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Motivation

+ Cosmological history modified in models where the CC is protected
dynamically, i.e. by
non-linearly realized conformal invariance

- Phase transitions generally contribute dynamically to vacuum energy
- only end result is tiny




Dueling order parameters

f: O.P. for CC relaxation Low T min
small CC

High T min
small CC |arge CC?
metastable=mini-inflati

®: O.P. for ear
universe P.T. (Higgs, XSB)




Scale Transformations
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very small bird, normal leaf?
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A is non-perturbative quantum
operator scaling dimension

S — S+ Z/d% ag;(A; — 4)O;(x)




Spontaneous breaking

Low, Manohar 01

o(x) — o(e”x) + af

fofx=felt
Restores symmetry to LEEFT




The Dilaton Quartic

dilaton quartic

® 2>0-f=0 (no breaking)

Fubini 76 ® 2 <0-f=00 (runaway)

® 3 =0 - f=anything (flat direction)



Near-Marginal Deformation

Deformation can stabilize f away from origin

V= fPIAF(A(f) + BE'(A(f)] =0




The Dilaton Mass

mgy = ["BBF" +4F' + B'F'] = 4f*BF'(A(f)) = —16f*F(A(f))

small, so dilaton is light, right?

Fnpa ~

‘Need large B to find minimum V' = f2[4F(A(f)) + BF'(\(f))] = 0
Theory not conformal at scale f - no light dilaton

m5., ~ 2561 f* ~ A® 3 TeV not suppressed
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CPR idea

Contino, Pomarol, Rattazzi (Talk at Planck 2010)

® F(A) generically large, but if A near marginal for range
of A, theory will scan over F with scale

® large F will not generate spontaneously broken scale
Invariance

® minimum when F~ 0

® dilaton mass proportional to &



Various dynamical possibilities
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Cartoon

theory runs through quartic
landscape slowly until small
value dynamically found

F(A(H)) dilaton potential min
here (f << Mp)

.
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Naturally Light Dilaton, Small CC

5D scalar min. . 5 1 2 1
coupled to gravity: 5 = /d /9 2 (Om@)” = V(9) 2,{2R
) + brane potentials )

AdS/CFT: at yoand y|
small B < slowly changingV(®): V(¢) = As + ef (o)

see also Coradeschi, Lodone,

Csaki, Bellazzini, JH, Serra, Terning 1305.3919  Pappadopulo, Rattazzi, vitale

(1306.4601)
Metric Ansatz: 2 _2A(F) y ~9
ds” = YIm dxtdx” — d
flat 4D slices ° ‘ L Y

“True scale” coordinates: = ke ¥

A ~\ G :A/ ~ 2
() =y () 5(9)) ) AdS/CFT: EOM capture

ds® = e_Q?andQEﬂdi g running even when far
G(y) from AdS
Deviations from pure AdS encoded in G(y)




Scalar-Einstein Equations

Equations of motion:
+V(©)
1 — 52

G:

Can substitute G(y) in terms of scalar vev in last equation:

Master Evolution Equation: Backreaction term

. (o 3 0logV(e)\ (. 2.\ | AdSICFT:
¢_4<¢ 262 O )(1 129 ¢ ~ log A

Captures running (and condensation) of
sourced operators in ~CFT




Dilaton Effective Potential

Bulk action total derivative (Bellazzini et. al. 1305.3919)
integrates to pure boundary term, along with brane localized
potentials and jump contributions

Volo()) — VG| + e [6(0)) + 5 v/G)

UV brane _ IR brane
Lo = ke YO ] = ke Y1

What is the behavior of the dilaton effective potential
for various bulk scalar potentials?
(various deformations of CFT)

Task = work out UV and IR asymptotics

How is spontaneously broken scale invariance manifested?



Where’s the IR brane!

B.Cs from brane potential: OV1(¢)
Vi=A1+7(¢— 1) ¢8¢
\oo in “stiff brane” limit O = Py

Generic Potential:

3 OlogV(¢) 1
QK2 )0 > <

IR Universality

PR (Y) = Oc + \/i—?(y — Ye)

gb‘yl —

6=1(0-

NDA: ¢1 = few -/1/k?

Chacko, Mishra, Stolarski

Easily deep into
non-AdS region

E (¢1 — ¢c):| ~ O(



Constant V (exact CFT)

Vi) =

Master Evolution Equation:
2 .

