Computing Challenges for Run2

L. Poggioli, LAL, Orsay

Outline

- · Run1 outcome
- Run2 challenges
- Solutions
 - Model
 - CPU/Storage
 - Opportunistic resources
 - Network benefits
- Summary

July 4, 2012 Global Effort → Global Success Results today only possible due to extraordinary performance of accelerators - experiments - Grid computing Observation of a new particle consistent with a Higgs Boson (but which one ...?) Historic Milestone but only the beginning Global Implications for the future

Run1 Outcome

- · ATLAS
 - 350M jobs in 2013
 - Analysis jobs > 50%
 - 1.2EB data read-in
 - > 82% by analysis
- · CMS
 - 6pB data, 13B MC evts
 - 4pB/month transfers
 - MC/Data = 1.1

It worked beyond expectations!! Analysis: Main driver of storage & I/O capacity

Run2 Challenges

- Flat budget constraints
 - h/w increase from Moore's law gain
 - Estimated factors of
 1.2/year for CPU &
 1.15/yr for disk & tape
- Data from Run-1
 - Proper data preservation

- LHC operation
 - HLT rate x 2.5
 - Pile-up > 30
 - -> Reco time x 2-2.5
 - 25ns bunch spacing
 - c.m. energy \times 2
- 'New' detector
 - To be integrated in simul & reco

Computing Model 2010-2013

Network performance breakthrough (eg LHCONE 2011)

- Going away from hierarchical Model (TO-T1s-T2s)
- Dynamic data placement & deletion based on popularity

• T2→N-T1s & T2↔T2 exchanges - New T2D with data (LHCb)

Planned data distribution

Jobs go to data

Multi-hop data flows

Poor T2 netwking across regions

Planned & dynamic distribution data Jobs go to data & data to free sites Direct data flows for most of T2s Many T2s connected to 10Gb/s link

Limitations of current model & tools

- Partitioning of resources
 - Analysis vs Central Production T1s versus T2s
- Data distribution management & Production systems limits to scale to new conditions
- · Memory increase of MC pile-up digi & reco
- · Multitude of data format for analysis
 - -> Gain needed in Simulation (CPU), Reconstruction (CPU, memory), Analysis (Data format, disk space, CPU)

Run2: Extrapolation & extension of end of Run1 framework

CPU Optimization

- Better usage of resources
 - Less MC/data than in Run1
 - Prompt Reco/No Repro (LHCb)
 - More Fast wrt Full sim
 - Optimization Fast/Full

- Software improvements
 - Optimize track seeding
 - Use vectorized trigo. functions
 - Use faster algebra libraries, simplify data model

See M. Elsings's talk

Software Changes

- · All expts embarked in deep changes
 - Cf. HEP Software Foundation
- Memory footprint reduction
 - Using multicore jobs
 - Baseline for reconstruction
- Memory sharing
 - Using multithreading
- · Revision of data models
- Vectorization
 - To exploit new architectures (GPU)

event & algorithm parallelism

Storage

- Analysis formats
 - Reduce # types (xAOD/ATLAS), smaller (miniAOD/CMS, MDST/LHCb) -> Gain in space
 - Limit # replicas at T1s & T2s
- · Disk
 - More efficient use of dynamic placement
 - More agressive deletion of non-popular data
- · Tape
 - More usage of tape (~5x cheaper/TB than disk)
 - · Centrally organized activities will read more from tape
 - Decoupling of Disk & Tape at T1s (CMS) for user

Workload / Data Management

- Workload
 - Less separation TO/T1s/T2s
 - T1s can take T0 load, T2s do reprocessing (T1s task)
 - Unify analysis & production
 - · Single queue (CMS), same engine (ATLAS)
 - · Better reactivity to analysis loads
- · Distributed Data management
 - New scalable architecture (eg ATLAS)
 - · Built-in replication policy (space & netwk optimization)
 - Streamlining
 - Limit # catalogs for handling data (LHCb, ATLAS)
 - Use more powerful protocols for transfers (FTS3)

Analysis Model

- Goal: Minimize (i.e. Common) analysis formats
 & optimize analysis tools (submission,...)
- · CMS: MiniAOD

- Replaces dozens of when new high level calibrations or recipes become available

Group Ntuple/trees - Small size (50kB)

- Improved elements for job resubmission & task

completion

- · ATLAS: XAOD
 - Data reduction frawework (PB->TB)
 - · Group data sample centrally produced
- · LHCb: Generalized use of MDST

Analysis2 tuple

Analysis5 tuple

if needed?

Opportunistic resources (1)

- Virtualization
 - Ask for resources thru interface and get access & control of (virtual) machine, i.e. job slot on Grid
 - High Level Trigger (HLT)
 - · Use resource between fills
 - Not for LHCb (Farm used between fills for deferred HLT processing)
 - Expect CPU power ~T1 or big T2
 - Clouds usage
 - Academic (eg OpenStack @ CERN)
 - eg 6K cores at CERN-TO for Heavy Ion reprocessing (CMS)
 - · Commercial (Amazon EC2, Google)

Opportunistic resources (2)

- Super Computers (HPC)
 - From Peta to ExaFLOPS
 - Large # CPU cycles can be used parasitically
 - · eg MC simulation (10% Grid production, 10-20k cores)
 - Issues: I/O & outbound connectivity
- · Volunteer Computing using BOINC
 - Used by LHCb & ATLAS: Free!!
 - Solution for Institute desktop clusters
 - Can work at event level
 (Cf. ATLAS event service)

- · Extra-unpledged resources at sites
 - eg T3s resources, opportunistic, as in Run1

Quy-Nhon, 15/08/2014

L.Poggioli, LAL Orsay

Remote Data Access (1)

- · Networking keeps on progressing fast
 - x10 every 4.25 yrs / Already 100Gb/s among US
- · -> Jobs can access data remotely via network
 - Allows better usage of storage resources
 - Breaks the 'jobs go to data' Grid paradigm!!
 - Better suited to Analysis jobs
- Protocols
 - http: Allows direct download files from Grid to local
 - Not in quality production today
 - Xrootd: Allows direct data acces in ROOT & analysis s/w (ATLAS, CMS, LHCb in deployment)

Quy-Nhon, 15/08/2014

Remote Data Access (2)

- · Remote access modes using Xrootd
 - Grid job recovery if data access issue at site
 - Run jobs at site w/o data & access files remotely
- · CMS: Anydata Anytime Anywhere
 - Access 20% data over network
 - Small loss in efficiency local vs remote
 - Mostly for Analysis, intend to use for reprocessing
- · ATLAS: Federated ATLAS Xrootd
 - Recovery mode OK
 - Running remotely mode under test
 - Potential impact of network saturation

Beyond Run2

Summary

- Run1 completed successfully
 - A lot of experience gathered
 - Computing acknowledged as key component
- Run2 is an evolution of Run1
- Many ideas investigated for Run2
 - Cf. LHC Computing Model Update document
 - Role of Tiers, use of network, data federation, clouds, opportunistic resources
 - Big efforts by experiments to optimize & gain in resource (CPU, memory, storage)
 - All these ideas being tested at full scale now
- Manpower is an issue
 Quy-Nhon, 15/08/2014

 L.Poggioli, LAL Orsay