2HDM with local U(1)_H gauge symmetry and dark matter

Collaboration with P. Ko (KIAS) and Yuji Omura (Nagoya U.)

Based on JHEP 1401, 016; arXiv:1405.2138; work in progress

> The 2nd NPKI Workshop Sep 19, 2014, The Suites Hotel Jeju, Korea

Two Higgs doublet model

- an effective theory of high-energy models.
 - MSSM, GUT, flavor models, and etc.
- an extension of SM
 - extra scalars
 - dark matter physics Ma,PRD73;Barbieri,Hall,Rychkov,PRD74
 - baryon asymmetry of the Universe Shu, Zhang, PRL111
 - neutrino mass generation Kanemura, Matsui, Sugiyama, PLB727
 - top A_{FB} at Tevatron and $B \rightarrow D^{(*)} \tau \nu$ at BABAR Ko,Omura,Yu,EPJC73;JHEP1303

2HDM with Z_2 symmetry (2HDMw Z_2)

- One of the simplest models to extend the SM Higgs sector.
- In general, flavor changing neutral currents (FCNCs) appear.
- A simple way to avoid the FCNC problem is to assign ad hoc Z_2 symmetry.

Fermions of same electric charges get their masses from one Higgs VEV.

$$\mathcal{L} = \overline{L}_i (y_{1ij}^E H_1 + y_{2ij}^E H_2) E_{Rj} + \text{H.c.} \quad \text{or vice versa}$$

NO FCNC at tree level.

Extensions of 2HDM

• Z₂ symmetry

softly broken Z₂ symmetry Glashow, Weinberg PRD15 singlet extension Drozd, Grzadkowski, Gunion, Jiang S₃ symmetry kajiyama, Okada, arXiv:1309.6234 U(1) symmetry Ko, Omura, Yu, PLB717, 202(2015)

• vacuum

$$\langle H_1 \rangle = v_1, \langle H_2 \rangle = v_2$$

$$\langle H_1 \rangle = 0, \langle H_2 \rangle = v_2$$

$$\langle H_1 \rangle = v_1 e^{i\xi}, \langle H_2 \rangle = v_2$$

Why softly broken Z₂ sym?

• Discrete symmetry could generate a domain wall problem when it is spontaneously broken.

• Usually the Z₂ symmetry is assumed to be broken softly by a dim-2 operator, $H_1^{\dagger}H_2$ term.

The softly broken Z₂ symmetric 2HDM potential $V = m_1^2 H_1^{\dagger} H_1 + m_2^2 H_2^{\dagger} H_2 - (m_{12}^2 H_1^{\dagger} H_2 + h.c.) + \frac{1}{2} \lambda_1 (H_1^{\dagger} H_1)^2 + \frac{1}{2} \lambda_2 (H_2^{\dagger} H_2)^2 + \lambda_3 (H_1^{\dagger} H_1) (H_2^{\dagger} H_2) + \lambda_4 (H_1^{\dagger} H_2) (H_2^{\dagger} H_1) + \frac{1}{2} \lambda_5 [(H_1^{\dagger} H_2)^2 + h.c.]$

• the origin of the softly breaking term?

Why softly broken Z₂ sym?

• Discrete symmetry could generate a domain wall problem when it is spontaneously broken.

• Usually the Z₂ symmetry is assumed to be broken softly by a dim-2 operator, $H_1^{\dagger}H_2$ term.

The softly broken Z₂ symmetric 2HDM potential $V = m_1^2 H_1^{\dagger} H_1 + m_2^2 H_2^{\dagger} H_2 - (m_{12}^2 H_1^{\dagger} H_2 + h.c.) + \frac{1}{2} \lambda_1 (H_1^{\dagger} H_1)^2 + \frac{1}{2} \lambda_2 (H_2^{\dagger} H_2)^2 + \lambda_3 (H_1^{\dagger} H_1) (H_2^{\dagger} H_2) + \lambda_4 (H_1^{\dagger} H_2) (H_2^{\dagger} H_1) + \frac{1}{2} \lambda_5 [(H_1^{\dagger} H_2)^2 + h.c.]$

• the origin of the softly breaking term?

