinder

August 15, 2014 • 14

BPIX

Optical links

Cooling loop

supply tube: Module connections

DC-DC conversion

Estimated performance - online

- Stub finding efficiency in Front-End electronics
 - ♦ With optimized sensor spacing and acceptance window
 - Tuned to obtain ~99% efficiency for $p_T = 2$ GeV muons

Estimated performance - online

Estimated performance - offline

Good tracking performance in high pileup

 \diamond Substantial improvement in p_T resolution from reduced material

The calorimeter upgrade

• • •

Also for LS3

D. Abbaneo - CERN

Calorimeters: some requirements

- ➤ Latency of 12.5 µs, L1A rate ~ 750 kHz
- Operation at 140 <PU>
 - \diamond Need higher granularity, both for trigger and full reconstruction
- Retain good photon resolution and efficiency
 - ♦ Mitigate degradation where most severe

Calorimeters: limitations and need for upgrades

> Preshower

- ♦ Incompatible with trigger upgrade
 - Although sensors would still work
- ♦ Not kept for Phase-2
- ECAL crystals
 - ♦ Significant damage
 - Both electomagnetic and hadronic
 - \diamond Unacceptable darkening at high $\eta,$ EB is ~OK
- ECAL photodetectors
 - ♦ EB APD degrade significantly
 - Higher dark current → noise. Requires mitigation.
 - \diamond EE VPT could work
- ECAL electronics
 - Incompatible with trigger upgrade replacement needed
- HCAL scintillator
 - ♦ Significant loss of signal in first HB layers an substantial fraction of HE
 - Requires replacement or upgrade

- ♦ Faster shaping
 - Helps for out of time pileup and "spike" mitigation
- Requires rework of all supermodules in LS3!
- > Lower operating temperature (e.g. $18^{\circ}C \rightarrow 8^{\circ}C$)
 - Reduce APD dark current and noise
 - ♦ Requires new pipework (foreseen anyway) and some engineering

EE/ES replacement option: Shashlik

- Similar structure as current EE
- LYSO Crystals + W absorber
- More compact / higher granularity
 - ♦ Radiation length: $8.9 \rightarrow 5.1$ mm
 - ♦ Moliere radius: 21→ 13.7 mm
 - ↔ Lateral size: 28.6 → 14 mm
 - ↔ Length: 220 → 114 mm
- Complemented by new HE
 - ♦ Located closer to the IP
 - ♦ Electronics behind HE
 - Plus space for new muon detector

D. Abbaneo - CERN

Shashlik: performance and outlook

- Good intrinsic electromagnetic energy resolution
- Better resolution than current system for jets
- Results for high pileup in preparation

R&D still ongoing on all main aspects

Development of the WLS system, radiation qualification of crystals and fibers, photodetectors, global optimization and performance estimate

EE/ES replacement option: HGC

- High-Granularity silicon-based sampling Calorimeter
- Electromagnetic calorimeter (25 X₀)
 - \diamond 30 layers of Si sensors + W absorber
 - \diamond 10 × 0.5 X₀, 10 × 0.8 X₀, 10 × 1.2 X₀
- > Hadron calorimeter (3.5 λ)

 \Rightarrow 12 layers of Si sensors + brass (12 × 0.3 λ)

- Radiation levels very challenging
 - ♦ Requires cold operation (expect -30°C)
 - ♦ Develop CO₂ cooling
- Complemented by a "smaller HE"
 - \diamond Scintillator/brass, 5.5 λ
 - Less demanding radiation/granularity requirements

(*) Assuming use of 8" wafers		E-HGC			H-HGC		Total
	Region	1.48< ŋ <1.75	1.75< ŋ <2.15	2.15< ໗ <3.0	R>860 mm	R<860 mm	
	Max 1MeV n _{eq} fluence	6×10 ¹⁴	2.5×10 ¹⁵	1×10 ¹⁶	6×10 ¹⁴	2.5×10 ¹⁵	
	Active Si thickness (µm)	300	200	100	300	200	
	Area of Silicon (m ²)	420			241		661
	Channels (M)	6.0			2.7		8.7
	Detector modules ^(*)	18.2			10.5		28.7

