

The ATLAS Exotics Search Program

Tobias Golling, University of Geneva

2nd NPKI Workshop, September 15-19 2014

Out to Catch Big Fish

Out to Catch Big Fish

- Search wide, deep & fast
- Best fishing grounds?
 - The "theory guide" you tell us ☺
 - Start with the classics resonances
 - Non-standard reconstruction like highly displaced vertices take a bit langer
 - Something missing? Tell us! We need to have a trigger for it!
- Interpretation: what fish did we (not) catch

ATLAS Exotics Searches* - 95% CL Exclusion

ATLAS Preliminary

Status: ICHEP 2014 $\int \mathcal{L} dt = (1.0 - 20.3) \text{ fb}^{-1}$ \sqrt{s} = 7, 8 TeV $\mathsf{E}_{\mathsf{T}}^{\mathsf{miss}} \int \mathcal{L} \, \mathsf{dt}[\mathsf{fb}^{-1}]$ ℓ, γ Model **Jets** Mass limit Reference ADD $G_{KK} + g/q$ 1-2 j Yes 4.7 M_D 4.37 TeV n = 21210.4491 2e, μ 5.2 TeV ADD non-resonant $\ell\ell$ 20.3 n = 3 HLZATLAS-CONF-2014-030 ADD QBH $\rightarrow \ell q$ $1e, \mu$ 1 j 20.3 5.2 TeV n = 61311.2006 Extra dimensions ADD QBH 2 j 5.82 TeV 20.3 n = 6to be submitted to PRD ADD BH high N_{trk} 2 μ (SS) 5.7 TeV n=6, $M_D=1.5$ TeV, non-rot BH 20.3 1308.4075 ADD BH high $\sum p_T$ $\geq 1 e, \mu$ ≥ 2 j 20.3 6.2 TeV n=6, $M_D=1.5$ TeV, non-rot BH 1405.4254 RS1 $G_{KK} \rightarrow \ell\ell$ $2e, \mu$ 20.3 2.68 TeV $k/\overline{M}_{Pl} = 0.1$ 1405.4123 RS1 $G_{KK} \rightarrow WW \rightarrow \ell \nu \ell \nu$ 1.23 TeV $2e, \mu$ Yes 4.7 **G**_{KK} mass $k/\overline{M}_{Pl} = 0.1$ 1208.2880 Bulk RS $G_{KK} \rightarrow ZZ \rightarrow \ell \ell qq$ $2e, \mu$ 2 i / 1 J 20.3 730 GeV $k/\overline{M}_{Pl} = 1.0$ ATLAS-CONF-2014-039 Bulk RS $G_{KK} \rightarrow HH \rightarrow b\bar{b}b\bar{b}$ 4 b 19.5 G_{KK} mass 590-710 GeV $k/\overline{M}_{Pl} = 1.0$ ATLAS-CONF-2014-005 Bulk RS $g_{KK} \rightarrow t\bar{t}$ $1e, \mu$ ≥ 1 b, ≥ 1 J/2j 14.3 2.0 TeV BR = 0.925ATLAS-CONF-2013-052 S^1/Z_2 ED $M_{KK} \approx R^{-1}$ 4.71 TeV $2e, \mu$ 5.0 1209.2535 UED 2γ 1.41 TeV Yes 4.8 Compact, scale R-1 ATLAS-CONF-2012-072 SSM $Z' \rightarrow \ell \ell$ $2e, \mu$ 20.3 2.9 TeV 1405.4123 Gauge bosons 2 τ 1.9 TeV SSM $Z' \rightarrow \tau \tau$ 19.5 ATLAS-CONF-2013-066 Z' mass SSM $W' \rightarrow \ell \nu$ $1e, \mu$ Yes 20.3 W' mass 3.28 TeV ATLAS-CONF-2014-017 EGM $W' \rightarrow WZ \rightarrow \ell \nu \, \ell' \ell'$ $3e, \mu$ Yes 20.3 1.52 TeV 1406.4456 EGM $W' \to WZ \to qq\ell\ell$ $2e, \mu$ 2 j / 1 J 20.3 1.59 TeV ATLAS-CONF-2014-039 LRSM $W'_R \to t\overline{b}$ 2 b, 0-1 j ATLAS-CONF-2013-050 $1e, \mu$ Yes 14.3 1.84 TeV LRSM $W'_{P} \rightarrow t\overline{b}$ $0e, \mu$ \geq 1 b, 1 J 