 $U(1)_{H}$ extension of Z₂ symmetry could be the origin of the softly breaking terms.

• Only one Higgs couples with fermions.

$$V_{y} = y_{ij}^{U} \overline{Q}_{Li} \tilde{H}_{1} U_{Rj} + y_{ij}^{D} \overline{Q}_{Li} H_{1} D_{Rj} + y_{ij}^{E} \overline{L}_{i} H_{1} E_{Rj} + y_{ij}^{N} \overline{L}_{i} \tilde{H}_{1} N_{Rj}$$

• anomaly free $U(1)_{H}$ without extra fermions except RH neutrinos.

U_R	D_R	Q_L	L	E_{R}	N_{R}	H_1
и	d	$\frac{(u+d)}{2}$	$\frac{-3(u+d)}{2}$	-(2u+d)	-(u+2d)	$\frac{(u-d)}{2}$
2	h Daram	eters		Ko,C)mura,Yu, PLB7	17,202(2013

• Only one Higgs couples with fermions.

$$V_{y} = y_{ij}^{U} \overline{Q}_{Li} \tilde{H}_{1} U_{Rj} + y_{ij}^{D} \overline{Q}_{Li} H_{1} D_{Rj} + y_{ij}^{E} \overline{L}_{i} H_{1} E_{Rj} + y_{ij}^{N} \overline{L}_{i} \tilde{H}_{1} N_{Rj}$$

• anomaly free $U(1)_{H}$ without extra fermions except RH neutrinos.

U_R	D_R	$Q_{\scriptscriptstyle R}$	L	E_{R}	N_{R}	H_{1}	Туре	
и	d	$\frac{(u+d)}{2}$	$\frac{-3(u+d)}{2}$	-(2u+d)	-(u+2d)	$\frac{(u-d)}{2}$		
0	0	0	0	0	0	0	$h_2 \neq 0$	
1/3	1/3	1/3	-1	-1	-1	0	$U(1)_{B-L}$	
1	-1	0	0	-1	1	1	$U(1)_R$	Z _H strongly
2/3	-1/3	1/6	-1/2	-1	0	1/2	$U(1)_{\gamma}$	

Only one Higgs couples with fermions.

$$V_{y} = y_{ij}^{U} \overline{Q}_{Li} \tilde{H}_{1} U_{Rj} + y_{ij}^{D} \overline{Q}_{Li} H_{1} D_{Rj} + y_{ij}^{E} \overline{L}_{i} H_{1} E_{Rj} + y_{ij}^{N} \overline{L}_{i} \tilde{H}_{1} N_{Rj}$$

• anomaly free $U(1)_{H}$ without extra fermions except RH neutrinos.

U_{R}	D_{R}	$Q_{\scriptscriptstyle R}$	L	E_{R}	N_{R}	H_{1}	Туре
и	d	$\frac{(u+d)}{2}$	$\frac{-3(u+d)}{2}$	-(2u+d)	-(u+2d)	$\frac{(u-d)}{2}$	
0	0	0	0	0	0	0	$h_2 \neq 0$
1/3	1/3	1/3	-1	-1	-1	0	$U(1)_{B-L}$
1	-1	0	0	-1	1	1	$U(1)_R$
2/3	-1/3	1/6	-1/2	-1	0	1/2	$U(1)_{\gamma}$

SM fermions are U(1)_H singlets.
Z_H is fermiophobic and Higgsphilic.

less constrained

• Only one Higgs couples with fermions.

$$V_{y} = y_{ij}^{U} \overline{Q}_{Li} \tilde{H}_{1} U_{Rj} + y_{ij}^{D} \overline{Q}_{Li} H_{1} D_{Rj} + y_{ij}^{E} \overline{L}_{i} H_{1} E_{Rj} + y_{ij}^{N} \overline{L}_{i} \tilde{H}_{1} N_{Rj}$$

• anomaly free $U(1)_H$ without extra fermions except RH neutrinos.

