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Motivation
• Cosmological history modified in models where the CC is protected 

dynamically, i.e. by  
non-linearly realized conformal invariance 

• Phase transitions generally contribute dynamically to vacuum energy 
- only end result is tiny	



• How do such phase transitions proceed?	



• Are results distinct from Creminelli, Nicolis, Rattazzi (hep-th/0107141)?  	



• RS phase transition with Goldberger-Wise stablization  
(has hidden fine tuning)



Dueling order parameters

• f

High T min 
small CC

f: O.P. for CC relaxation

Φ: O.P. for early  
universe P.T. (Higgs, ΧSB)

Low T min 
small CC

large CC? 
metastable=mini-inflation?

Continuous?

Standard transition

1st order? 
Crossover? 



Scale Transformations2 Scaling and Dilaton basics

In this section we summarize the basic properties of scale transformations and dilaton cou-
plings. Scale transformations [28] are given by (for x ! x0 = e�↵x)

O(x) ! O0(x) = e↵�O(e↵x) , (2.1)

where � is the matrix of dimensions (including classical and quantum e↵ects) for the oper-
ators O. The action changes under scale transformations as

S =
X

i

Z

d4x giOi(x) �! S 0 =
X

i

Z

d4xe↵(�i�4)giOi(x) , (2.2)

which implies the well-known result that all operators must have dimension �i = 4 for all
Oi in order for the action to be scale invariant. The linearized transformation of the action
is then

S �! S +
X

i

Z

d4x↵gi(�i � 4)Oi(x) . (2.3)

Let us assume that scale invariance is broken spontaneously by the VEV of a dimension-
ful operator hOi = fn where n is the classical dimension of O. The spontaneous breaking of
scale invariance will imply the existence of a Goldstone boson for scale transformations, the
dilaton, which transforms inhomogeneously under scale transformations:

�(x) ! �(e↵x) + ↵f . (2.4)

The low-energy e↵ective theory can be obtained by replacing the VEV with the non-linear
realization

f ! f � ⌘ f e�/f , (2.5)

and requiring that it is invariant under scale transformations:

Leff =
X

n,m>0

an,m
(4⇡)2(n�1) f 2(n�2)

@2n�m

�2n+m�4
(2.6)

= �a0,0 (4⇡)
2f 4�4 +

f 2

2
(@µ�)

2 +
a2,4
(4⇡)2

(@�)4

�4
+ . . . (2.7)

where an,m ⇠ O(1), and a1,1 = 1/2 corresponds to canonical normalization, and a2,4 is
determined by the proof of the a-theorem [29]. The complete set of dilaton couplings within
the scale-invariant sector can be obtained by the replacement in (2.5). However, a more
systematic way is to take advantage of the (approximate) scale invariance of the Lagrangian
at high energies, in order to build an e↵ective Lagrangian for energies below ⇤ ⇠ 4⇡f where
scale invariance is preserved by means of insertions of the dilaton field as defined in Eq. (2.5).

The general assumption we will be making is that there is a conformal sector which is
spontaneously broken, which we will refer to as the “composite sector”, and that there is
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Dilatations:

Operators transform:

Δ is non-perturbative quantum 
operator scaling dimension
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Linearized transformation of action with sourced O:

very small bird, normal leaf? 
kind of small bird, big leaf?



Spontaneous breaking

hO(x)i = f

�
CFT operator gets VEV:
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Single corresponding goldstone boson:

Non-linear realization in effective theory:

Restores symmetry to LEEFT
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The Dilaton Quartic

a > 0

a < 0

a = 0

f = 0

f =1

f =?

Most general terms invariant under dilatations:

dilaton quartic

Obstruction to SBSI:
• a > 0 ⇾ f = 0 (no breaking)	



• a < 0 ⇾ f =∞ (runaway)	



• a = 0 ⇾ f = anything (flat direction)

Fubini ’76

Le↵ ⇡ �af4�4 +
f2

2
(@µ�)

2 + higher derivative terms



Near-Marginal Deformation
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Figure 2: Dilaton predictions for the rates Rincl.,ZZ (green line), Rincl.,�� (orange), and RV H,bb

(blue) as a function of b(3)UV,CFT = b
(EM)
UV,CFT/2 for v/f = 1 (left panel) and v/f = 0.8 (right).

Also shown as horizontal bands the current experimental intervals at 1� CL (same color
code).

The presence of this term will make it very di�cult to achieve the SBSI. When a 6= 0 the
theory is either forced to f ! 1 for a < 0 (a runaway direction), or to f = 0 for a > 0.
Thus one needs to tune a = 0 in the e↵ective theory (as explained by Fubini [41]). In order
to achieve SBSI one needs to relax a = 0 to |a| ⌧ 1, so that the broken phase h�i = 1 is only
metastable. Adding an explicit breaking term to the CFT with an almost marginal operator

�S =

Z

d4x�(µ)O (5.2)

gives rise, in general, to an e↵ective potential for the dilaton of the form

V (�) = f 4F (�(f)) , (5.3)

where F is a function of � which parametrizes the explicit breaking of scale invariance as
a non-trivial function of �. This potential is of the Coleman-Weinberg type when � is
almost marginal. Then, as explained by Weinberg [42] and also stressed by Rattazzi and
Za↵aroni [27], a natural SBSI along with the generation of a large hierarchy of scales is
possible within naturalness. For this one needs a to be small (as assumed) and O to be a
marginally relevant deformation (as in QCD) while � remains perturbative over the relevant
range of renormalization group running. In this case F (�(f)) can have a minimum at a
scale f � ⇤s, where ⇤s is the scale where � would become non-perturbative. Because
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Quartic has dependence on near marginal coupling:

f

Deformation can stabilize f away from origin

slowly varying 
function of f

f � ⇤s, � stays perturbative and the dilaton remains light, that is scale invariance can be
spontaneously broken. The stationary condition of V is

V 0 = f 3 [4F (�(f)) + �F 0(�(f))] = 0 (5.4)

which results in a dilaton mass

m2
dil = f 2� [�F 00 + 4F 0 + �0F 0] ' 4f 2�F 0(�(f)) = �16f 2F (�(f)) (5.5)

where �0 = d�/d�. In the second equality we have also assumed that �0 ⌧ 1. An explicit
(supersymmetric) example illustrating how this mechanism can work will be presented in
the next section. The Goldberger-Wise stabilization mechanism for the RSI model is also
an example for this mechanism, as we will discuss in detail in Sec. 7.