20.3 to be submitted to EPJC CI qqqq 2 j 4.8 7.6 TeV $\eta = +1$ 1210.1718 $CI qq\ell\ell$ $2e, \mu$ **21.6 TeV** $\eta_{LL} = -1$ 20.3 ATLAS-CONF-2014-030 CI uutt $2 e, \mu$ (SS) $\geq 1 b, \geq 1 j$ Yes 3.3 TeV |C| = 114.3 ATLAS-CONF-2013-051 EFT D5 operator (Dirac) $0e, \mu$ 1-2 j 10.5 731 GeV at 90% CL for $m(\chi)$ < 80 GeV ATLAS-CONF-2012-147 EFT D9 operator (Dirac) $0e, \mu$ $1 J, \leq 1 j$ Yes 20.3 2.4 TeV at 90% CL for $m(\chi) < 100$ GeV 1309.4017 Scalar LQ 1st gen 2 e ≥ 2 j 1.0 LQ mass 660 GeV $\beta = 1$ 1112.4828 7 Scalar LQ 2nd gen 2μ ≥ 2 j LQ mass 685 GeV $\beta = 1$ 1.0 1203.3172 Scalar LQ 3rd gen 534 GeV $1e, \mu, 1\tau$ 1 b, 1 j 4.7 LQ mass $\beta = 1$ 1303.0526 Vector-like quark $TT \rightarrow Ht + X$ $1e, \mu$ $\geq 2 \text{ b}, \geq 4 \text{ i} \text{ Yes}$ 14.3 790 GeV T in (T,B) doublet ATLAS-CONF-2013-018 Heavy quarks Vector-like quark $TT \rightarrow Wb + X$ $1e, \mu$ ≥ 1 b, ≥ 3 j Yes 14.3 670 GeV isospin singlet T mass ATLAS-CONF-2013-060 Vector-like quark $TT \rightarrow Zt + X$ $2/\geq 3 e, \mu$ ≥2/≥1 b 20.3 735 GeV T in (T,B) doublet T mass ATLAS-CONF-2014-036 Vector-like quark $BB \rightarrow Zb + X$ $2/\geq 3 e, \mu$ ≥2/≥1 b 20.3 B mass 755 GeV B in (B,Y) doublet ATLAS-CONF-2014-036 Vector-like quark $BB \rightarrow Wt + X$ 2 e, μ (SS) ≥ 1 b, ≥ 1 j Yes B in (T,B) doublet 14.3 B mass 720 GeV ATLAS-CONF-2013-051 Excited fermions Excited quark $q^* \rightarrow q\gamma$ 1γ 1 j 20.3 3.5 TeV only u^* and d^* , $\Lambda = m(q^*)$ 1309.3230 2 j 4.09 TeV Excited quark $q^* \rightarrow qg$ 20.3 only u^* and d^* , $\Lambda = m(q^*)$ to be submitted to PRD Excited quark $b^* \to Wt$ $1 \text{ or } 2 e, \mu 1 b, 2 \text{ j or } 1 \text{ j}$ Yes 870 GeV 4.7 b* mass left-handed coupling 1301.1583 Excited lepton $\ell^* \to \ell \gamma$ $2e, \mu, 1\gamma$ 13.0 2.2 TeV $\Lambda = 2.2 \text{ TeV}$ 1308.1364 LSTC $a_T \rightarrow W \gamma$ $1e, \mu, 1\gamma$ 20.3 960 GeV Yes to be submitted to PLB LRSM Majorana v $2e, \mu$ 2 j 2.1 N⁰ mass 1.5 TeV $m(W_R) = 2$ TeV, no mixing 1203.5420 Type III Seesaw $2e, \mu$ 5.8 245 GeV $|V_e|$ =0.055, $|V_{\mu}|$ =0.063, $|V_{\tau}|$ =0 ATLAS-CONF-2013-019 Higgs triplet $H^{\pm\pm} \rightarrow \ell\ell$ $2e, \mu$ (SS) 4.7 H^{±±} mass 409 GeV DY production, BR($H^{\pm\pm} \rightarrow \ell\ell$)=1 1210.5070 Multi-charged particles multi-charged particle mass 490 GeV DY production, |q| = 4e4.4 1301.5272 Magnetic monopoles DY production, $|g| = 1g_D$ 2.0 monopole mass 862 GeV 1207.6411 $\sqrt{s} = 8 \text{ TeV}$ $\sqrt{s} = 7 \text{ TeV}$ 10^{-1} 10 1 Mass scale [TeV]

