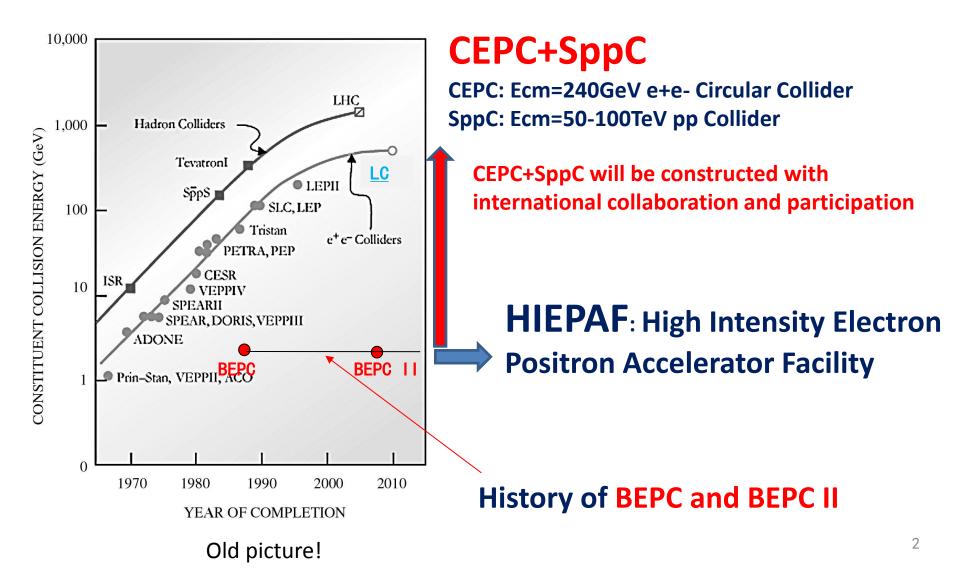
Future High Energy Particle Colliders in China

The strategy of Accelerator based High Energy Physics of China

J. Gao

On behalf of CEPC+SppC Group


IHEP, CAS, China

Roundtable discussion: "Future machines" Rencontres du Vietnam 2014: Physics at LHC and beyond August 10-17, 2014

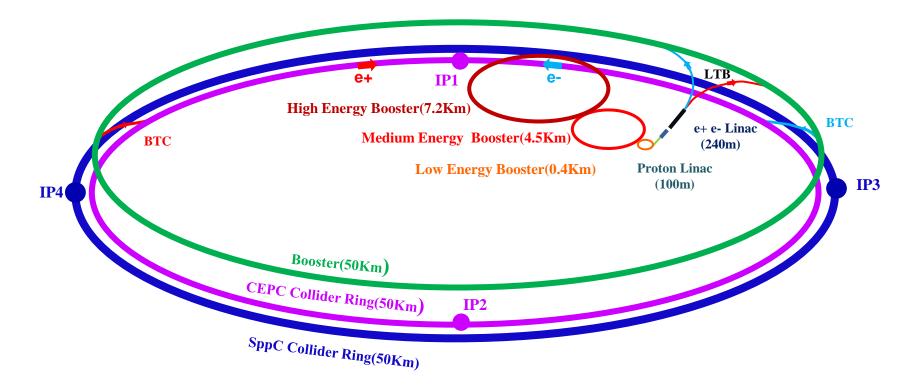
Lepton and Hadron Colliders' History and China Accelerator based High Energy Physics Development in the Future

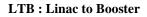
Strategy on Future High Energy Colliders of China

- 1) On "The 464th Fragrant Hill Meeting", Chinese High Energy Physics Community arrived at the following consensus:
 - a) China supports ILC and will participate to ILC construction
 - with in-kind contributions and requests R&D fund from government

b) After the discovery of Higgs, as next collider after BEPCII in China, a circular e+e- Higgs factory (CEPC) and a Super proton-

proton Collier (SppC) afterwards in the same tunnel is an important option and historical opportunity.


- 2) During the meeting of Chinese High Energy Physics Association on "China High Energy Physics based on Particle Accelerators", Feb. 28, 2014, it was concluded that: "Circular e+e- Circular Higgs Factory(CEPC) +Super pp Collider (SppC) is the first choice for China's future high energy physics accelerator.
- It is considered that CEPC (250GeV upper limit) is supplementary to ILC in terms of its energy range down to W and Z boson and to the number of detectors from both machines
- International collaboration and participation are necessary


Main parameters for CEPC

Parameter	Unit	Value	Parameter	Unit	Value
Beam energy [E]	GeV	120	Circumference [C]	km	50.0
Number of IP[N _{IP}]		2	SR loss/turn [U ₀]	GeV	2.96
Bunch number/beam[n _B]		50	Bunch population [Ne]		3.52E+11
SR power/beam [P]	MW	50	Beam current [I]	mA	16.89
Bending radius [ρ]	m	6200	momentum compaction factor [α_p]		4.00E-05
Revolution period [T ₀]	S	1.67E-04	Revolution frequency [f ₀]	Hz	5995.85
emittance (x/y)	nm	6.9/0.021	βıρ (x/y)	mm	800/1.2
Transverse size (x/y)	μm	74.30/0.16	ξ _{x,y} /IP		0.097/0.069
Beam length SR [$\sigma_{s.SR}$]	mm	2.12	Beam length total [$\sigma_{s.tot}$]	mm	2.42
Lifetime due to Beamstrahlung	min	80	lifetime due to radiative Bhabha scattering $[\tau_L]$	min	53.98
RF voltage [V _{rf}]	GV	6.87	RF frequency [f _{rf}]	GHz	0.7*
Harmonic number [h]		116747	Synchrotron oscillation tune $[v_s]$		0.196
Energy acceptance RF [h]	%	5.71	Damping partition number [J $_{ m E}$]		2
Energy spread SR $[\sigma_{\delta.SR}]$	%	0.13	Energy spread BS [$\sigma_{\delta.BS}$]	%	0.07
Energy spread total $[\sigma_{\delta.tot}]$	%	0.15	n _γ		0.21
Transverse damping time [n,	J turns	81	Longitudinal damping time $[n_{\epsilon}]$	turns	40
Hourglass factor	Fh	0.704	Luminosity/IP [L]	cm ⁻² s ⁻¹	1.77E+34

*Main ring rf frequency is changed to 650MHz and booster rf frequency is set to 1.3Ghz The injection linac frequency is chosen 2856MHz

CEPC+SppC Layout

BTC : Booster to Collider Ring

CEPC+SppC Schedule (Preliminary)

- **BEPC II** will stop in ~2020
- CPEC
 - Pre-study, R&D and preparation work
 - Pre-study: 2013-15 → Pre-CDR by 2014
 - R&D: 2016-2020
 - Engineering Design: 2015-2020
 - Construction: 2021-2027
 - Data taking: 2030-2036
- SPPC
 - Pre-study, R&D and preparation work
 - Pre-study: 2013-2020
 - R&D: 2020-2030
 - Engineering Design: 2030-2035
 - Construction: 2036-2042
 - Data taking: 2042 -