The main questions related to the naturalness of this mechanism are then why is F ⌧ 1
at the minimum (or, for a perturbative expansion in �, a ⌧ 1) along with � ⌧ 1, and why
are we allowing only almost marginal perturbations. Let us start with F ⌧ 1. The case
F = 0 corresponds to a situation with no potential for the dilaton, and thus an arbitrary
value of f is allowed. This means that there is a flat direction in the theory. The presence of
flat directions is quite natural in supersymmetric theories, however no non-supersymmetric
example of physically inequivalent flat directions is known.7 The closest anyone has been able
to get to this situation were the so-called orbifold gauge theories obtained via projecting out
some of the fields and couplings of an N = 4 SUSY gauge theory [43]. In this case the large-
N limit of the �-functions agrees with those of the SUSY theories, however 1/N corrections
lift the flat directions [44].

The other question is why only close-to-marginal perturbations are allowed, as these are
the only ones that would allow for a light dilaton. This part of the naturalness problem is
thus rephrased in terms of what relevant deformations the CFT supports. If it turns out
that only marginal perturbations are possible then a light dilaton is a natural possibility
(once the flat direction is present). Do such theories exist? Again, SUSY theories (SCFT’s),
especially chiral ones, give a handle on this because of the non-renormalization theorem:
the relevant deformations (if there are any) can be made naturally small. For the case of
non-supersymmetric CFT’s one would expect that only chiral gauge theories might have a
chance of giving a naturally light dilaton, but even those face the question of the origin of a
flat direction.

Let’s try to estimate how much fine tuning is hidden in these assumptions. The mini-
mization condition (5.4) says that for � ⌧ 1 the quartic F must almost vanish. In turn this
ensures that the dilaton mass (5.5) can be made parametrically smaller than f . In other
words, if we start with an almost flat direction, F ⌧ 1, then we can easily stabilize it by a
small breaking controlled by �. However, the starting assumption of almost flatness is itself
plagued by fine-tuning unless a symmetry reason can be invoked. In fact, the NDA for the

7The only other known way of generating flat directions is via the Goldstone theorem, but that will not
generate physically inequivalent vacua as is required for the case with an arbitrary scale f .
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V (f) = af4 ! V (f) = f4F (�(f))
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Expanding the potential:

small, so dilaton is light, right?

quartic is

FNDA ⇠ ⇤4

16⇡2f 4
⇠ 16⇡2 (5.6)

making the minimization condition (5.4) behind the flatness of the potential and the lightness
of the dilaton very unlikely to be realized in a generic theory. With such a large quartic the
dilaton mass would be at the cuto↵ m2

dil ⇠ ⇤2, and the explicit breaking of scale invariance
necessarily large,

� ⇠ 4FNDA

F 0
NDA

⇠ 4⇡. (5.7)

As we explain in more detail below, this is the situation realized in QCD-like or technicolor
theories, where the gauge coupling g2, to be identified with �, becomes non-perturbative.
No light scalar degree of freedom with the properties of the dilaton is expected to be present
in the spectrum.

The above naive estimates can be refined for theories where the explicit breaking of
scale invariance comes from a coupling external to the strong conformal sector. In general
its �-function will be given by

�(�) =
d�

d lnµ
= ✏�+

b1
4⇡

�2 +O(�3) (5.8)

which is under control (i.e. small) as long as � remains perturbative, � . 4⇡, for bn ⇠ O(1),
(✏ = b0). Here ✏ is identified as the deviation from marginality of the perturbing operator,
|✏| < 1, which is set by the strongly coupled CFT. The perturbativity of � is a necessary
condition to obtain a parametrically light dilaton, unless one is willing to accept that even in
the non-perturbative regime, the �-function remains small but non-zero over a large range
of values of the coupling constant, which is a very special dynamical assumption, and we
know of no examples of such theories.

The consistency of a perturbative expansion in � with the requirement of SBSI and the
generation of a large hierarchy is determined by the minimization condition (5.4), and can
only be achieved by reducing the intrinsic dilaton quartic a to values comparable with the
symmetry breaking contributions

F (�) = (4⇡)2
"

c0 +
X

n

cn

✓

�

4⇡

◆n
#

, c0 ⌧ cn ⇠ 1 , a = (4⇡)2c0 . (5.9)

Then the minimization condition (5.4), expanded in powers of � and ✏, yields �(f) '
4⇡c0/c1 ' 4⇡/�, where � is the amount of fine tuning. The coupling � is allowed to
remain perturbative at the minimum. From the dilaton mass formula (5.5)

m2
dil

⇤2
⇠ �

⇡
' ✏

�

⇡
(5.10)
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F is the cosmological constant in f units:

Need large β to find minimum 

OR we can tune away the quartic to get a near flat-direction

Theory not conformal at scale f - no light dilaton

m2
dil ⇠ 256⇡2f2 ⇠ ⇤2
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lift the flat directions [44].

The other question is why only close-to-marginal perturbations are allowed, as these are
the only ones that would allow for a light dilaton. This part of the naturalness problem is
thus rephrased in terms of what relevant deformations the CFT supports. If it turns out
that only marginal perturbations are possible then a light dilaton is a natural possibility
(once the flat direction is present). Do such theories exist? Again, SUSY theories (SCFT’s),
especially chiral ones, give a handle on this because of the non-renormalization theorem:
the relevant deformations (if there are any) can be made naturally small. For the case of
non-supersymmetric CFT’s one would expect that only chiral gauge theories might have a
chance of giving a naturally light dilaton, but even those face the question of the origin of a
flat direction.

Let’s try to estimate how much fine tuning is hidden in these assumptions. The mini-
mization condition (5.4) says that for � ⌧ 1 the quartic F must almost vanish. In turn this
ensures that the dilaton mass (5.5) can be made parametrically smaller than f . In other
words, if we start with an almost flat direction, F ⌧ 1, then we can easily stabilize it by a
small breaking controlled by �. However, the starting assumption of almost flatness is itself
plagued by fine-tuning unless a symmetry reason can be invoked. In fact, the NDA for the

7The only other known way of generating flat directions is via the Goldstone theorem, but that will not
generate physically inequivalent vacua as is required for the case with an arbitrary scale f .
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CPR idea

• F(λ) generically large, but if λ near marginal for range 
of λ, theory will scan over F with scale  
 

• large F will not generate spontaneously broken scale 
invariance 	



• minimum when F ~ 0	



• dilaton mass proportional to ε

clearly implying that a complete bulk solution will have a vanishing quartic at the minimum
of the e↵ective potential. In the 5D picture this implies that at the minimum of the potential
one automatically has a vanishing cosmological constant, ⇤

IR

= 0. This is not a miracle,
but rather an output of the ansatz that the original 5D metric has flat 4D slices. General 5D
solutions might not exist with flat 4D slices, in which case a more general ansatz di↵erent
from (2.2) will be needed.