U_R	D_{R}	$Q_{\scriptscriptstyle L}$	L	E_{R}	N_{R}	H_{1}
и	d	$\frac{(u+d)}{2}$	$\frac{-3(u+d)}{2}$	-(2u+d)	-(u+2d)	$\frac{(u-d)}{2}$

- Dark matter could be introduced in Higgs portal or inert type models.
- Or, in general, extra fermions are required in order to cancel gauge anomaly.

 \rightarrow one of extra fermions could be a candidate for cold dark matter.

• H₁ couples to the up-type fermions, while H₂ couples to the down-type fermions.

$$V_{y} = y_{ij}^{U} Q_{Li} H_{1} U_{Rj} + y_{ij}^{D} Q_{Li} H_{2} D_{Rj} + y_{ij}^{E} L_{i} H_{2} E_{Rj} + y_{ij}^{N} L_{i} H_{1} N_{Rj}$$

U_R	D_{R}	$Q_{\scriptscriptstyle L}$	L	E_{R}	N_R	H_{1}	H_2
и	0	0	0	0	и	и	0

• Requires extra chiral fermions for cancellation of gauge anomaly.

Mixing between new chiral fermions and SM fermions is prohibited by U(1)_H charge assignment.

One of extra fermions could be a candidate for CDM.

• type-II 2HDM with U(1) inspired by E_6 GUT

 $E_6 \to SO(10) \times U(1)_{\psi} \to SU(5) \times U(1)_{\chi} \times U(1)_{\psi}$

	SU(3)	SU(2)	$U(1)_Y$	$U(1)_b$	$U(1)_{\psi}$	$U(1)_{\chi}$	$U(1)_{\eta}$
Q^i	3	2	1/6	-1/3	1	-1	-2
U_R^i	3	1	2/3	2/3	$^{-1}$	1	2
D_R^i	3	1	-1/3	-1/3	-1	-3	-1
L_i	1	2	-1/2	0	1	3	1
E_R^i	1	1	-1	0	$^{-1}$	1	2
N_R^i	1	1	0	1	$^{-1}$	5	5
H_1	1	2	1/2	0	2	2	-1
H_2	1	2	1/2	1	-2	2	4

Extra fermions (required by anomaly-free conditions)

	SU(3)	SU(2)	$U(1)_Y$	$U(1)_b$	$U(1)_{\psi}$	$U(1)_{\chi}$	$U(1)_{\eta}$
q_L^i	3	1	-1/3	2/3	-2	2	4
q_R^i	3	1	-1/3	-1/3	2	2	-1
l_L^i	1	2	-1/2	0	-2	-2	1
l_R^i	1	2	-1/2	-1	2	-2	-4
n_L^i	1	1	0	-1	4	0	-5

Singlet scalar required for $U(1)_{H}$ breaking and masses for extra fermions

	SU(3)	SU(2)	$U(1)_Y$	$U(1)_b$	$U(1)_{\psi}$	$U(1)_{\chi}$	$U(1)_{\eta}$
Φ	1	1	0	1	-4	0	5

$$Q_{\eta} = \frac{3}{4}Q_{\chi} - \frac{5}{4}Q_{\psi}$$
$$Q_{b} = \frac{1}{5}(Q_{\eta} + 2Q_{Y}) \implies \text{leptophobic} \text{choose as U(1)}_{H}$$

Yukawa interaction for extra fermions

$$V_y^{\text{ex}} = y_{ij}^q \Phi \overline{q_L}^i q_R^j + y_{ij}^l \Phi \overline{l_L}^i l_R^j + y_{ij}^n \overline{l_R}^i \widetilde{H}_1 n_L^j + y_{ij}^{\prime n} \overline{l_L}^c H_2 n_L^j + h.c$$