^{*}Only a selection of the available mass limits on new states or phenomena is shown.

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults

Results based on the 8 TeV 2012 Data Taking Period

Papers with 2012 data

Title	Journal	Papers and Plots	Int. luminosity	Date
Search for long-lived neutral particles decaying into lepton jets in proton-proton collisions at √s = 8 TeV with the ATLAS detector the search for long-lived neutral particles decaying into lepton jets in proton-proton collisions at √s = 8 TeV with the ATLAS	Submitted to JHEP	Plots and more Info; arXiv:1409.0746	20.3/fb	Sep 2014
Search for the lepton flavor violating decay Z→eµ in pp collisions at √s = 8 TeV with the ATLAS detector	Submitted to PRD	Plots and more Info; arXiv:1408.5774	20.3/fb	Aug 2014
Search for W' \rightarrow tb \rightarrow qq'bb decays in pp collisions at \sqrt{s} = 8 TeV with the ATLAS detector	Submitted to EPJC	Plots and more Info; arXiv:1408.0886	20.3/fb	Aug 2014
Search for new resonances in Wy and Zy final states in pp collisions at √s = 8 TeV with the ATLAS detector	Submitted to PLB	Plots and more Info; arXiv:1407.8150	20.3/fb	July 2014
Search for new particles in events with one lepton and missing transverse momentum in pp collisions at \sqrt{s} = 8 TeV with the ATLAS detector	Published in JHEP	Plots and more Info; arXiv:1407.7494; JHEP 09 (2014) 037	20.3/fb	July 2014
Search for contact interactions and large extra dimensions in the dilepton channel using proton-proton collisions at \sqrt{s} = 8 TeV with the ATLAS detector	Submitted to EPJC	Plots and more Info; arXiv:1407.2410	20.3/fb	July 2014
Search for new phenomena in the dijet mass distribution using pp collision data at √s=8 TeV with the ATLAS detector	Submitted to PRD	Plots and more Info; arXiv:1407.1376	20.3/fb	July 2014
Search for WZ resonances in the fully leptonic channel using pp collisions at \sqrt{s} = 8 TeV with the ATLAS detector	Published in PLB	Plots and more Info; arXiv:1406.4456; PLB 737, 223 (2014)	20.3/fb	June 2014
Search for microscopic black holes and string balls in final states with leptons and jets with the ATLAS detector at \sqrt{s} = 8 TeV	Published in JHEP	Plots and more Info; arXiv:1405.4254; JHEP 08 (2014) 103	20.3/fb	May 2014
Search for high-mass dilepton resonances in pp collisions at \sqrt{s} = 8 TeV with the ATLAS detector	Accepted by PRD	Plots and more Info; arXiv:1405.4123	20.3/fb	May 2014
Search for dark matter in events with a Z boson and missing transverse momentum in pp collisions at \sqrt{s} = 8 TeV with the ATLAS detector	Published in PRD	Plots and more Info; arXiv:1404.0051; PRD 90, 012004 (2014)	20.3/fb	April 2014
Search for quantum black-hole production in high-invariant-mass lepton+jet final states using proton-proton collisions at \sqrt{s} = 8 TeV and the ATLAS detector	Published in PRL	Plots and more Info; arXiv:1311.2006; PRL 112, 091804 (2014)	20.3/fb	November 2013
Search for dark matter in events with a hadronically decaying W or Z boson and missing transverse momentum in pp collisions at \sqrt{s} =8 TeV with the ATLAS detector	Published in PRL	Plots and more Info; arXiv:1309.4017; PRL 112, 041802 (2014)	20.3/fb	September 2013