3 Light dilatons via long running?

We want to address the question of under what circumstances can one obtain a naturally
light dilaton, and whether a light dilaton would have any consequances for the magnitude of
the cosmological constant. In a theory with purely spontaneous breaking of scale invariance,
the dilaton must correspond to a flat direction, F = 0 in order for the VEV to not get
destabilized. This is what is achived in the RS model by tuning the IR brane tension, or
in superconformal N = 4 theories by going out on the moduli space for the scalar adjoints.

Focusing on non-supersymmetric theories, one may ask how likely it is for F ⇠ 0 to be
happening in any given theory. The simplest answer is to perform an NDA analysis in the
low-energy e↵ective theory for the dilaton to find an estimate for the size of the quartic [1]
to find F ⇠ 16⇡2. From this point of view spontaneous scale symmetry breaking looks
quite unlikely and tuned at best in non-susy theories.

Contino, Pomarol and Rattazzi [2] have however suggested a quite di↵erent viewpoint.
Their approach is that a theory with F 6= 0 will simply not break scale invariance spon-
taneously. Thus for a successful breaking of scale invariance a theory needs to be able to
scan its value of F , until F ⇠ 0 is reached. In e↵ect one needs a scale dependent quartic
F (µ), which can be achieved by introducing a small coupling �, explicitly breaking scale
invariance via its running

d�

d log µ
= �(µ) ⌘ ✏ ⌧ 1 . (3.1)

This running coupling will in e↵ect adjust the value of F from its UV value (presumably of
order ⇠ 16⇡2). If su�ciently long running is allowed, the corrections �F ⇠ (µ/⇤

UV

)✏ can
become sizeable, and at some scale µ0 we find F (µ0) ⇠ 0. At this scale scale spontaneous
breaking of scale invariance can happen. Since scale invariance is e↵ectively recovered by
substituting µ ! �, this mechanism is not more than a generation of a non-trivial potential
for the dilaton, with its minimum determined by F (�) ⇠ 0. Thus the CPR idea is to let
the theory scan through the values of F driven by the small explicit breaking term. The
running will stop when the critical value F ⇠ 0 is reached and spontaneous breaking of scale
invariance will occur. It is of course very important that the explicit breaking term remains
very small all throughout the running, otherwise the dilaton would pick up a large mass
from the explicit breaking. This is exactly what happens in QCD or in walking technicolor:
one starts out with a small �-function and an approximately conformal theory in the UV.

5

Contino, Pomarol, Rattazzi (Talk at Planck 2010)
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1 Introduction

We explore a class of models with no IR brane at finite temperature.

2 Dilaton Potential in Zero-Temperature Geometries

We consider classical solutions to a real coupled 5D scalar and Einstein field equations in
the presence of non-trivial scalar-field vacuum expectation value. The bulk action is given
by
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⇤ , with M⇤ being the 5D planck scale. We consider metric solutions with
flat 4D slices, or SO(4, 1) symmetry.
CONSIDER WHETHER THIS MAY BE OBSTRUCTION TO PUTTING AT
FINITE TEMPERATURE.
Such metrics are of the form

ds2 = e�2A(ey)⌘µ⌫dx
µdx⌫ � dey2 (2.2)

or can equivalently be expressed in convenient coordinates y = A(ey) as:

ds2 = e�2y⌘µ⌫dx
µdx⌫ � dy2

G(y)
(2.3)

where G(y) = [A0(ey(y))]2.
In these coordinates, utilizing ˙ to represent derivatives with respect to y, the Einstein
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G can then be eliminated in the scalar field equation of motion, which becomes
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Scalar-Einstein Equations
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Equations of motion:

Can substitute G(y) in terms of scalar vev in last equation:
Backreaction term
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Dilaton Effective Potential

An alternative way to write this equation is combining the Einstein equations using d
dy logG =

Ġ/G:
d
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log
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having defined T ⌘ 22
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The equations of motion are particularly simple in the case that the bulk potential
term is taken to be

V (�) = �6k2
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We elaborate on the physics of vanishing ✏ (constant bulk potential) and small ✏ in the
next two subsections.

The total value of the classical action can be expressed as a pure boundary term. In
particular, after substituting for the kinetic and potential terms for � using the Einstein
field equations, and taking into account appropriate contributions from jump discontinuities
in G0(y) at the boundaries, the resulting e↵ective 4D action is given by
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The coordinates y
0

and y
1

are the positions of the UV and IR branes, respectively, and
V
0

and V
1

are brane-localized scalar field potentials. This in particular means that the
asymptotics for � are what is most relevant for the e↵ective potential.

2.1 Constant Potential

The case of constant potential can be solved analytically, and the result for � is given by
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The integration constant yc is chosen so as to correspond to the value of y for which the
behavior of � changes qualitatively from � = constant to a behavior that is linear in y:
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We can also evaluate the expression for G(y) exactly. In terms of f and �, and taking
V = �6k2

2 , we have
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Bulk action total derivative (Bellazzini et. al. 1305.3919)	
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Constant  V (exact CFT)
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Ġ/G:
d

dy
log


V

8 � T

�
= T (2.6)

having defined T ⌘ 22

3

�̇2.

The equations of motion are particularly simple in the case that the bulk potential
term is taken to be

V (�) = �6k2

2

e
22

3 ✏� (2.7)

We elaborate on the physics of vanishing ✏ (constant bulk potential) and small ✏ in the
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Asymptotics: UV
IR
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We can also evaluate the expression for G(y) exactly. In terms of f and �, and taking
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With this information, we can extract the exact dilaton potential, and take the limit
as µ

1

⌘ ke�y1 ! 0. The result is
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where µ

0

⌘ ke�y0 . The first term in this expression is the contribution to the bare cos-
mological constant. This is expected to be either tuned to zero, or made vanishing by the
introduction of additional UV symmetries (i.e. supersymmetry). The second is the contri-
bution to the cosmological constant via the spontaneous breaking of conformal symmetry,
or in other words, the dilaton quartic. The final term represents an explicit breaking of
conformal symmetry induced by sourcing 4D gravity, that is introducing a Planck brane
at some given y

0

. We note that the coe�cient of this term is modified in the presence of
higher curvature operators that are expected to be induced by quantum corrections.