Mixing of extra neutral fermions

12

Higgs Potential

• in the ordinary 2HDM with Z₂ symmetry

$$V = m_1^2 H_1^{\dagger} H_1 + m_2^2 H_2^{\dagger} H_2 - (m_{12}^2 H_1^{\dagger} H_2 + h.c.) + \frac{1}{2} \lambda_1 (H_1^{\dagger} H_1)^2 + \frac{1}{2} \lambda_2 (H_2^{\dagger} H_2)^2 + \lambda_3 (H_1^{\dagger} H_1) (H_2^{\dagger} H_2) + \lambda_4 (H_1^{\dagger} H_2) (H_2^{\dagger} H_1) + \frac{1}{2} \lambda_5 [(H_1^{\dagger} H_2)^2 + h.c.].$$
not invariant under U(1)_H

• in the 2HDM with U(1)_H, we include an extra singlet scalar Φ , which makes Z_H heavy.

$$\begin{split} V &= \hat{m}_{1}^{2} (|\Phi|^{2}) H_{1}^{\dagger} H_{1} + \hat{m}_{2}^{2} (|\Phi|^{2}) H_{2}^{\dagger} H_{2} - \begin{pmatrix} m_{3}^{2}(\Phi) H_{1}^{\dagger} H_{2} + h.c. \end{pmatrix} \leqslant \qquad H_{1}^{\dagger} H_{2} \Phi \\ &+ \frac{\lambda_{1}}{2} (H_{1}^{\dagger} H_{1})^{2} + \frac{\lambda_{2}}{2} (H_{2}^{\dagger} H_{2})^{2} + \lambda_{3} (H_{1}^{\dagger} H_{1}) (H_{2}^{\dagger} H_{2}) + \lambda_{4} |H_{1}^{\dagger} H_{2}|^{2} \qquad \text{invariant under U(1)}_{\mathsf{H}} \\ &+ m_{\Phi}^{2} |\Phi|^{2} + \lambda_{\Phi} |\Phi|^{4}. \qquad \mathsf{no } \lambda\mathsf{5 terms!} \end{split}$$

• neutral Higgs $\begin{pmatrix}
h_{\Phi} \\
h_{1} \\
h_{2}
\end{pmatrix} = \begin{pmatrix}
1 & 0 & 0 \\
0 \cos \alpha - \sin \alpha \\
0 \sin \alpha & \cos \alpha
\end{pmatrix}
\begin{pmatrix}
\cos \alpha_{1} & 0 - \sin \alpha_{1} \\
0 & 1 & 0 \\
\sin \alpha_{1} & 0 & \cos \alpha_{1}
\end{pmatrix}
\begin{pmatrix}
\cos \alpha_{2} - \sin \alpha_{2} & 0 \\
\sin \alpha_{2} & \cos \alpha_{2} & 0 \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
\widetilde{h} \\
H \\
h
\end{pmatrix}$

a pair of charged Higgs + 1 pseudoscalar Higgs + 3 neutral Higgs bosons

Z-Z_H mixing

• tree-level mixing (v_i≠0)

$$\tan 2\xi = \frac{2\Delta M_{ZZ_H}^2}{\hat{M}_{Z_H}^2 - \hat{M}_Z^2} \qquad \Delta M_{ZZ_H}^2 = -\frac{\hat{M}_Z}{v} g_H \sum_{i=1}^2 q_{H_i} v_i^2.$$

• loop-level mixing ($v_1=0, v_2\neq 0$)

The mixing can appear because of $SU(2)_L \times U(1)_Y$ breaking effects.

