

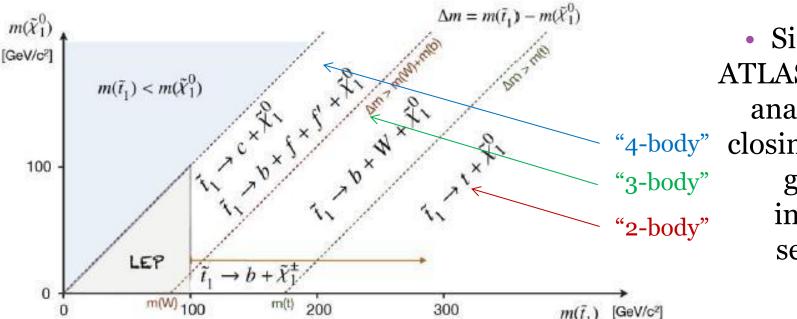
# Third generation squarks searches

#### Andrea Ventura

Sezione INFN di Lecce & University of Salento – Italy

on behalf of the **ATLAS** & **CMS** Collaborations

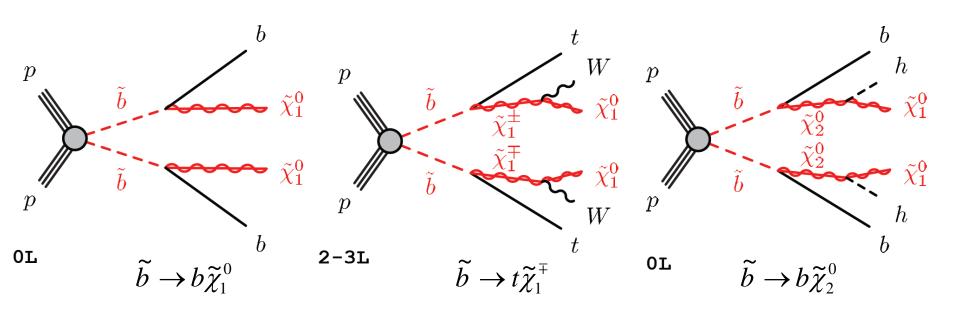



August 16, 2014

#### Third generation squarks

- Supersymmetry (SUSY) offers a solution to the hierarchy problem in the Standard Model (SM)
- Light squarks can significantly contribute in **Higgs boson** mass loop corrections.
- Large mixing imply **lower masses** for third generation squarks  $\tilde{t}$  (**stop**) and  $\tilde{b}$  (**sbottom**) with respect to the first two generations.
- If R-parity is conserved,  $\tilde{\chi}_1^0$  (lightest neutralino) remains a good candidate for **Dark Matter** (LSP)
- Many "natural" scenarios predict **light** third generation squarks to be lighter than ~1 TeV

#### Production and decays


- Here focus is on direct stop/sbottom pair production searches
- Few possible decay modes are possible for  $\tilde{t}$  and  $\tilde{b}$  depending on the sparticle masses of the point in the parameter space
- Simplified assumption is **100**% branching fraction for the given final state considered



Since 2011
 ATLAS & CMS

 analyses are
 closing up the
 gaps with
 increasing
 sensitivity

#### Direct production of sbottom pairs

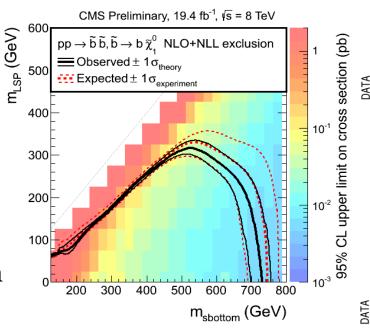


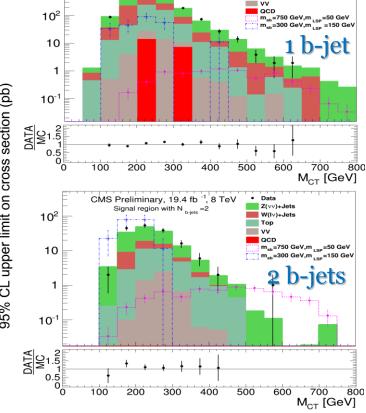
- Signatures of interest can include o leptons or 2-3 leptons
- The last case considered can happen via Z instead of Higgs boson
- $\widetilde{\chi}_1^0$  assumed to be the LSP, unless differently specified

PAS-SUS-13-018

 $10^{3}$ 

# 0 leptons + 2 (1 b-)jets + MET





• Signal discriminant is  $M_{CT}$ :  $M_{CT}^2(J_1, J_2) = [E_T(J_1) + E_T(J_2)]^2 - [\mathbf{p_T}(J_1) - \mathbf{p_T}(J_2)]^2$  $= 2p_T(J_1)p_T(J_2)(1 + \cos \Delta \phi(J_1, J_2))$ 

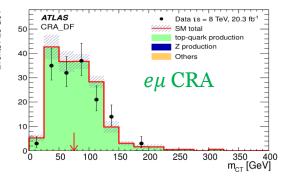
• Eight exclusive signal regions (**SR**s):

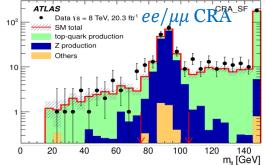
| No. of b-jets    |           | $M_{CT}$      | $M_{CT}$      | $M_{CT}$  |
|------------------|-----------|---------------|---------------|-----------|
| $N_{b-jets} = 1$ | < 250 GeV | 250 - 350 GeV | 350 - 450 GeV | > 450 GeV |
| $N_{b-jets} = 2$ | < 250 GeV | 250 - 350 GeV | 350 - 450 GeV | > 450 GeV |

The production of bottom squarks with mass up to 700 GeV is excluded at 95% confidence level for neutralino masses less than 50 GeV.