The interpretation of this result is that even in the absence of an IR brane, there
is a notion of a breaking scale of conformal symmetry given by f ⌘ ke�yc . This scale
corresponds (in 5D) to a position in the extra dimension at which the leading behavior of
the curvature (or scalar field evolution) makes a transition from one behavior to another.
The potential for f is precisely what is expected for an approximately conformal theory
with explicit breaking manifest in the form of a bare CC, and from the introduction of the
Planck brane itself, making the position of this turnover of the 5D behavior of the scalar-
gravity background a candidate for the dilaton. This identification is further established
by identifying a zero mode in the scalar-gravity system which couples to the divergence of
the dilatation current with strength set by f .

We note that this potential for f is only consistent with conformal breaking if it is min-
imized at a finite non-vanishing f , which is only accomplished when the two contributions
to the quartic are arranged so as to exactly cancel one another. Further, the ansatz of flat
4D metric slices is only valid in the case that the bare cosmological constant vanishes, or
when the two terms in the first contribution to the potential are arranged so as to exactly
cancel each other. This is precisely the two tunings that are required in two-brane RS
models, despite the fact that there is no IR brane in this picture. This scenario is clearly
unstable, as we have fixed the model to have a flat direction, despite the absence of any
symmetry to protect it.
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The equations of motion are particularly simple in the case that the bulk potential
term is taken to be
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We elaborate on the physics of vanishing ✏ (constant bulk potential) and small ✏ in the
next two subsections.

The total value of the classical action can be expressed as a pure boundary term. In
particular, after substituting for the kinetic and potential terms for � using the Einstein
field equations, and taking into account appropriate contributions from jump discontinuities
in G0(y) at the boundaries, the resulting e↵ective 4D action is given by
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The coordinates y
0

and y
1

are the positions of the UV and IR branes, respectively, and
V
0

and V
1

are brane-localized scalar field potentials. This in particular means that the
asymptotics for � are what is most relevant for the e↵ective potential.
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The integration constant yc is chosen so as to correspond to the value of y for which the
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The integration constant yc is chosen so as to correspond to the value of y for which the
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where µ
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⌘ ke�y0 . The first term in this expression is the contribution to the bare cos-
mological constant. This is expected to be either tuned to zero, or made vanishing by the
introduction of additional UV symmetries (i.e. supersymmetry). The second is the contri-
bution to the cosmological constant via the spontaneous breaking of conformal symmetry,
or in other words, the dilaton quartic. The final term represents an explicit breaking of
conformal symmetry induced by sourcing 4D gravity, that is introducing a Planck brane
at some given y

0

. We note that the coe�cient of this term is modified in the presence of
higher curvature operators that are expected to be induced by quantum corrections.

The interpretation of this result is that even in the absence of an IR brane, there
is a notion of a breaking scale of conformal symmetry given by f ⌘ ke�yc . This scale
corresponds (in 5D) to a position in the extra dimension at which the leading behavior of
the curvature (or scalar field evolution) makes a transition from one behavior to another.
The potential for f is precisely what is expected for an approximately conformal theory
with explicit breaking manifest in the form of a bare CC, and from the introduction of the
Planck brane itself, making the position of this turnover of the 5D behavior of the scalar-
gravity background a candidate for the dilaton. This identification is further established
by identifying a zero mode in the scalar-gravity system which couples to the divergence of
the dilatation current with strength set by f .

We note that this potential for f is only consistent with conformal breaking if it is min-
imized at a finite non-vanishing f , which is only accomplished when the two contributions
to the quartic are arranged so as to exactly cancel one another. Further, the ansatz of flat
4D metric slices is only valid in the case that the bare cosmological constant vanishes, or
when the two terms in the first contribution to the potential are arranged so as to exactly
cancel each other. This is precisely the two tunings that are required in two-brane RS
models, despite the fact that there is no IR brane in this picture. This scenario is clearly
unstable, as we have fixed the model to have a flat direction, despite the absence of any
symmetry to protect it.
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General bulk potentials: UV

as a good approximation for the behavior of � for y � yc. In this limit, Eq. (2.5), can be
re-written as
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where we have kept only the leading linear terms in �v
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. This equation is integrable,
yielding the following relation between �v
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and the scalar bulk potential:
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V (�(yc))
e�8(y�yc) (2.27)

Here, e� is an O(1) integration constant, and the yc dependence has been factored
out. Note that we have been agnostic about the form of the bulk potential, assuming only
that the trajectory for � ends up on the condensate branch, which appears generic for all
trajectories that lead to near AdS in the y ! �1 limit.

Plugging this into Eq. (2.20), we obtain a simple expression for G(y) in the IR:

G
IR

(y
1

) = � 2

12e�
V (�(yc))e

8(y1�yc) (2.28)

with the dependence on the deep IR behavior of V (�) dropping out neatly. This is the
same cancellation as occurred in our analysis of the exponential potential, now now shown
to be independent of the form of V (�).

For all potentials, so long as � is reasonably small in the UV (note that it can be made
small by redefinition of potential)... then you can write the UV asymptotics of @ log V/@�
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3 Finite Temperature

There are many reasons to consider the behavior of this class of theories at finite tempera-
ture. First, as we will demonstrate, there is a fragility of the condensate in classes of models
with light dilatons. This is due to the presence of a near flat direction at the minimum of
the dilaton potential. It is this which allows for the light dilaton, and also for a suppression
in the contribution of condensates to the e↵ective IR value of the cosmological constant.
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in the contribution of condensates to the e↵ective IR value of the cosmological constant.
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General bulk potentials: IR
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Figure 1: Here we show an example plot of the evolution of �̇ as a function of y. We have
chosen to associate yc with the inflection point for �̇. In this example, we take ✏ = 0.1.

In the two regions, the approximate formulae for y in terms of �v are given by:
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We have expanded the coe�cients of the exponentials in ✏, and kept only the lowest order
term. The expressions in the exponentials are exact in ✏, reflecting the correct scaling with
y � yc.