HGC: performance and outlook

- FE amplifier with logarithmic response
 ♦ Good resolution and dynamic range
- Expect electromagnetic energy resolution around 20% / √E
- > 3D shower reconstruction
- GBT-based data transmission. Optical conversion behind HE
- R&D on sensors, module design, system aspects
- Substantial engineering for cooling, thermal enclosure and service feedthroughs

HB/HE upgrade

HB refurbishment

- Limited replacement of scintillators
 - Restore performance
- ♦ Upgrade of Back-End electronics

➤ HE full replacement

- ♦ Rebuild including absorber
 - Mandatory because of LS3 planning/logistics
 Assemble and commission detector on the surface
 - Design coherently with EE option selected
- ♦ Different active materials may be used in different parts
 - Optimize performance / cost according to different radiation requirements
 - Under study: liquid scintillator, quartz, doped LuAG fibers....

The Muon system upgrade

LS2 and LS3

D. Abbaneo - CERN

Muon Upgrades: overview

- Improvements of existing detectors
 - Eletronics: DT minicrates, CSC inner MEx/1 readout
 - Both are needed for compliance with trigger upgrade
 - \circ $\;$ Independently: concern about aging of DT electronics

➢ Forward 1.6<|η|<2.4 upgrades</p>

- ♦ L1 trigger rate reduction, enhance redundancy
- ♦ GEMs: GE1/1 and GE2/1
 - Ge1/1 to be installed in LS2
- ♦ iRPCs: RE3/1 and RE4/1
 - Operation in higher rate
 - Technology to be selected
- Very forward extension
 - ♦ Extend muon tagging
 - ♦ ME0 with GEMs
 - ♦ 6 layer stub
 - - Depends on calorimetry

D. Abbaneo - CERN

GE1/1 in LS2

- Good progress in GEM technology over the past few years
 - ♦ Single mask technique for GEM foils
 - Allows to build large detectors
 - ♦ Foils mechanically stretched in chamber assembly
 - Assembly fast and simple
 - \diamond No glue, and no spacers in the active volume
- Simple, large, cost-effective high-quality detectors
- Technology mature for a fairly large project!

Trigger robustness

The Trigger Upgrade

... to wrap up!

D. Abbaneo - CERN

Summary of Phase-2 L1 features

- > Available latency 12.5 µs
- > Higher granularity information from Calorimeters...
 - ♦ New EB electronics, new EE detectors
- > ... and muon system, with higher rapidity coverage
 - New DT electronics, new CSC electronics (at high η), improvement of HB back-end electronics, new RE*/1 GEM and RPC stations

Processing of L1 tracks (wish list)

- \diamond Use tracks to find primary vertices
- ♦ Associate tracks to primary vertices
- ♦ Associate tracks with calorimeter objects
- ♦ Associate tracks with muon tracks and refit
- ♦ Define track-correlated L1 objects
- ♦ Calculate isolation of calorimeter and muon objects
 - Some 2.5 µs tentatively allocated to these tasks
- Expect to produce a L1 accept rate well within 500 kHz for 140 PU

♦ Assumed 750 kHz as safety margin / headroom for higher PU

Use of L1 tracks in the trigger

- Example: single muons
 - \diamond Improved p_T resolution, sharper turn on curve
 - ♦ Rate reduction of O(10) for a threshold of 20 GeV

Use of L1 tracks in the trigger

- Example: single electrons
 - \diamond Rate reduction of O(10) with acceptable loss of efficiency
 - ♦ Track-based isolation criteria

Conclusions

- CMS is detailing a program to improve the detector and make it suitable for High-Luminosity operation
- A major upgrade is needed
 - Complete new tracking system, electronics upgrade of the barrel detectors, new endcap calorimeters and some new forward muon detectors.
 - ♦ Huge upgrade of the cavern infrastructures
 - Not covered in this talk
- Big effort, comparable to the original construction
 - Difficult to find all the needed volunteers, while the Collaboration is analyzing data and building the Phase-1 Upgrades
- We need to agree on a clear target for the operating parameters we should design for
 - - The size of the beam spot is also relevant
- Looking forward to much more physics from the LHC!