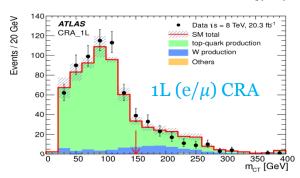





#### JHEP 10 (2013) 189


#### 0 leptons + 2 b-jets + MET

| A |
|---|
| T |
| A |
| 5 |

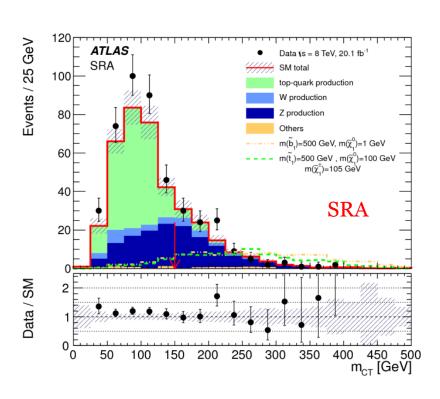

| Description                                               | Signal Regions                                   |                                                                                    |  |  |
|-----------------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------------------------|--|--|
| Description                                               | SRA                                              | SRB                                                                                |  |  |
|                                                           | Event cleaning and lepton veto common to all SR  |                                                                                    |  |  |
| E <sub>T</sub> miss                                       | > 150 GeV                                        | > 250 GeV                                                                          |  |  |
| Jet p <sub>T</sub>                                        | $j_1 > 130, j_2 > 50 \text{GeV}$                 | $j_1 > 150, j_2 > 30 \mathrm{GeV}$                                                 |  |  |
| Third jet $p_{\rm T}$ ( $j_{\rm 3}$ )                     | veto if > 50 GeV                                 | > 30 GeV                                                                           |  |  |
| <i>b</i> -tagging                                         | Required on leading 2 jets                       | 2nd- and 3rd-leading jets                                                          |  |  |
|                                                           | $n_{b	ext{-jets}} = 2$                           |                                                                                    |  |  |
| $\Delta\phi(oldsymbol{ ho}_{ m T}^{ m miss}\;,j_i)_{min}$ | > 0.4                                            | $> 0.4 \ \&\& \ \Delta \phi(\pmb{p}_{\mathrm{T}}^{\mathrm{miss}} \ , j_{1}) > 2.5$ |  |  |
| $E_{\rm T}^{\rm miss}/m_{\rm eff}(k)$                     | $E_{ m T}^{ m miss} \ / m_{ m eff} \ (2) > 0.25$ | $E_{\rm T}^{\rm miss} / m_{\rm eff}  (3) > 0.25$                                   |  |  |
| $m_{\rm CT}$                                              | > 150, 200, 250, 300, 350 GeV                    | -                                                                                  |  |  |
| $H_{\mathrm{T,3}}$                                        | -                                                | < 50 <i>GeV</i>                                                                    |  |  |
| m <sub>bb</sub>                                           | > 200 <i>GeV</i>                                 | -                                                                                  |  |  |

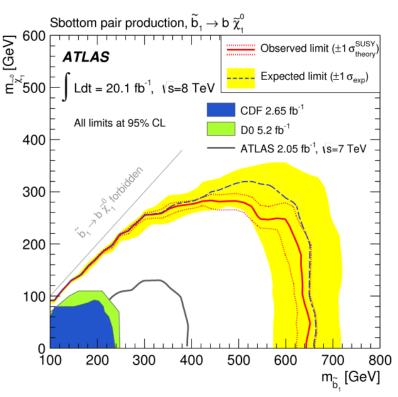
- SRA aims at large  $\Delta m(\tilde{b}, \tilde{\chi}_1^0)$  signal events
- SRB aims at small  $\Delta m(\tilde{b}, \tilde{\chi}_1^0)$  when there is a high- $p_{T_n}$  ISR jet in the event, boosting  $b\tilde{b}$
- $H_{T,3} = \sum_{i=1}^{n} p_{T,i}$
- Main backgrounds: tt, Z+HF, W+HF: suitable CRs defined for each one of them





Events / 5 GeV



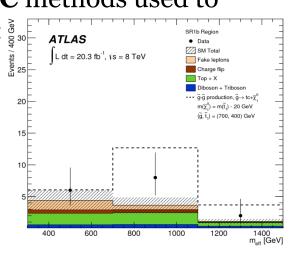


JHEP 10 (2013) 189

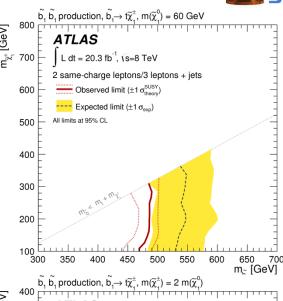
# 0 leptons + 2 b-jets + MET

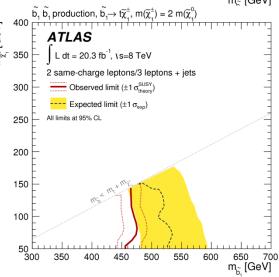


- No significant excess is observed in either SR
- The analysis is also sensitive to  $\tilde{t} \to b + \tilde{\chi}_1^{\pm}$  scenarios with very low mass difference between  $\tilde{\chi}_1^{\pm}$  and  $\tilde{\chi}_1^{0}$ .

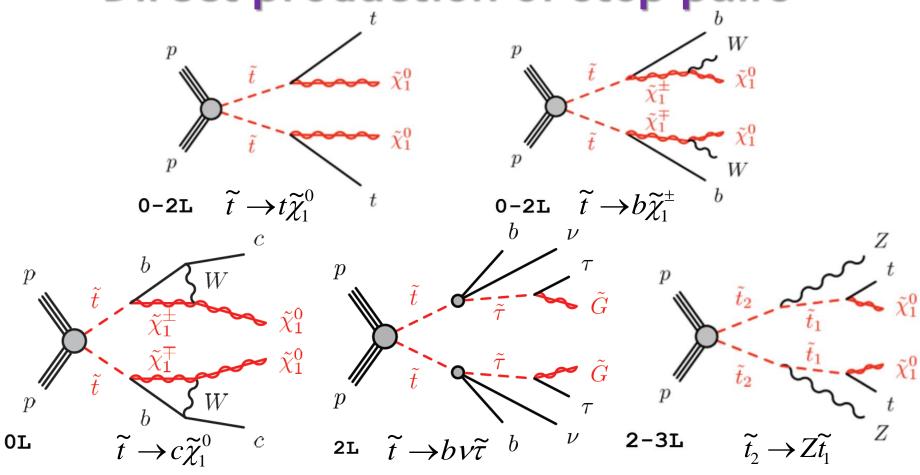






JHEP 06 (2014) 035 - arXiv:1404.2500


# 2 same-sign/3-leptons + 0-3 b-jets + ME1

| SR       | Leptons  | $N_{b-jets}$ | Other variables                                                 | Additional requirement           |
|----------|----------|--------------|-----------------------------------------------------------------|----------------------------------|
|          |          |              |                                                                 | on $m_{ m eff}$                  |
| SR3b     | SS or 3L | ≥3           | $N_{ m jets} \geq 5$                                            | $m_{ m eff}>$ 350 GeV            |
| SR1b     | SS       | ≥1           | $N_{ m jets} \geq$ 3, $E_{ m T}^{ m miss} >$ 150 GeV,           | <i>m</i> <sub>eff</sub> >700 GeV |
|          |          |              | $m_{ m T}$ $>$ 100 GeV, SR3b veto                               |                                  |
| SR3Llow  | 3L       | -            | $N_{ m jets} \geq$ 4, 50 $<$ $E_{ m T}^{ m miss} <$ 150 GeV,    | <i>m</i> <sub>eff</sub> >400 GeV |
|          |          |              | Z boson veto, SR3b veto                                         |                                  |
| SR3Lhigh | 3L       | -            | $N_{ m jets} \geq$ 4, $E_{ m T}^{ m miss} >$ 150 GeV, SR3b veto | m <sub>eff</sub> >400 GeV        |