Now we can obtain approximate asymptotic expressions for � at the positions of the
UV and IR branes by integrating the asymptotic expressions for �̇. These are given by
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Now, G(y) is related to V (�) and �̇ by

G(y) =
�2

6

V (�)

1 � 2

12

�̇2

(2.20)

5

Recall:

1 Introduction

We explore a class of models with no IR brane at finite temperature.

2 Dilaton Potential in Zero-Temperature Geometries

We consider classical solutions to a real coupled 5D scalar and Einstein field equations in
the presence of non-trivial scalar-field vacuum expectation value. The bulk action is given
by
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where �2 ⌘ 2M3

⇤ , with M⇤ being the 5D planck scale. We consider metric solutions with
flat 4D slices, or SO(4, 1) symmetry.
CONSIDER WHETHER THIS MAY BE OBSTRUCTION TO PUTTING AT
FINITE TEMPERATURE.
Such metrics are of the form

ds2 = e�2A(ey)⌘µ⌫dx
µdx⌫ � dey2 (2.2)

or can equivalently be expressed in convenient coordinates y = A(ey) as:
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(2.3)

where G(y) = [A0(ey(y))]2.
In these coordinates, utilizing ˙ to represent derivatives with respect to y, the Einstein

and scalar field equations can be written as:
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G can then be eliminated in the scalar field equation of motion, which becomes
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1

IR Universality

Plugging in asymptotic solutions for � from Eq. 2.19 in the exponential potential, Eq. 2.14
and also making use of the expression for �̇ (Eq. 2.17) in Eq. 2.20, we obtain approximate
expressions for G(y) in the IR:
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We note that there is a subtle cancellation of a term in the exponent that goes like eO(✏)y

between the numerator and denominator of Eq. (2.20).
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In both the UV and IR regions, we have defined ek2 = k2 exp
h
22

3

✏ (�
0

+ ✏y
0

)
i
, explicitly

separating out the dependence on yc.

Combining all expressions, we calculate the dilaton e↵ective potential, which has the
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where we have again substituted physical scales µ
0

, µ
1

, and f for the coordinate values y
0

,
y
1

, and yc.

This final result is quite curious. Despite the presence of a non-trivial scalar potential,
which corresponds to a running of a coupling in the CFT, the dilaton potential, while not
a scale invariant quartic, is nonetheless unstable for finite f unless a tuning is imposed
between the two terms in brackets at the end of Eq. (2.24). That is, to obtain a non-trival
value for f , the theory must have an exact flat direction. This will pose an obstruction to
considering this theory at finite temperature in the presence of non-trivial f , as we will see
in the next section.

2.3 More General Potentials

In the IR region, we can again use the following asymptotic form,
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in small δv:

as a good approximation for the behavior of � for y � yc. In this limit, Eq. (2.5), can be
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where we have kept only the leading linear terms in �v
IR

. This equation is integrable,
yielding the following relation between �v

IR

and the scalar bulk potential:
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V (�(yc))
e�8(y�yc) (2.27)

Here, e� is an O(1) integration constant, and the yc dependence has been factored
out. Note that we have been agnostic about the form of the bulk potential, assuming only
that the trajectory for � ends up on the condensate branch, which appears generic for all
trajectories that lead to near AdS in the y ! �1 limit.

Plugging this into Eq. (2.20), we obtain a simple expression for G(y) in the IR:

G
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12e�
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with the dependence on the deep IR behavior of V (�) dropping out neatly. This is the
same cancellation as occurred in our analysis of the exponential potential, now now shown
to be independent of the form of V (�).

We can now write

3 Finite Temperature

There are many reasons to consider the behavior of this class of theories at finite tempera-
ture. First, as we will demonstrate, there is a fragility of the condensate in classes of models
with light dilatons. This is due to the presence of a near flat direction at the minimum of
the dilaton potential. It is this which allows for the light dilaton, and also for a suppression
in the contribution of condensates to the e↵ective IR value of the cosmological constant.
At finite temperature, such non-compact flat directions are lifted, sending the field values
to the origin, thus evaporating the condensate.

In order to study the theory at finite temperature, the class of geometries we study is
opened up to include the possibility of a horizon (or “black brane”) at some point y = yh
in the 5D coordinate. The compact geometry means that the hawking radiation from
the black hole comes into thermal equilibrium with the thermal bath, and so the thermal
partition function corresponds to the free energy of the system. The geometry we look at
is given by

ds2 = e�2y
⇥
h(y)dt2 + d~x2

⇤
+
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h(y)

dy2

G(y)
. (3.29)
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the dilaton potential. It is this which allows for the light dilaton, and also for a suppression
in the contribution of condensates to the e↵ective IR value of the cosmological constant.
At finite temperature, such non-compact flat directions are lifted, sending the field values
to the origin, thus evaporating the condensate.

In order to study the theory at finite temperature, the class of geometries we study is
opened up to include the possibility of a horizon (or “black brane”) at some point y = yh
in the 5D coordinate. The compact geometry means that the hawking radiation from
the black hole comes into thermal equilibrium with the thermal bath, and so the thermal
partition function corresponds to the free energy of the system. The geometry we look at
is given by

ds2 = e�2y
⇥
h(y)dt2 + d~x2
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+
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h(y)

dy2

G(y)
. (3.33)

The presence of a horizon is then indicated by a zero in the horizon function h(y) at position
yh. We are considering a thermal partition function, thus we work in Euclidean metric
signature, with a compactified time coordinate. Ideally, we are searching for solutions
to the coupled scalar-Einstein field equations that admit both a condensate and a finite
temperature, which is signified by the presence of a black hole horizon at finite yh, so that
we can study the behavior of the dilaton potential as a function of temperature T .

The equations of motion for the metric functions h and G, and for the scalar field �
are given by
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ḣ

h
= 4

 
1 � 1

4

ḣ
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The dilaton potential is still holographic, and is given by
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Our goal is to replace the IR brane at y
1

with a black hole at yh, such that h(yh) = 0,
making the second term in Eq. (??) vanish.1

In order to study such a horizon for generic bulk scalar potential, we presume that
the horizon function has a zero for some finite y = yh. We further presume that h(y) is

1
This is assuming that neither of the quantities V1 or G(y) are singular at the position of the horizon.

8

Finite Temperature

the dilaton potential. It is this which allows for the light dilaton, and also for a suppression
in the contribution of condensates to the e↵ective IR value of the cosmological constant.
At finite temperature, such non-compact flat directions are lifted, sending the field values
to the origin, thus evaporating the condensate.