Philosophy of Exotics Searches

- Motivation: problems / open questions of the SM
 - Naturalness
 - DM
 - Higgs = SM Higgs?
 - Neutrino mass, Baryogenesis,...
 - SM ≠ "final theory" (Mass spectrum, Flavor mixing,...)
- Theorists' solution: models
 - Composite Higgs
 - ED
 - WIMPs
 - Hidden Sector, Exotic Higgs decays
 - LFV, technicolor, TeV gravity,...
- Interface with experimentalists: signatures
 - Resonances: Z', W', g_{KK}, "Mono-X",...
 - Pair-production: VLQs, LQs,...
 - Unconventional signatures: Exotic Higgs decays,...
 - Experimentalists' contribution: stay agnostic: fully exploit LHC's energy & lumi
- Connect back with theorists: interpret results using benchmark models
 - Which model to pick? One vs. many?
- For discovery most important: are we missing a signature?

Exotics Philosophy

(Hitoshi Murayama)

(Simplified) Model- vs Signature-Based

(Hitoshi Murayama)

Signature-Driven Searches

What do we spend all our time on?

- Understanding the detector & squeeze out best performance
- Trigger design & tests
- Physics object reconstruction, calibration,...
 - Isolation (e.g. in boosted objects)
 - Substructure: boosted top/W/Z/H tagging
 - Unconventional signatures: highly displaced vertices, Exotic tracking, lepton-jets,...
- Benchmark MC model validation / production
- Analysis optimization
- Estimation of SM BG, often data-driven
- Assess systematic uncertainties
 - Experimental
 - Theory
- Present results à la limits on cross section * BR
- Interpret results: limits on parameters of benchmark model(s)

- Electron
- Muon
- Tau
- MET
- Light jet
- B-jetC-jet
- Top
- W
- Z
- H
- Y

- Electron
- Muon
- Tau
- MET
- · Light jet
- B-jetC-jet
- Top
- W
- Z
- H
- Y

Electron Electron • Muon Muon Tau Tau MET **MET** Light jet Light jet B-jet B-jet C-jet C-jet Top Top W • W Z Z

Dilepton Resonances

Limit Setting

Upper limit (95% CL) on σB

Lower mass limit (95% CL) on Z'_{SSM} is 2.79 TeV (2.9 TeV when combined with muons)

Limits set using MC templates taking into account actual signal shape on reconstruction level:

Could go less model-dependent: Fiducial cross section limit

Large off-shell production

- Limit degrades for high masses
- Time for higher beam energy!

15

Benchmark Interpretation

- Extra Dimensions QBH
- Technicolor
- GUT
- 7*
- Z'_{SSM}
- E6
 - How many is enough?

Dilepton resonance

Different Benchmark Interpretations

Additional neutral gauge bosons:

- Z'_{SSM}
- E6 Z'_χ and Z'_ψ, GUT motivated
- Z*, appear as doublet (Z*,W*) in various solutions to hierarchy problem, anomalous couplings to fermions

Model	Width [%]
$Z'_{ m SSM}$	3.0
Z_{χ}'	1.2
Z_{ψ}^{r}	0.5
$Z^{^*}$	3.4

Low mass:

 Limits get stronger with decreasing width, but effect small...

High mass:

- Off-shell production leads to weaker limits
 - Off-shell production increases with increasing width
 - No off-shell production in Z*

Development Over Years

Fast increase in limits (1 TeV \rightarrow 3 TeV) in short period of time

Also, narrow resonances with 100 times smaller cross section than SSM excluded up to 1.4 TeV

W

Z

- Electron
- Muon
- Tau
- MET
- Light jet
- B-jetC-jet
- Top
- W
- Z
- H
- Y

Lepton+E_Tmiss Resonance Search

10⁸

10⁷

10⁶

10⁵

 10^{4}

 10^{3}

 10^{2}

10

10²

Data/Bkg

m_⊤ [GeV]

Events

Charged (spin-1) gauge bosons:

- W'_{SSM}, same couplings as W
- W*, appear as doublet (Z*,W*), anomalous couplings to fermions