• In the fermiophobic Z_H case, the Z_H boson can be produced through the Z-Z_H mixing and the bound for the mixing angle is

 $\sin \xi \leq O(10^{-2}) \sim O(10^{-3})$

Mass and coupling of Z_H (type-I)

Tree-level mixing

loop-level mixing

Includes collider bound, relic density, direct detection and indirect detection

Constraints

Type-I (with h_{Φ}) and Type-II (E₆)

• the gg fusion

★=SM

Ko,Omura,Yu, JHEP1401 (2014) 016

- Data are consistent with the SM prediction.
- \bullet To distinguish models, it is necessary to discover other scalar and $Z_{\rm H}$ bosons.

Dark Matter

Inert Doublet Model (IDMwZ₂)

 \bullet One of Higgs doublets does not develop VEV and exact Z_2 symmetry is imposed.

• Under the Z₂ symmetry, SM particles are even, but the new Higgs doublet is odd.

$$V = \mu_{1}(H_{1}^{\dagger}H_{1}) + \mu_{2}(H_{2}^{\dagger}H_{2}) - \mu_{12}(H_{1}^{\dagger}H_{2} + \text{h.c.}) + \frac{\lambda_{1}}{2}(H_{1}^{\dagger}H_{1})^{2} + \frac{\lambda_{2}}{2}(H_{2}^{\dagger}H_{2})^{2} + \lambda_{3}(H_{1}^{\dagger}H_{1})(H_{2}^{\dagger}H_{2}) + \lambda_{4} |H_{1}^{\dagger}H_{2}|^{2} + \frac{\lambda_{5}}{2}\{(H_{1}^{\dagger}H_{2})^{2} + h.c.\}.$$

Viable DM candidate

$$H_{1} = \begin{pmatrix} H^{+} \\ \frac{1}{\sqrt{2}} (H) + i A \end{pmatrix}, \quad H_{2} = \begin{pmatrix} G^{+} \\ \frac{1}{\sqrt{2}} (v + h) + i G^{0} \end{pmatrix}$$

DM candidates
$$m_{A} = \sqrt{m_{H}^{2} - \lambda_{5} v^{2}}$$

choose negative λ_{5} .

- We extend the Z_2 symmetry to U(1) gauge symmetry.
- A SM-singlet Φ has to be added.
- Without Φ , Z_H boson becomes massless and U(1) does not break.

$$V = (m_1^2 + \tilde{\lambda}_1 |\Phi|^2)(H_1^{\dagger}H_1) + (m_2^2 + \tilde{\lambda}_2 |\Phi|^2)(H_2^{\dagger}H_2) - (m_{12}^2 H_1^{\dagger}H_2 + h.c.)$$

+ $\frac{\lambda_1}{2}(H_1^{\dagger}H_1)^2 + \frac{\lambda_2}{2}(H_2^{\dagger}H_2)^2 + \lambda_3(H_1^{\dagger}H_1)(H_2^{\dagger}H_2) + \lambda_4 |H_1^{\dagger}H_2|^2$
+ $\frac{\lambda_5}{2}\{(H_1^{\dagger}H_2)^2 + h.c.\} + m_{\Phi}^2 |\Phi|^2 + \lambda_{\Phi} |\Phi|^4$

- Φ breaks the U(1)_H symmetry while H₂ breaks the EW symmetry.
- The remnant symmetry of $U(1)_{H}$ is the origin of the exact Z_2 symmetry.

- We extend the Z_2 symmetry to U(1) gauge symmetry.
- A SM-singlet Φ has to be added.
- Without Φ , Z_H boson becomes massless.

forbidden by the Z₂ symmetry

$$V = (m_1^2 + \tilde{\lambda}_1 | \Phi |^2)(H_1^{\dagger}H_1) + (m_2^2 + \tilde{\lambda}_2 | \Phi |^2)(H_2^{\dagger}H_2) - (m_{12}^2 H_1^{\dagger}H_2 + h.c.)$$