In order to study the theory at finite temperature, the class of geometries we study is
opened up to include the possibility of a horizon (or “black brane”) at some point y = yh
in the 5D coordinate. The compact geometry means that the hawking radiation from
the black hole comes into thermal equilibrium with the thermal bath, and so the thermal
partition function corresponds to the free energy of the system. The geometry we look at
is given by

ds2 = e�2y
⇥
h(y)dt2 + d~x2

⇤
+

1

h(y)

dy2

G(y)
. (3.33)

The presence of a horizon is then indicated by a zero in the horizon function h(y) at position
yh. We are considering a thermal partition function, thus we work in Euclidean metric
signature, with a compactified time coordinate. Ideally, we are searching for solutions
to the coupled scalar-Einstein field equations that admit both a condensate and a finite
temperature, which is signified by the presence of a black hole horizon at finite yh, so that
we can study the behavior of the dilaton potential as a function of temperature T .

The equations of motion for the metric functions h and G, and for the scalar field �
are given by

d

dy
log

ḣ
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Our goal is to replace the IR brane at y
1

with a black hole at yh, such that h(yh) = 0,
making the second term in Eq. (??) vanish.1

In order to study such a horizon for generic bulk scalar potential, we presume that
the horizon function has a zero for some finite y = yh. We further presume that h(y) is

1
This is assuming that neither of the quantities V1 or G(y) are singular at the position of the horizon.
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the dilaton potential. It is this which allows for the light dilaton, and also for a suppression
in the contribution of condensates to the e↵ective IR value of the cosmological constant.
At finite temperature, such non-compact flat directions are lifted, sending the field values
to the origin, thus evaporating the condensate.

In order to study the theory at finite temperature, the class of geometries we study is
opened up to include the possibility of a horizon (or “black brane”) at some point y = yh
in the 5D coordinate. The compact geometry means that the hawking radiation from
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The presence of a horizon is then indicated by a zero in the horizon function h(y) at position
yh. We are considering a thermal partition function, thus we work in Euclidean metric
signature, with a compactified time coordinate. Ideally, we are searching for solutions
to the coupled scalar-Einstein field equations that admit both a condensate and a finite
temperature, which is signified by the presence of a black hole horizon at finite yh, so that
we can study the behavior of the dilaton potential as a function of temperature T .
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The dilaton potential is still holographic, and is given by
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Our goal is to replace the IR brane at y
1

with a black hole at yh, such that h(yh) = 0,
making the second term in Eq. (3.38) vanish.1

1
This is assuming that neither of the quantities V1 or G(y) are singular at the position of the horizon.
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the dilaton potential. It is this which allows for the light dilaton, and also for a suppression
in the contribution of condensates to the e↵ective IR value of the cosmological constant.
At finite temperature, such non-compact flat directions are lifted, sending the field values
to the origin, thus evaporating the condensate.

In order to study the theory at finite temperature, the class of geometries we study is
opened up to include the possibility of a horizon (or “black brane”) at some point y = yh
in the 5D coordinate. The compact geometry means that the hawking radiation from
the black hole comes into thermal equilibrium with the thermal bath, and so the thermal
partition function corresponds to the free energy of the system. The geometry we look at
is given by
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The presence of a horizon is then indicated by a zero in the horizon function h(y) at position
yh. We are considering a thermal partition function, thus we work in Euclidean metric
signature, with a compactified time coordinate. Ideally, we are searching for solutions
to the coupled scalar-Einstein field equations that admit both a condensate and a finite
temperature, which is signified by the presence of a black hole horizon at finite yh, so that
we can study the behavior of the dilaton potential as a function of temperature T .
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The dilaton potential is still holographic, and is given by
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Our goal is to replace the IR brane at y
1

with a black hole at yh, such that h(yh) = 0,
making the second term in Eq. (3.38) vanish.1

1
This is assuming that neither of the quantities V1 or G(y) are singular at the position of the horizon.
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The dilaton potential is still holographic, and is given by
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Our goal is to replace the IR brane at y
1

with a black hole at yh, such that h(yh) = 0,
making the second term in Eq. (3.40) vanish.1

In order to study such a horizon for generic bulk scalar potential, we presume that
the horizon function has a zero for some finite y = yh. We further presume that h(y) is
analytic, such that it has a Taylor expansion in the vicinity of the horizon. In this case,
we have

˙h
h ⇡ 1

y�yh
, with the sign determined by the fact that h is positive in the physical

region y < yh, and that it is passing through zero.

This behavior of the horizon function determines a boundary condition for � that arises
from taking the near-horizon limit of the scalar field equation of motion:

�̇
���
yh

=
3

22

@ log V

@�

����
yh

(3.41)

In order to find solutions of the kind we seek, those that have a geometry corresponding to
a condensate at finite temperature, we guess that we require Eq. (3.41) to hold for large �̇.
In the next two subsections, we explore two cases that present obstacles to achieving this.

Conical Singularity

The near-horizon geometry is generally singular, corresponding to a system out-of-equilibrium.
The black hole has “hair” in this case, and quantum e↵ects will cause the singularity to emit
radiation until it reaches equilibrium with the surrounding thermal bath. In cases where
a finite temperature is not consistent with a theory with spontaneously broken conformal
symmetry, the singularity is non-resolvable, and cannot be smoothed out in a manner that
is independent of the 5D cuto↵ of the theory.

If a theory does admit solutions to the h function which vanish at some finite value of
yh, then we can study such systems in the near-horizon limit. Considering the near-horizon
limit of the metric, where h ⇡ h

1

(yh � y), we have (keeping only the dt and dy components
of the metric):
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1
This is assuming that neither of the quantities V1 or G(y) are singular at the position of the horizon.
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the dilaton potential. It is this which allows for the light dilaton, and also for a suppression
in the contribution of condensates to the e↵ective IR value of the cosmological constant.
At finite temperature, such non-compact flat directions are lifted, sending the field values
to the origin, thus evaporating the condensate.

In order to study the theory at finite temperature, the class of geometries we study is
opened up to include the possibility of a horizon (or “black brane”) at some point y = yh
in the 5D coordinate. The compact geometry means that the hawking radiation from
the black hole comes into thermal equilibrium with the thermal bath, and so the thermal
partition function corresponds to the free energy of the system. The geometry we look at
is given by
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The presence of a horizon is then indicated by a zero in the horizon function h(y) at position
yh. We are considering a thermal partition function, thus we work in Euclidean metric
signature, with a compactified time coordinate. Ideally, we are searching for solutions
to the coupled scalar-Einstein field equations that admit both a condensate and a finite
temperature, which is signified by the presence of a black hole horizon at finite yh, so that
we can study the behavior of the dilaton potential as a function of temperature T .