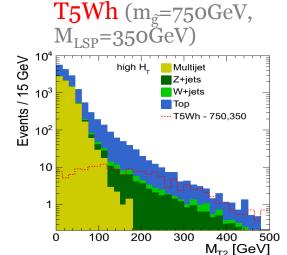

- Four SRs based on  $E_T^{miss}$ ,  $N_{jets}$ ,  $M_T$ ,  $m_{eff}$  sensitive to  $3^{rd}$  generation/direct squark searches
- No significant excess of SUSY signal found with respect to SM

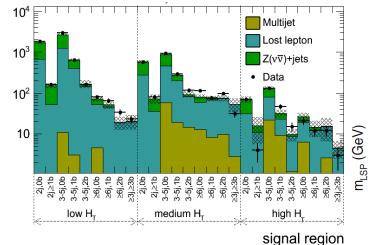




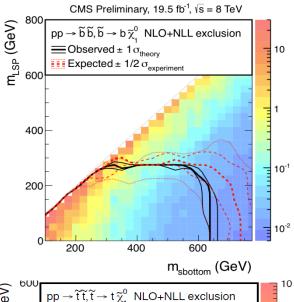


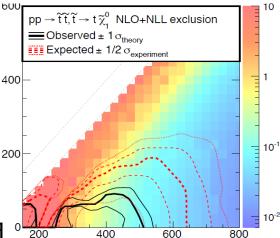
Direct production of stop pairs





PAS-SUS-13-019




# 0 leptons + (b)jets + MET + large M


- Inclusive search for **fully hadronic** final states
- Several SRs defined according to jet, b-jet multiplicity,  $H_T$  and  $M_{T_2}$
- Main backgrounds:  $Z \rightarrow \nu \bar{\nu}$ , W+jets or  $t\bar{t}$ +jets with a lost lepton
- A simplified signal model considered:



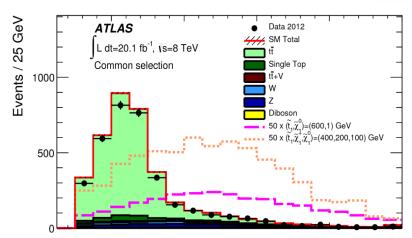


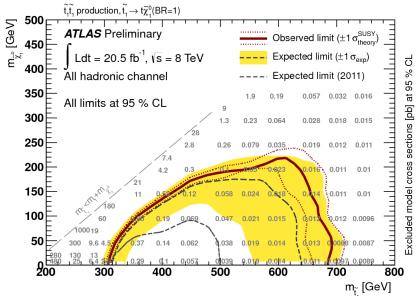
| Channel                        | Lost lepton                       | $Z(\nu\bar{\nu})$ +jets        | Total background                   | Data     |
|--------------------------------|-----------------------------------|--------------------------------|------------------------------------|----------|
| $low H_{ m T}$ high $H_{ m T}$ | $37.1 \pm 9.0$<br>$64.8 \pm 16.4$ | $6.9 \pm 6.9$<br>$4.4 \pm 4.4$ | $44.0 \pm 11.3$<br>$69.2 \pm 17.0$ | 55<br>81 |
| 111/211                        | 01.0 ± 10.1                       | 1.1 ± 1.1                      | 00.2 ± 17.0                        | 01       |





No significant excess of events over the expected background


 $m_{stop}$  (GeV)

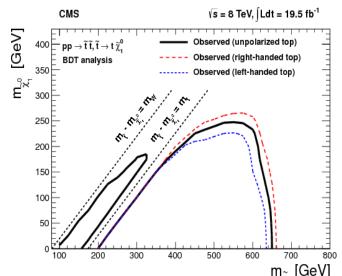

#### arXiv:1406.1122

# 0 leptons + 6 (2 b-)jets + MET

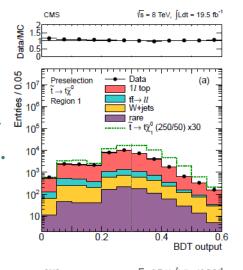


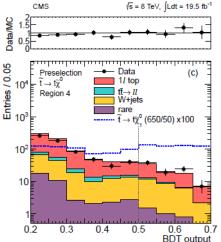
- Specific experimental signature different from 1<sup>st</sup> two generations
- ≥2 b-jets in final state
- Re-clustered fat jets used to enhance sensitivity for heavy stops
- Lepton veto
- MET > 150 GeV
- $m_T^{b,min} > 175 \text{ GeV}$
- Few SRs defined:
  - 4 SRs based on ≥6 jets with
     MET > 150/250/300/350 GeV
  - 2 SRs based on 4 or 5 jets with MET > 325/400 GeV
  - 3 SRs based on exactly 5 jets with MET > 160/160/215 GeV
- Stop here is searched to be heavy and very boosted: exclusion limits plot reaches stop masses up to 700 GeV

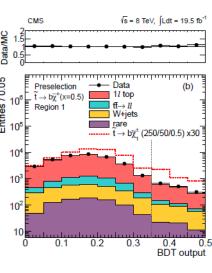


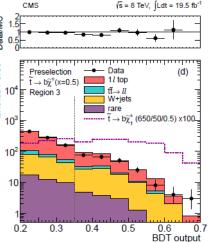



EPJC 73 (2013) 2677 - arXiv:1308.1586


### 1 lepton + jets + MET





- The goal is to look for direct stop semi-leptonic decays
- A cut-based approach and a multivariate (BDT) method are used
  - □ Input:  $E_T^{miss}$ ,  $m_T$ ,  $min\Delta \varphi$ ,  $p_T^{b-jet_1}$ , ...