+ $\frac{\lambda_1}{2}(H_1^{\dagger}H_1)^2 + \frac{\lambda_2}{2}(H_2^{\dagger}H_2)^2 + \lambda_3(H_1^{\dagger}H_1)(H_2^{\dagger}H_2) + \lambda_4 | H_1^{\dagger}H_2 |^2$
+ $\frac{\lambda_5}{2}\{(H_1^{\dagger}H_2)^2 + h.c.\} + m_{\Phi}^2 | \Phi |^2 + \lambda_{\Phi} | \Phi |^4$
forbidden by the U(1)_H symmetry (q_{H2}=0,q_{H1}≠0)

- Φ breaks the U(1)_H symmetry while H₂ breaks the EW symmetry.
- The remnant symmetry of $U(1)_{H}$ is the origin of the exact Z_2 symmetry.

• IDM + SM-singlet Φ .

forbidden by the Z_2 symmetry

$$V = (m_1^2 + \tilde{\lambda}_1 | \Phi |^2)(H_1^{\dagger}H_1) + (m_2^2 + \tilde{\lambda}_2 | \Phi |^2)(H_2^{\dagger}H_2) - (m_{12}^2 H_1^{\dagger}H_2 + h.c.) + \frac{\lambda_1}{2}(H_1^{\dagger}H_1)^2 + \frac{\lambda_2}{2}(H_2^{\dagger}H_2)^2 + \lambda_3(H_1^{\dagger}H_1)(H_2^{\dagger}H_2) + \lambda_4 | H_1^{\dagger}H_2 |^2 + \frac{\lambda_5}{2} \{(H_1^{\dagger}H_2)^2 + h.c.\} + m_{\Phi}^2 | \Phi |^2 + \lambda_{\Phi} | \Phi |^4$$

forbidden by the U(1)_H symmetry $(q_{H_2}=0,q_{H_1}\neq 0)$

• Without λ_5 , H and A are degenerate.

$$m_A = \sqrt{m_H^2 - \lambda_5 v^2}$$

• Direct searches for DM at XENON100 and LUX exclude this degenerate case.

• IDM + SM-singlet Φ .

forbidden by the Z_2 symmetry

$$V = (m_1^2 + \tilde{\lambda}_1 |\Phi|^2)(H_1^{\dagger}H_1) + (m_2^2 + \tilde{\lambda}_2 |\Phi|^2)(H_2^{\dagger}H_2) - (m_{12}^2 H_1^{\dagger}H_2 + \text{h.c.})$$

+ $\frac{\lambda_1}{2}(H_1^{\dagger}H_1)^2 + \frac{\lambda_2}{2}(H_2^{\dagger}H_2)^2 + \lambda_3(H_1^{\dagger}H_1)(H_2^{\dagger}H_2) + \lambda_4 |H_1^{\dagger}H_2|^2$
+ $\{c_l \left(\frac{\Phi}{\Lambda}\right)^l (H_1^{\dagger}H_2)^2 + h.c.\} + m_{\Phi}^2 |\Phi|^2 + \lambda_{\Phi} |\Phi|^4$

- The λ_5 term can effectively be generated by a higher-dimensional operator.

• It could be realized by introducing a singlet S charged under U(1)_H with $q_S = q_{H_1}$.

Direct detection

Relic density (low mass)

Relic density (low mass)

Relic density (low mass)

Indirect searches (low mass)

• All points satisfy constraints from the relic density observation and LUX experiments.

Indirect searches (low mass)

• But, indirect DM signals depend on the decay patterns of produced particles from annihilation or decay of DMs.