The equations of motion for the metric functions h and G, and for the scalar field �
are given by

d

dy
log

ḣ

h
= 4

 
1 � 1

4

ḣ

h
� 2

12
�̇2

!
(3.34)

Ġ

G
=

22

3
�̇2 (3.35)

G =
22

3

V (�)
h

d
dy log

˙h
h

(3.36)

�̈ =

✓
�̇ � 3

22

@ log V

@�

◆
d

dy
log

ḣ

h
(3.37)

The dilaton potential is still holographic, and is given by

V
dilaton

= e�4y0h(y
0

)


V
0

(�(y
0

)) � 6

2

p
G(y

0

)

�
+ e�4y1h(y

1

)


V
1

(�(y
1

)) +
6

2

p
G(y

1

)

�

(3.38)

Our goal is to replace the IR brane at y
1

with a black hole at yh, such that h(yh) = 0,
making the second term in Eq. (??) vanish.1

In order to study such a horizon for generic bulk scalar potential, we presume that
the horizon function has a zero for some finite y = yh. We further presume that h(y) is

1
This is assuming that neither of the quantities V1 or G(y) are singular at the position of the horizon.
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The conical singularity vanishes at the equilibrium temperature, corresponding to

T
eq

=
e�yh

2⇡

r
�2

6
h
1

V (�h) (3.44)

T
eq

=
e�y1

2⇡

r
�2

6
ḣ(y

1

)V (�h) / k

2⇡
e�y1 (3.45)

3.1 Constant Bulk Potential - Finite Temperature

In the case of the constant bulk potential, the scalar field equation of motion is integrable,
and we have:

� = �
0

+ Cl log h (3.46)

We note that this equation immediately excludes the case of constant bulk potential as
a candidate for a spontaneously broken CFT at finite temperature, or where h = 0 for
some finite y. Clearly, if h is vanishing, then � must be divergent at the position of the
horizon, and the condition in Eq. (3.40) cannot be satisfied. However, it will be beneficial
to consider this case a little further.

Integral formulas can be provided for ḣ/h or �̇, but these are not analytically invertible
for general Cl. These are provided in Appendix ??.

The equations can be satisfied for one particular value of Cl, however. In that case
that Cl = 0, or � = constant, we have h = 1 � e4(yh�y) and G(y) = k2.

3.2 Exponential Bulk Potential - Finite Temperature

In the case of exponential bulk potential, where V (�) is given in Eq. (2.14), we can again
integrate the scalar field equation of motion to get � in terms of h. The result is

� = �
0

+ ✏y + Cl log h (3.47)

Again, we find that � diverges at the point where h ! 0, and we cannot satisfy Eq. (3.40).

Again, we can integrate the h or � equations of motion to get expressions for these,
although it is clear we cannot put this model at finite temperature except in the case where
Cl = 0.
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Equilibrium temp:  adjust y1 to remove conical singularity

Near horizon geometry typically divergent (hairy)	


out-of-equilibrium

Distinct from: 
 Creminelli, Nicolis, Rattazzi 

hep-th:0107141



Constant  V (exact CFT)

with the opening angle given by

sin2 ↵ = e�2yh
h
1

(2⇡T )2

✓
�2

6
V (�h)

◆
(3.44)

The conical singularity is resolvable by capping the cone with a sphere at the tangent point.
The constant curvature of the sphere gives a finite contribution to the free-energy that is
independent of the radius of the sphere (or the point at which the singularity is cut-o↵).

The conical singularity vanishes at the equilibrium temperature, corresponding to

T
eq

=
e�yh

2⇡

r
�2

6
h
1

V (�h) (3.45)

T
eq

=
e�y1

2⇡

r
�2

6
ḣ(y

1

)V (�h) / k

2⇡
e�y1 (3.46)

3.1 Constant Bulk Potential - Finite Temperature

d

dy
log �̇ =

d

dy
log

ḣ

h
(3.47)

In the case of the constant bulk potential, the scalar field equation of motion is inte-
grable, and we have:

� = �
0

+ Cl log h (3.48)

We note that this equation immediately excludes the case of constant bulk potential as
a candidate for a spontaneously broken CFT at finite temperature, or where h = 0 for
some finite y. Clearly, if h is vanishing, then � must be divergent at the position of the
horizon, and the condition in Eq. (3.41) cannot be satisfied. However, it will be beneficial
to consider this case a little further.

Integral formulas can be provided for ḣ/h or �̇, but these are not analytically invertible
for general Cl. These are provided in Appendix ??.

The equations can be satisfied for one particular value of Cl, however. In that case
that Cl = 0, or � = constant, we have h = 1 � e4(yh�y) and G(y) = k2.

3.2 Exponential Bulk Potential - Finite Temperature

In the case of exponential bulk potential, where V (�) is given in Eq. (2.14), we can again
integrate the scalar field equation of motion to get � in terms of h. The result is

� = �
0

+ ✏y + Cl log h (3.49)

10

Evolution equations again integrable:

with the opening angle given by

sin2 ↵ = e�2yh
h
1

(2⇡T )2

✓
�2

6
V (�h)

◆
(3.44)

The conical singularity is resolvable by capping the cone with a sphere at the tangent point.
The constant curvature of the sphere gives a finite contribution to the free-energy that is
independent of the radius of the sphere (or the point at which the singularity is cut-o↵).

The conical singularity vanishes at the equilibrium temperature, corresponding to

T
eq

=
e�yh

2⇡

r
�2

6
h
1

V (�h) (3.45)

T
eq

=
e�y1

2⇡

r
�2

6
ḣ(y

1

)V (�h) / k

2⇡
e�y1 (3.46)

3.1 Constant Bulk Potential - Finite Temperature

d

dy
log �̇ =

d

dy
log

ḣ

h
(3.47)

In the case of the constant bulk potential, the scalar field equation of motion is inte-
grable, and we have:

� = �
0

+ Cl log h (3.48)

We note that this equation immediately excludes the case of constant bulk potential as
a candidate for a spontaneously broken CFT at finite temperature, or where h = 0 for
some finite y. Clearly, if h is vanishing, then � must be divergent at the position of the
horizon, and the condition in Eq. (3.41) cannot be satisfied. However, it will be beneficial
to consider this case a little further.