Co:nd. |

¢=4¢(

Solution: Singularity at y— o0

1 /12 st
b = o & = log {64(1/—1/':) (1 i \/1 + @8(yc—y))}
K
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Asymptotics: ¢~ !




Plug into Holographic Dilaton Potential

[+ e Vi) + S VGG

Substitute and re-arrange:

o)A 6k1 1 [12 /F\*|oV, \/ﬁ
?) [Vo(ﬁbo)—?]iz ?(E) 8—¢<¢0)+2k 2

Bare C.C. Dilaton quartic
+ subleading terms of order (M /f)?

Message:
soft wall geometric model of spontaneously broken scale invariance
IR brane plays subdominant role:
just cuts off growth of scalar field and curvature




General bulk potentials: UV

Small Bulk Mass Term

kZ 2
v 8 (1 + %egb2>

KJQ

Approximate (small backreaction) solution:

b = poe + Ve (4= (y—ye)

G(y) =k (1+ O(e_S(yc_yO)))

UV contribution to dilaton effective potential:

Vo(doe™) — 2 _)

K2 | k

Bare CC marginal “almost quartic”




General bulk potentials: IR

IR Universality

V() K2 V(e)

G(y) = — R —
(y) _ ’f_;¢2 12 dvrr

In deep IR

- 1 d
OUIR = —8 (1 ~3d log V(gb)) OUIR

Integrable in asymptotic limit!

3\/ V(¢(y)) 6—8(y—yc)
V((ye))

Expand scalar EOM
in small Ov:

5?}1}{ —

Generates pure quartic:

ViR = =" |Vi(o(y1)) + %\/G(yl)} — \/ - (9c) (%)4

12




Resulting Dilaton Potential

Vdilaton — _,uef4_€ + >\f4

At min:

1/e €
f ~ U <l) Vdilaton — Z)\f4

A

CC is suppressed by ¢!

Up to kinetic term normalization of dilaton:

2 2
M3ilaton ™ Ef




Finite Temperature
Black hole in AdS

Same action - euclidean signature, compactified time tc{0,=1/T}

ds® = e |h(y)dt® + di*| A L dy’
hy) G)

Einstein Equations:

KT PR L Master Evolution Equation:
dy h 4h 12

. 3 OlogV 1h K.,
(/5—4@—2%2 96 )<1ME¢>
—

. , - 3 dlogV
Horizon B.C’s: ¢ w22 B0

Holographic Dilaton Potential:

~W0n(yo) [ Vo(o(yo)) — % G(yo)] +e W n(y) [‘/i(¢(y1)) +% G(11)




Black Brane
ds® = e |h(y)dt® + di?|

Goal: UV Cond.
Obtain continuous :
V(f,T) moving ~AdS §¢AdS Clothe
between ~AdS and | 5 .Naked.

~AdS. Singularity

Distinct from:
Creminelli, Nicolis, Rattazzi
hep-th:0107141

h(y1) =0
Near horizon geometry typically divergent (hairy)
out-of-equilibrium
Equilibrium temp: adjust y| to remove conical singularity

—Y1
(&
T, = \/
d T




Constant V (exact CFT)

Evolution equations again integrable:

Solution:

¢ = ¢o + Cilogh

Finite temperature ruins the flat direction!
Constant @ — no condensate region - UNBROKEN CFT

AdS-Schwarzchild
h— 1 — *u—yn) G = k*

Plugging into holo. potential (free energy):
Faqs.s oc T*




General Potentials

k2 2
I (1+%egb2>

K2

. , . 3 dlogV|
Horizon B.C's: b w22 96 = €¢‘yh

Yh

In principle, there seems to be no great obstacle:

horizon doesn’t force trivial @ = Constant

In practice, goal of numerical solutions with horizon at finite yn
and condensate region has proven extraordinarily stubborn
condensate forces horizon to y=o0

Likely due to fragility of condensate under small
perturbations (i.e. low temp)
appearing as humerical stability issues




Conclusions

® Models that make progress on the CC problem are few and far
between

® Ve explore variants and pheno of holographic CPR:

® Bellazzini, Csaki, |H, Serra, Terning 1305.3919

® Among this class of models are ones in which SBSI manifests as continuous
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Thank you!
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