1-lepton analysis is sensitive to stop polarization; CMS use various assumptions (ATLAS assumes almost stop<sub>R</sub>-like stop<sub>1</sub>)

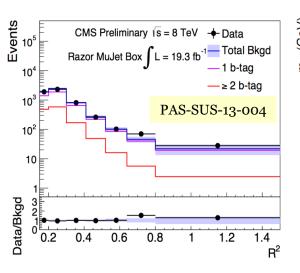


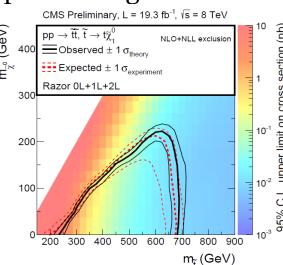






#### PAS-SUS-14-011

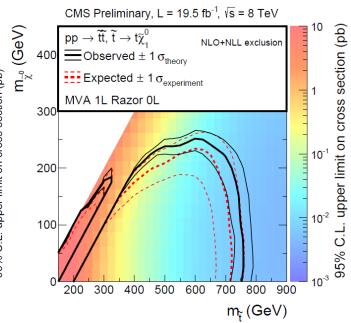

#### Inclusive razor & exclusive 1-lepton




• Razor variables  $M_R$  and R are used to study the dijet topology resulting from the production of two squarks, each one decaying to a quark and a neutralino:

 Nine razor boxes are defined and compared with exclusive single-lepton

•  $M_R$  and R are functions smoothly falling for background and to peak for signal

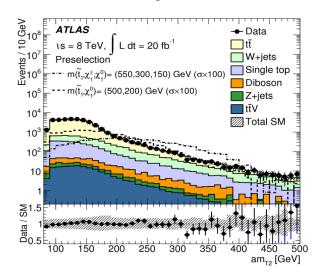


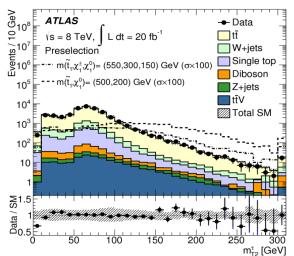


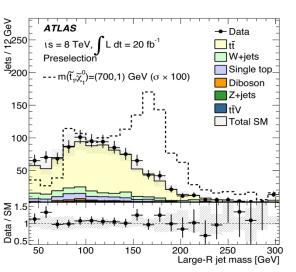

$$M_R \equiv \sqrt{(p_{j_1} + p_{j_2})^2 - (p_z^{j_1} + p_z^{j_2})^2}$$
 $M_T^R \equiv \sqrt{\frac{E_T^{miss}(p_T^{j_1} + p_T^{j_2}) - \vec{E}_T^{miss} \cdot (\vec{p}_T^{j_1} + \vec{p}_T^{j_2})}{2}}$ 

$$R \equiv \frac{M_T^R}{M_R}$$

After combination with 1-lepton exclusive analysis





arXiv:1407.0583

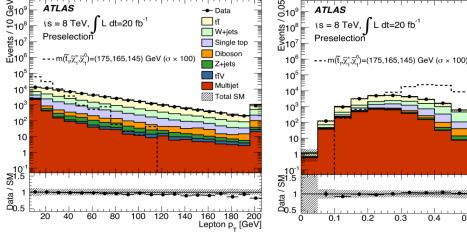

# 1 lepton + 4 (1 b-)jets + MET (1/2)



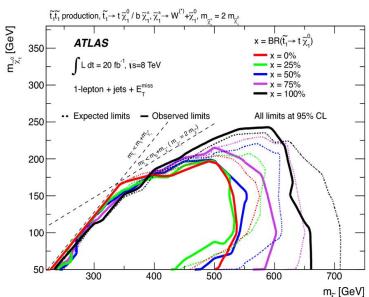
- Wide range of scenarios considered with different sets of  $\tilde{t}_1$ ,  $\tilde{\chi}_1^{\pm}$ ,  $\tilde{\chi}_1^{o}$  masses
- Different approaches used for a total of 15 SRs with  $E_T^{miss} > 100$  GeV:
  - b-tagged jets to build kinematic variables, single large-radius jets for heavy stop;
  - low-p<sub>T</sub> leptons to improve sensitivity for  $\tilde{t}_1 \rightarrow b\tilde{\chi}_1^{\pm}$  decays for small  $\Delta m(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^{\circ})$
- Both cut-and-count and shape-fit methods used to estimate expected and observed exclusion limits
- Largest SM background for <u>large-R jets</u> is dileptonic  $t\bar{t}$  events with one lost lepton
  - Also W+jets is relevant: both sources are estimated with data-driven CRs

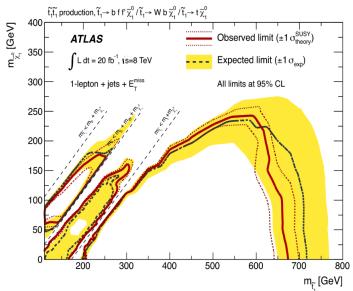







arXiv:1407.0583


# 1 lepton + 4 (1 b-)jets + MET (2/2)


AT LAS

- The <u>soft-lepton</u> analysis is based on 6(7) GeV < p<sub>T</sub><sup>l</sup>< 25 GeV for muons(electrons)
  - Specific track-isolation criteria are applied to leptons, looser than for large-R jets analysis



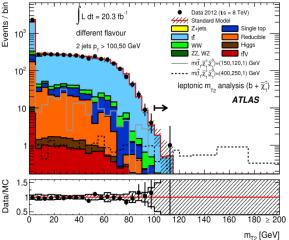
Expected and observed 95%
CL excluded regions assuming
BR(t₁→tχ₁)
=100%





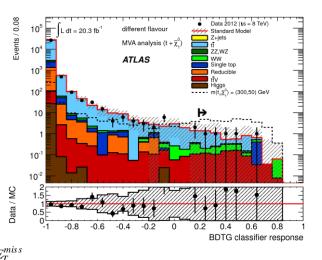
JHEP 06 (2014) 124 - arXiv:1403.4853

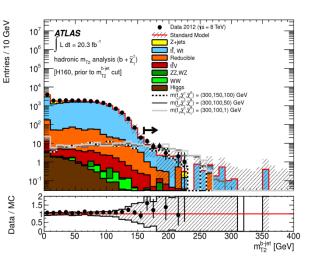
#### 2 leptons + (b-)jets + MET


(1/2)