 10^{6} Events **ATLAS** Data 2012 $W' \rightarrow ev$ 10⁵ W'(0.5 TeV) $\sqrt{s} = 8 \text{ TeV}$ W'(1 TeV) 10^{4} $\int L dt = 20.3 fb^{-1}$ W'(3 TeV) 10³ Top quark Diboson 10² Multijet 10

Also mono-W reinterpretation

10⁻¹

Data/Bkg

Multijet BG from data driven matrix-method

10³

m_T [GeV]

• Electron • LFV **Electron** Muon Muon Tau Tau MET MET Light jet Light jet B-jet B-jet C-jet C-jet Top Top W • W Z Z

Lepton Flavor Violation

dijets

W'→tb

Electron
Muon
Tau
MET
Light jet
B-jet

– C-jet
Top
W

Only Hy missing!

Z

- Electron
- Muon
- Tau
- MET
- Light jet
- B-jetC-jet
- Top
- W
- Z
- H
- Y

Single VLQ (T/B→Zt/b)

What about the rest?

- Electron
- Muon
- Tau
- MET
- Light jet
- B-jetC-jet
- Top
- W
- Z
- H
- Y

- Electron
- Muon
- Tau
- MET
- Light jet
- B-jetC-jet
- Top
- W
- Z
- H
- Y

Lepton-quark? → single LQ

Lepton-boson? → Excited/Heavy leptons

Quark-boson? → Single VLQ / excited quark

Resonance Summary

- Anything missing?
- Should we re-prioritize?
- We need a benchmark = signal MC
- Non-resonant extension much harder!
 - How to control BG's in tail?
 - Exclusion ok, but how to establish a signal?
- Black Hole searches similarly difficult
 - How to establish signal in tail?

Other big topic: pair production ⇒ next

VLQ Pair Production

Spectacular signatures: boosted b-jets, tops, W, Z, H bosons

VLQ TT Search Strategy

VLQ TT Search Strategy

(not a combination, just overlaying results)

VLQ TT Search Strategy

m(Zb) [GeV]

VLQ TT Search Strategy

Pair Production – there is more!

Hidden Valley: LLP [ATLAS-CONF-2014-041] Jets in HCal: **Narrow** No tracks And: Calorimeter ATLAS Preliminary (trigger) 0.14 Multijets: Full 2012 Data 0.12 Signal: decay in HCal Muon Signal: decay in ID 0.1 spectrometer $\sqrt{s} = 8 \text{ TeV}$ 0.08 0.06 0.04 ATLAS Preliminary 0.02 L dt = 20.3 fb^{-1} $\log_{10}(\mathsf{E_H}/\mathsf{E_{EM}})$ s = 8 TeV m 126 GeV - m 10 GeV BR 30% **ATLAS** Simulation Preliminary • m_ω 126 GeV - m_{πν} 25 GeV 딩 barrel $m_{_{\mathcal{I}\!\!\!\!/}}$ 140 GeV - $m_{_{\mathcal{I}\!\!\!\!/}}$ 40 GeV 0.25 BR 10% 10 0.2 0.15 $m_{_{TV}} = 126 \text{ GeV} - m_{_{TV}} = 10 \text{ GeV}$ 0.1 $m_{_{TV}}$ 126 GeV - $m_{_{TV}}$ 25 GeV 0.05 trigger $m_{_{eb}}$ 126 GeV - $m_{_{\pi V}}$ 40 GeV 10⁻¹ 41 π proper decay length [m]

r [m]

Conclusion

- Leave no stone unturned
- Search for NP signatures motivated by open questions of SM
- Complement with additional signatures do all that is possible?
 - Where to start?
- Preference for total or fiducial cross section limits?
- Interpret results using benchmark models
 - Preference for one model or another? More systematic approach possible?
- For discovery most important: are we missing a signature?
 - You tell us?
 - Re-prioritize?
 - There will be more focus on boosted objects in Run II
- Combinations necessary?
 - If we take models seriously we should combine different search results: e.g.
 WIMP mono-jet and mediator di-jets combination,...

Run II Outlook: Improved Sensitivity for All Exotics!

Energy √s

Luminosity L

Run II Preparation: mono-jet

[ATL-PHYS-PUB-2014-007]

Where are you hiding?

We Might be this Close!

Thank You!