Integral formulas can be provided for ḣ/h or �̇, but these are not analytically invertible
for general Cl. These are provided in Appendix ??.

The equations can be satisfied for one particular value of Cl, however. In that case
that Cl = 0, or � = constant, we have h = 1 � e4(yh�y) and G(y) = k2.

3.2 Exponential Bulk Potential - Finite Temperature

In the case of exponential bulk potential, where V (�) is given in Eq. (2.14), we can again
integrate the scalar field equation of motion to get � in terms of h. The result is

� = �
0

+ ✏y + Cl log h (3.49)
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Solution:

Incompatible with horizon B.C.’s and finite ϕ unless Cl=0

Constant ϕ→ no condensate region - UNBROKEN CFT

AdS-Schwarzchild

FAdS-S / T 4
Plugging into holo. potential (free energy):

Usual result for unbroken CFT at finite T

Finite temperature ruins the flat direction!

h = 1� e4(y�yh) G = k2



General Potentials

The dilaton potential is still holographic, and is given by

V
dilaton

= e�4y0h(y
0

)


V
0

(�(y
0

)) � 6

2

p
G(y

0

)

�
+ e�4y1h(y

1

)


V
1

(�(y
1

)) +
6

2

p
G(y

1

)

�

(3.40)

Our goal is to replace the IR brane at y
1

with a black hole at yh, such that h(yh) = 0,
making the second term in Eq. (3.40) vanish.1

In order to study such a horizon for generic bulk scalar potential, we presume that
the horizon function has a zero for some finite y = yh. We further presume that h(y) is
analytic, such that it has a Taylor expansion in the vicinity of the horizon. In this case,
we have

˙h
h ⇡ 1

y�yh
, with the sign determined by the fact that h is positive in the physical

region y < yh, and that it is passing through zero.

This behavior of the horizon function determines a boundary condition for � that arises
from taking the near-horizon limit of the scalar field equation of motion:

�̇
���
yh

=
3

22

@ log V

@�

����
yh

(3.41)

In order to find solutions of the kind we seek, those that have a geometry corresponding to
a condensate at finite temperature, we guess that we require Eq. (3.41) to hold for large �̇.
In the next two subsections, we explore two cases that present obstacles to achieving this.

Conical Singularity

The near-horizon geometry is generally singular, corresponding to a system out-of-equilibrium.
The black hole has “hair” in this case, and quantum e↵ects will cause the singularity to emit
radiation until it reaches equilibrium with the surrounding thermal bath. In cases where
a finite temperature is not consistent with a theory with spontaneously broken conformal
symmetry, the singularity is non-resolvable, and cannot be smoothed out in a manner that
is independent of the 5D cuto↵ of the theory.

If a theory does admit solutions to the h function which vanish at some finite value of
yh, then we can study such systems in the near-horizon limit. Considering the near-horizon
limit of the metric, where h ⇡ h

1

(yh � y), we have (keeping only the dt and dy components
of the metric):

ds2 ⇡ e�2yhh
1

(yh � y)dt2 +
dy2

22

3

V (�h)(y � yh)
(3.42)

We now go to “good” coordinates, (yh � y) =
q

2V (�h)

6

ey2, t = ✓
2⇡T where the metric is that

of a cone:

ds2 = e2yhh
1

✓
�2

6
V (�h)

◆
ey2

(2⇡T )2
d✓2 + dey2 (3.43)

1
This is assuming that neither of the quantities V1 or G(y) are singular at the position of the horizon.
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Horizon B.C.’s:

as a good approximation for the behavior of � for y � yc. In this limit, Eq. (2.5), can be
re-written as

�̇v
IR

= �8

✓
1 � 1

8

d

dy
log V (�)

◆
�v

IR

(2.26)

where we have kept only the leading linear terms in �v
IR

. This equation is integrable,
yielding the following relation between �v

IR

and the scalar bulk potential:

�v
IR

= e� V (�(y))

V (�(yc))
e�8(y�yc) (2.27)

Here, e� is an O(1) integration constant, and the yc dependence has been factored
out. Note that we have been agnostic about the form of the bulk potential, assuming only
that the trajectory for � ends up on the condensate branch, which appears generic for all
trajectories that lead to near AdS in the y ! �1 limit.

Plugging this into Eq. (2.20), we obtain a simple expression for G(y) in the IR:

G
IR

(y
1

) = � 2

12e�
V (�(yc))e

8(y1�yc) (2.28)

with the dependence on the deep IR behavior of V (�) dropping out neatly. This is the
same cancellation as occurred in our analysis of the exponential potential, now now shown
to be independent of the form of V (�).

For all potentials, so long as � is reasonably small in the UV (note that it can be made
small by redefinition of potential)... then you can write the UV asymptotics of @ log V/@�
as

@ log V

@�
⇠ 2

6
✏� (2.29)

V = �6k2

2

✓
1 +

2

3
✏�2

◆
(2.30)

� = �
0

e✏y + e�e(4�✏)(y�yc) (2.31)

3 Finite Temperature

There are many reasons to consider the behavior of this class of theories at finite tempera-
ture. First, as we will demonstrate, there is a fragility of the condensate in classes of models
with light dilatons. This is due to the presence of a near flat direction at the minimum of
the dilaton potential. It is this which allows for the light dilaton, and also for a suppression
in the contribution of condensates to the e↵ective IR value of the cosmological constant.

7

= ✏�|yh

In principle, there seems to be no great obstacle:	


horizon doesn’t force trivial ϕ = Constant

In practice, goal of numerical solutions with horizon at finite yh 

and condensate region has proven extraordinarily stubborn 
condensate forces horizon to y=∞

Likely due to fragility of condensate under small 
perturbations (i.e. low temp) 

appearing as numerical stability issues



Conclusions

• Models that make progress on the CC problem are few and far 
between	



• We explore variants and pheno of holographic CPR:	



• Bellazzini, Csáki, JH, Serra, Terning 1305.3919	



• Among this class of models are ones in which SBSI manifests as continuous 
geometries (soft wall SBSI) with IR brane playing lesser role as cutoff	



• Should allow a continuous parametrizing of model at finite temperature	



• vital for understanding cosmological behavior of various models where 
CC problem has dynamical resolution	



• so far elusive, but  …



Thank you!