• Three separate approaches followed, based on  $m_{T2}$ 


$$m_{T2}(\vec{p}_{T}^{\alpha}, \vec{p}_{T}^{\beta}, \vec{p}_{T}^{miss}) = min_{\vec{q}_{T}^{1} + \vec{q}_{T}^{2} = \vec{p}_{T}^{miss}} \{ max(m_{T}^{2}(\vec{p}_{T}^{\alpha}, \vec{q}_{T}^{1}), m_{T}^{2}(\vec{p}_{T}^{\beta}, \vec{q}_{T}^{2})) \}$$


- $\ \ \, \stackrel{\square}{t} \rightarrow b\widetilde{\chi}_{1}^{\pm} \text{ using leptonic } \mathbf{m}_{\mathbf{T}_{2}} \text{ for } \Delta m(\widetilde{\chi}_{1}^{\pm}, \widetilde{\chi}_{1}^{0}) > m_{W}$
- $\widetilde{t} \rightarrow b\widetilde{\chi}_1^{\pm}$  using hadronic  $\mathbf{m}_{\mathbf{T}_2}$  for  $\Delta m(\widetilde{\chi}_1^{\pm}, \widetilde{\chi}_1^{0}) < m_W$
- $\widetilde{t} \rightarrow t\widetilde{\chi}_1^0$  using multivariate analysis (MVA) including  $m_{T_2}$

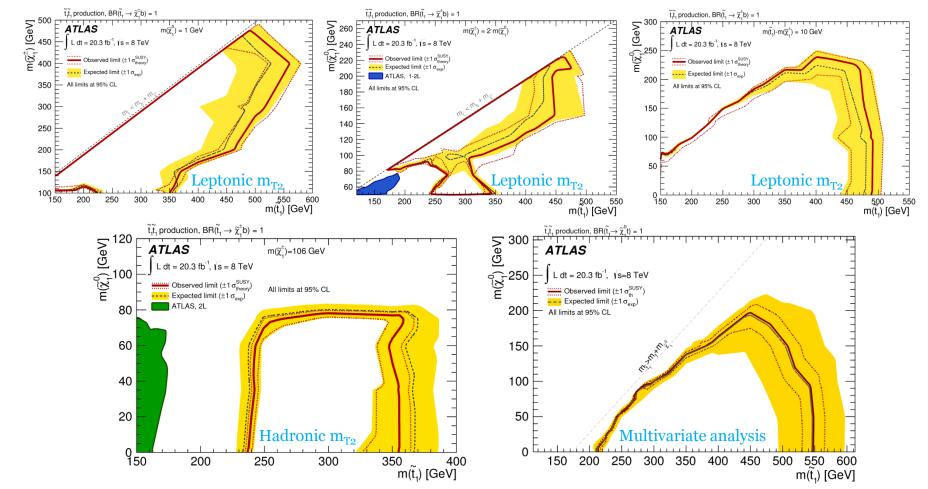


The MVA is based on 5 DF and 4 SF SRs defined according to 5+4 Boosted Decision Trees with Gradient boost (BDTG) classifier responses.

Seven input variables used in each of the 5+4 trainings:  $E_T^{miss}, m_{\ell\ell}, m_{T2}, \Delta\varphi_{\ell\ell}, \Delta\varphi_{\ell\ell}, \Delta\varphi_{\ell \ell}, \Delta\varphi_{\ell j}, \Delta\varphi_{\ell E_T^{miss}}$ 



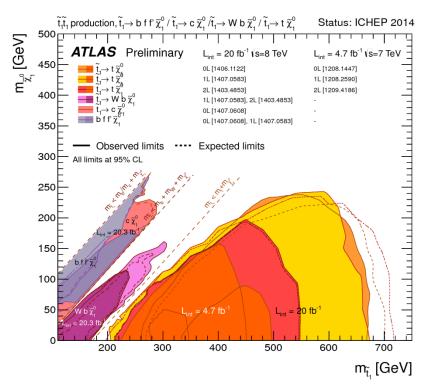


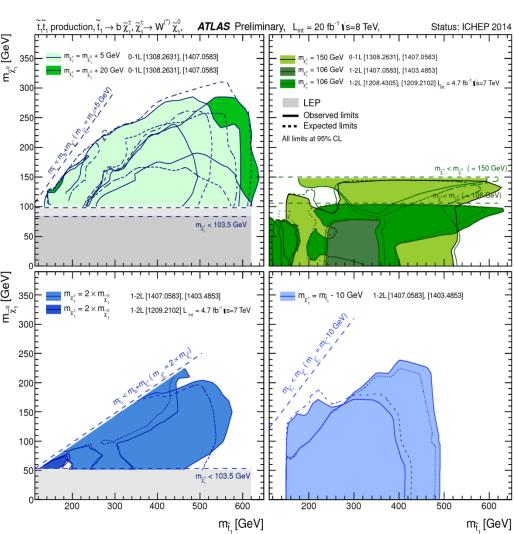

JHEP 06 (2014) 124 - arXiv:1403.4853

#### 2 leptons + (b-)jets + MET

(2/2)