Gamma ray flux from DM annihilation

 Dwarf spheroidal galaxies are excellent targets to search for annihilating DM signatures because of DM-dominant nature without astrophysical backgrounds like hot gas.

$$\phi_s(\Delta\Omega) = \underbrace{\frac{1}{4\pi} \frac{\langle \sigma v \rangle}{2m_{\rm DM}^2} \int_{E_{\rm min}}^{E_{\rm max}} \underbrace{\frac{\mathrm{d}N_{\gamma}}{\mathrm{d}E_{\gamma}} \mathrm{d}E_{\gamma}}_{\Phi_{\rm PP}} \cdot \underbrace{\int_{\Delta\Omega} \left\{ \int_{\rm l.o.s.} \rho^2(\mathbf{r}) \mathrm{d}l \right\} \mathrm{d}\Omega'}_{J-factor} \cdot \underbrace{\int_{\Phi_{\rm PP}} \int_{\Phi_{\rm PP}} \frac{\mathrm{d}N_{\gamma}}{\mathrm{d}E_{\gamma}} \mathrm{d}E_{\gamma} \cdot \underbrace{\int_{\Delta\Omega} \left\{ \int_{\rm l.o.s.} \rho^2(\mathbf{r}) \mathrm{d}l \right\} \mathrm{d}\Omega'}_{J-factor} \cdot \underbrace{\int_{\Phi_{\rm PP}} \int_{\Phi_{\rm PP}} \int_{\Phi_{\rm PP}} \frac{\mathrm{d}N_{\gamma}}{\mathrm{d}E_{\gamma}} \mathrm{d}E_{\gamma} \cdot \underbrace{\int_{\Delta\Omega} \left\{ \int_{\rm l.o.s.} \rho^2(\mathbf{r}) \mathrm{d}l \right\} \mathrm{d}\Omega'}_{J-factor} \cdot \underbrace{\int_{\Phi_{\rm PP}} \int_{\Phi_{\rm PP}}$$

A 95% upper bound is $\Phi_{PP} = 5.0^{+4.3}_{-4.5} \times 10^{-30} \text{ cm}^3 \text{s}^{-1} \text{GeV}^{-2}$

Geringer-Sameth, Koushiappas, PRL107

Indirect searches (low mass)

Relic density (high mass)

Indirect searches (high mass)

Benchmark points

🛛 L1

- dark matter mass $m_H = 38.6 \text{ GeV}$ Z_H mass $M_{Z_H} = 39.2 \text{ GeV}$
- direct detection $\lambda_5 = -0.174$ $m_A = 110 \text{ GeV}$ H
- relic density $\Omega h^2 = 0.113$
 - $H \longrightarrow Z_H$ ~ 100% $H \longrightarrow Z_H$
- annihilation cross section $\langle \sigma v \rangle_0 = 8.6 \times 10^{-28} \text{ cm}^3/\text{s}$

Benchmark points

🗋 L2

- dark matter mass $m_H = 53.8 \text{ GeV}$ Z_H mass $M_{Z_H} = 29.6 \text{ GeV}$
- direct detection $\lambda_5 = -0.144$ $m_A = 108 \text{ GeV}$ $\sigma_{SI} = 2.9 \times 10^{-46} \text{ cm}^2$

• annihilation cross section $\langle \sigma v \rangle_0 = 2.20 \times 10^{-26} \text{ cm}^3/\text{s}$

Benchmark points

H1

- dark matter mass $m_H = 821 \text{ GeV}$ • Z_H mass $M_{Z_H} = 985 \text{ GeV}$
- direct detection $\lambda_5 = -0.164$ $m_A = 827 \text{ GeV}$ h, \tilde{h} $\sigma_{\rm SI} = 6.1 \times 10^{-46} \, {\rm cm}^2$

36

Relic density in Type-II

work in progress

Conclusions

• 2HDM may be an effective theory of high-energy models and useful to test the underlying theory.

• 2HDM can easily be extended to a gauged model and the U(1) gauge symmetry could be the origin of Z_2 symmetry.

• The U(1) extension to inert doublet model could introduce dark matter candidates whose stability are guaranteed by the remnant symmetry of U(1)_H.

- A light CDM scenario can be possible in the Type-I IDMwU(1)_H.
- Type-II 2HDM with local U(1) symmetry is under study.

Mass and coupling of Z_H (type-II)

 $v_1, v_2 \neq 0$