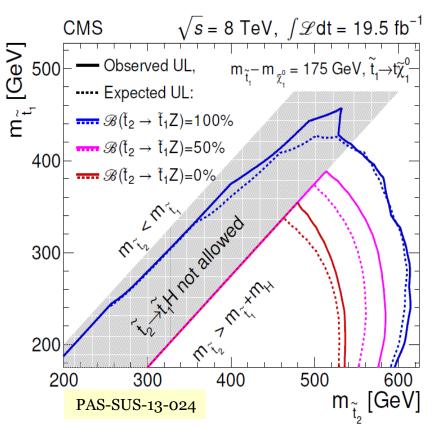

Each analysis determines improvements in 95% CL exclusion limits plots

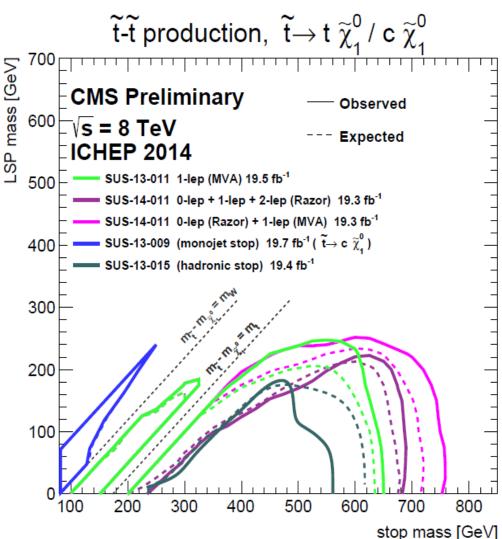



# **ATLAS summary plots**



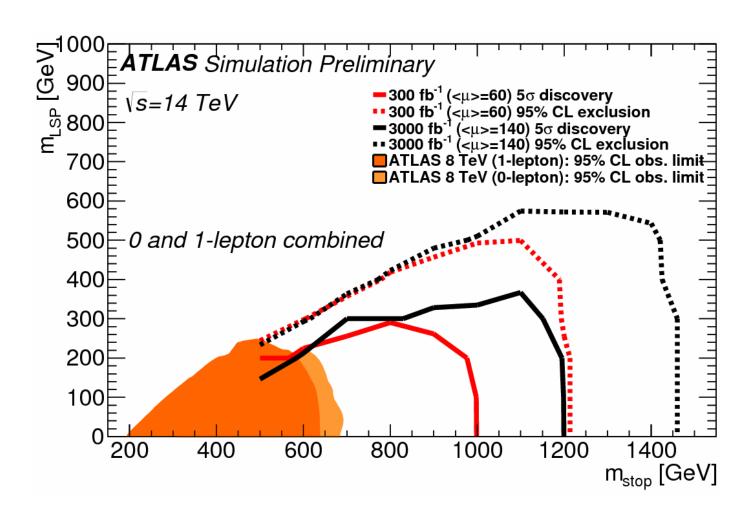
ATLAS analyses with 7 TeV and 8 TeV data selecting 0,1,2 leptons in the final state are used to obtain top squark exclusion limits at 95% CL




# **CMS** summary plots




 Summary of CMS exclusion limits for direct top squarks searches





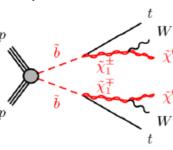
#### **Expected 14 TeV ATLAS coverage**

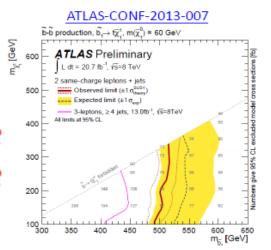


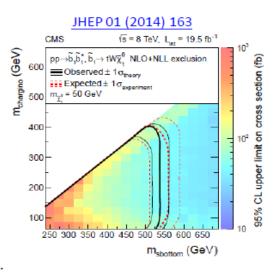


#### **Conclusions**

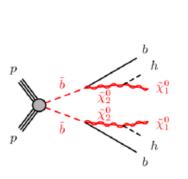
- The status of third generation squarks searches at the LHC has been presented
- Only few relevant channels have been shown here, while many more interesting analyses are ongoing in both ATLAS and CMS Collaborations, including:
  - RPV stop decays
  - Very compressed spectra
  - Gluino decays via virtual squark exchange
- No significant excess over the Standard Model background has been observed so far in any analysis
- The next LHC run at  $\sqrt{s} = 13$  TeV will improve knowledge in the uncovered parts of phase space

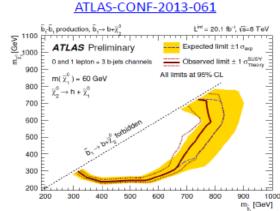

### **Backup material**

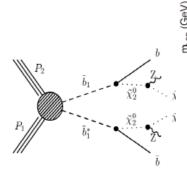

#### Other sbottom searches

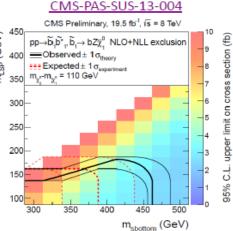






 2 same sign lepton analysis can be interpreted in other scenarios such as sbottom pair production.




- The models in which the sbottom decaying to the neutralino2 are also considered.
  - Then the neutralino2 decays to a Higgs or Z.

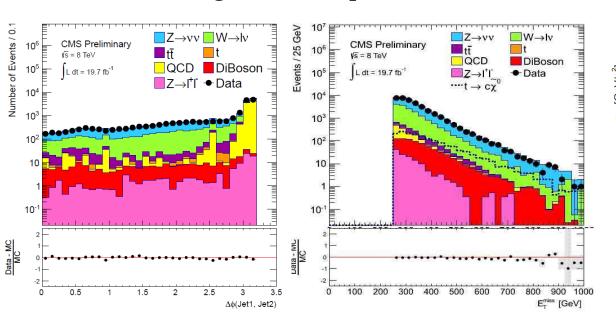


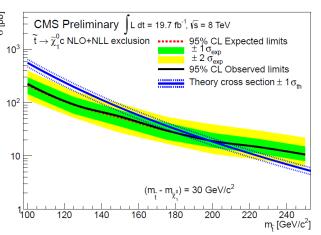


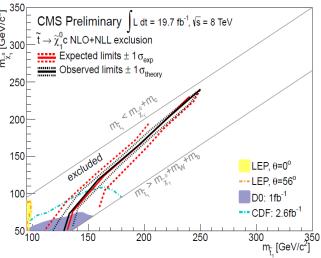




Interpretation of the high b-jet multiplicity analyses


Interpretation of 3-lepton b-jets analyses


PAS-SUS-13-009

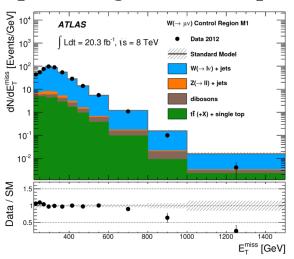

#### 0 leptons + soft c-jets + MET

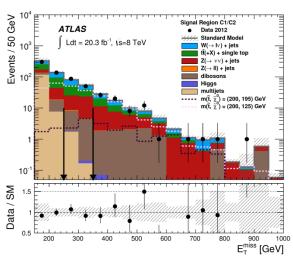


- The purpose is to select a possible decay  $\tilde{t} \to c\tilde{\chi}_1^0$  assuming negligible  $\tilde{t} \to bW\tilde{\chi}_1^0$  and  $\tilde{t} \to bff\tilde{\chi}_1^0$
- Two triggers are used, based on E<sub>T</sub><sup>miss</sup> and on jets
- Main backgrounds: W and Z production,  $t\bar{t}$
- Seven inclusive SRs: p<sub>T</sub>(j<sub>1</sub>)>250,300,...,550 GeV
- No excess of signal with respect of SM was found

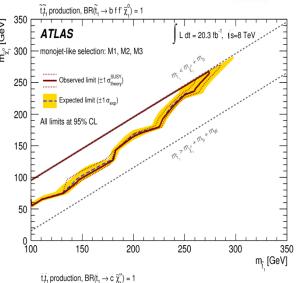


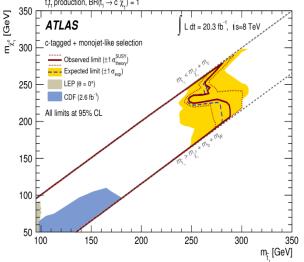






#### arXiv:1407.0608

# 0 leptons + mono-jet/c-jets + MET



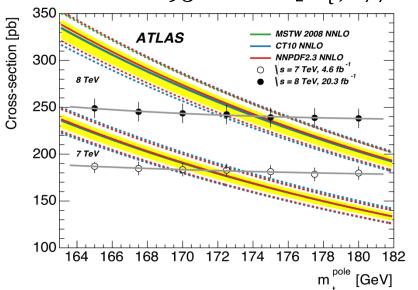


- Searching for  $\tilde{t}_1 \to c\tilde{\chi}_1^0 \arccos(m_{\tilde{t}_1}, m_{\tilde{\chi}_1^0})$  parameter space  $\frac{5}{2}$  or compressed SUSY scenarios:  $\tilde{t}_1 \to b + ff' + \tilde{\chi}_1^0$
- **Mono-jet** selection to target small  $\Delta m$  regions
- **Charm-tagged** selection in case of large  $\Delta m$  providing boost to c-quark



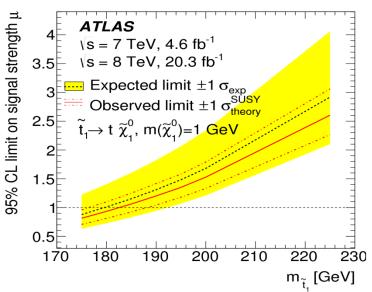


- No statistically relevant excess in any considered SR
- 95% CL limits for both mono-jet selection and combination with *c*-tagged signal regions






# Reinterpretation from ttbar cross-section measurements




• By comparing precise measurements of tt cross section at  $\sqrt{s} = 7$  and 8 TeV with QCD predictions, limits are placed on the pair-production of stop squarks with masses close to  $m_t$  decaying to mostly right-handed top quarks and a light neutralino









PAS-SUS-13-024 - arXiv:1405.3886

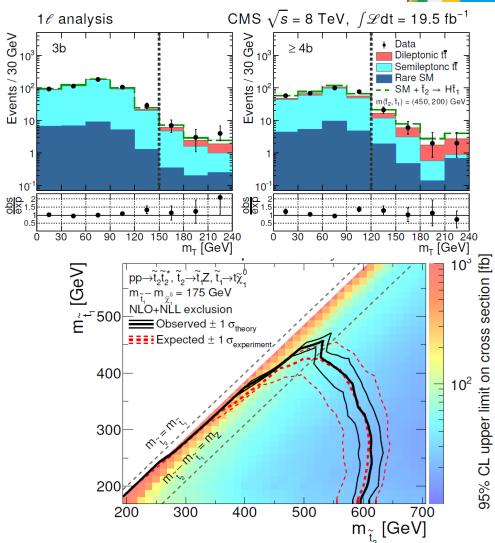
# Stop search with H or Z bosons

CMS powers cony product

- Search for SUSY through the direct pair production of top squarks, with Higgs (H) or Z bosons in the decay chain: either t

   <sub>2</sub> → H t

   <sub>1</sub> or t

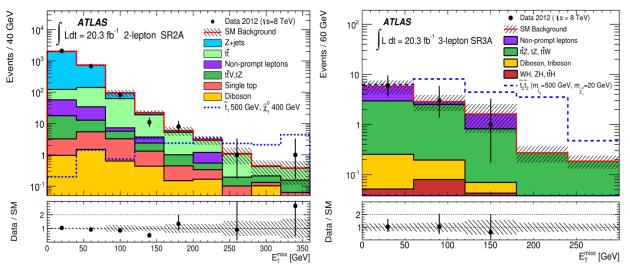

   <sub>2</sub> → Z t

   <sub>1</sub>, followed in both cases by t

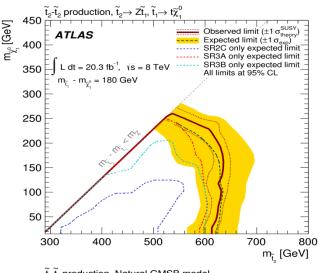
   <sub>1</sub> → tx

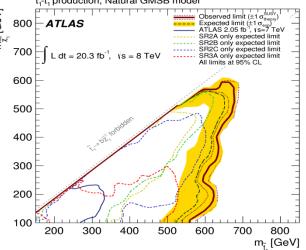
   <sub>0</sub>, being x

   <sub>0</sub> the LSP
- The search is performed using a selection of events containing leptons and bottom-quark jets
- No evidence for a significant excess of events over the standard model background prediction is observed



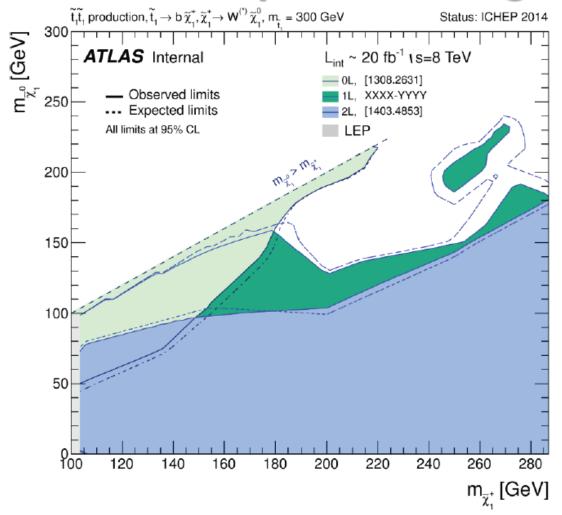

EPJC 74 (2014) 2883 - arXiv:1403.5222


#### Z + b-jet + jets + MET




- Possible decay of  $\tilde{t}_2 \to Z \tilde{t}_1$  with  $\tilde{t}_1 \to t \tilde{\chi}_1^0$
- Also  $\tilde{\chi}_1^0 \to Z G$  considered in GMSB scenario
- Five **SRs** defined depending on the number of leptons in final state to cover full phase space
- Main backgrounds: tt
   in 2-lepton channel and tt
   Z in 3-lepton channel




95% CL limits on top squarks pairs production





# ATLAS direct stop pairs production stop → b chargino



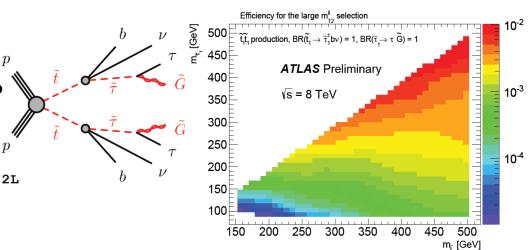


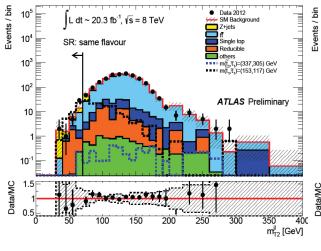
This plot display limits in the chargino1—neutralino1 (LSP) plane for a fixed stop mass of 300 GeV

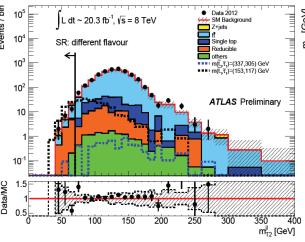
It further illustrates the complementarity of the analyses, and where the particular challenges lie

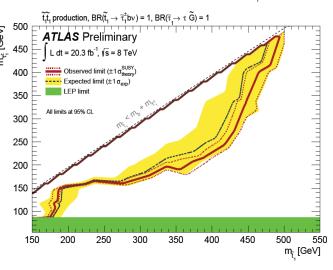
#### ATLAS-CONF-2014-014

#### Stop in b, tau and gravitino

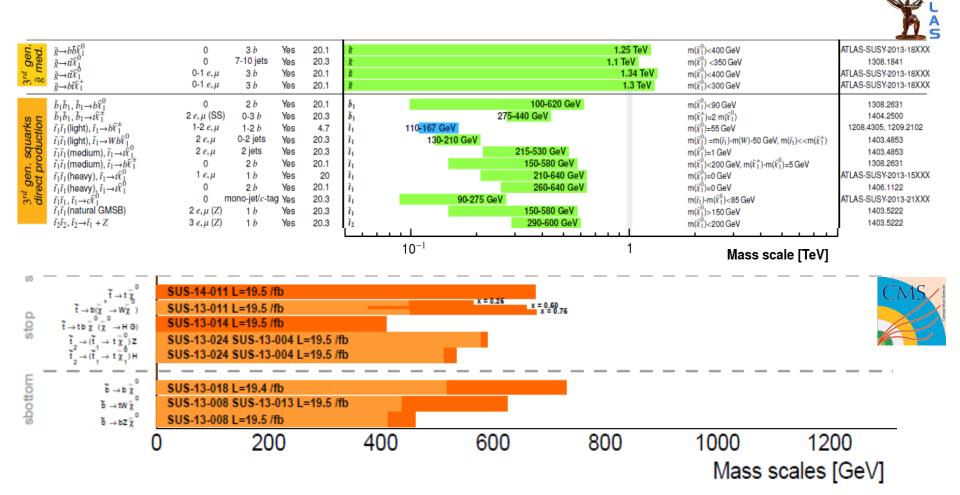




• Search considers decays via  $\tilde{t} \to b \nu \tilde{\tau}$  with  $\tilde{\tau} \to \tau \tilde{G}$ 


Here G is assumed to be the LSP


• Seven SRs are defined based on jet and  $m_{T_2}^{ll}$  selection

Dominant backgrounds: tt
 and Z+jets events










#### ATLAS and CMS 95% CL exclusion limits



#### Recent ATLAS papers



- o lepton + 6 (2 b-)jets + Etmiss [Heavy stop] Submitted to JHEP –
   1406.1122
- Z + b-jet + jets + Etmiss [Stop in GMSB, stop2] Accepted by EPJC –
   1403.5222
- 2 leptons + (b)jets + Etmiss [stop] JHEP 06 (2014) 124 <u>1403.4853</u>
- o leptons + 2 b-jets + Etmiss [Sbottom/stop] <u>JHEP 10 (2013) 189</u> <u>1308.2631</u>
- Stop in b, tau and gravitino <u>ATLAS-CONF-2014-014</u>
- o leptons + mono-jet/c-jets + Etmiss [Stop in charm+LSP] <u>ATLAS-CONF-2013-068</u>
- 0-1 leptons + >=3 b-jets + Etmiss [3rd gen. squarks] <u>ATLAS-CONF-2013-061</u>
- o lepton + 6 (2 b-)jets + Etmiss [Heavy stop] <u>ATLAS-CONF-2013-024</u>
- 1 lepton + 4(1 b-)jets + Etmiss [Medium / heavy stop] <u>ATLAS-CONF-2013-037</u>
- Z + b-jet + jets + Etmiss [Stop in GMSB, stop2] <u>ATLAS-CONF-2013-025</u>

#### Recent CMS papers



- Search for top-squark pair production with Higgs and Z bosons in the final state in pp collisions at 8 TeV Submitted to PLB <a href="https://arxiv:1405.3886">arXiv:1405.3886</a>
- Search for top-squark pair production in the single lepton final state in pp collisions at 8 TeV – <u>EPJC 73 (2013) 2677 arXiv:1308.1586</u>
- Search for stop in R-parity-violating supersymmetry with three or more leptons and b-tags PRL 111, 221801 (2013), arXiv:1306.6643
- Search for direct production of a pair of bottom squarks PAS-SUS-13-018
- Search for direct production of stops decaying to a charm and LSP using the monojet + MET final state - <u>PAS-SUS-13-009</u>
- Search for top squarks in multijet events with large missing momentum in pp collisions at 8 TeV – <u>PAS-SUS-13-015</u>
- Search for Direct Top Squark Pair Production with Higgs bosons in the Final State in pp collisions at 8 TeV <u>PAS-SUS-13-021</u>
- Search for direct top squark pair production in events with a single isolated lepton, jets and missing transverse energy at  $\sqrt{s} = 8 \text{ TeV} \frac{\text{PAS-}}{\text{SUS-12-023}}$