

Fakultät Mathematik und Naturwissenschaften, Institut für Kern- und Teilchenphysik

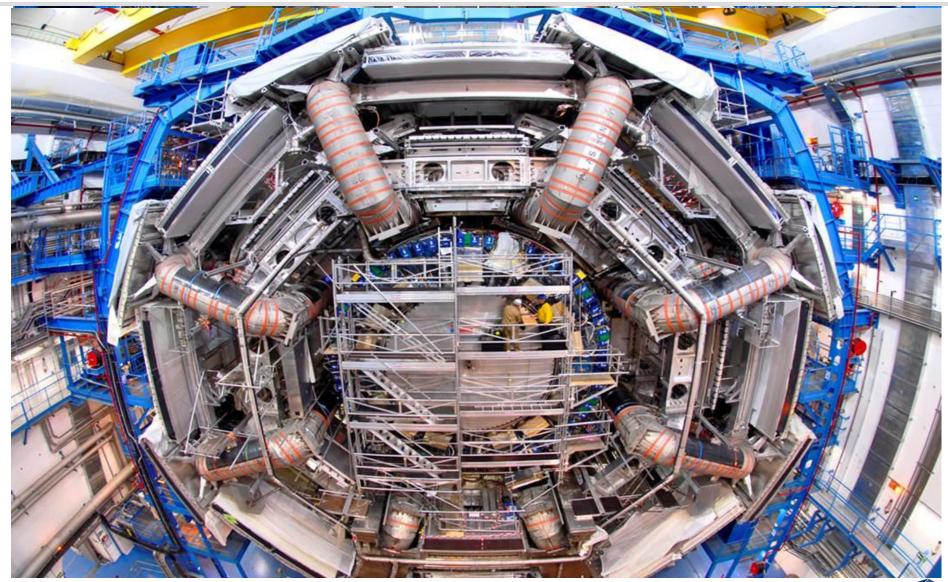
Forschung am CERN und Dresdner Beiträge

Michael Kobel Arno Straessner Kai Zuber

Institut für Kern- und Teilchenphysik

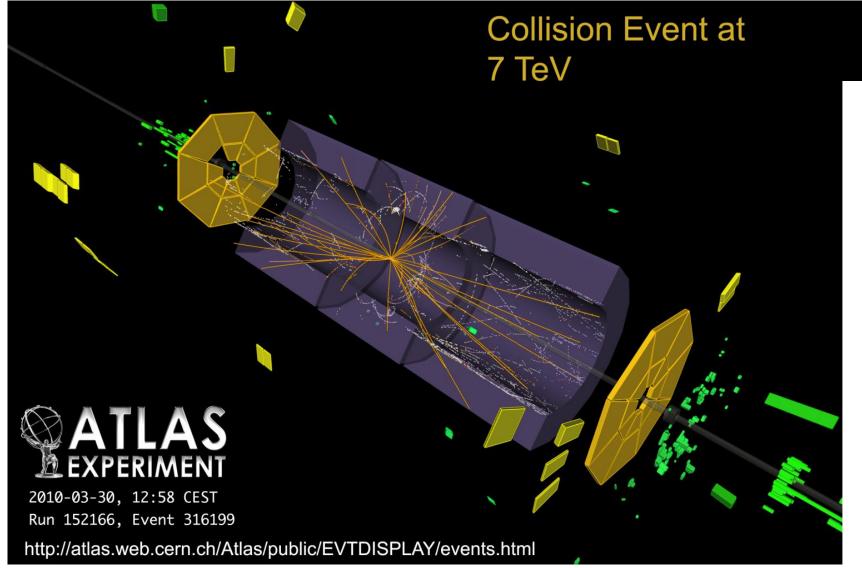
CERN, 6.2.2014

Bilder vom LHC

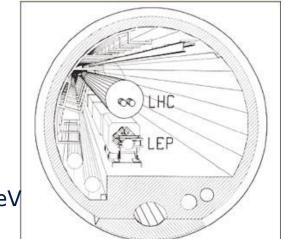


Der ATLAS Detektor im Aufbau

Erste Kollisionen bei 0,9 TeV am 23.11.09



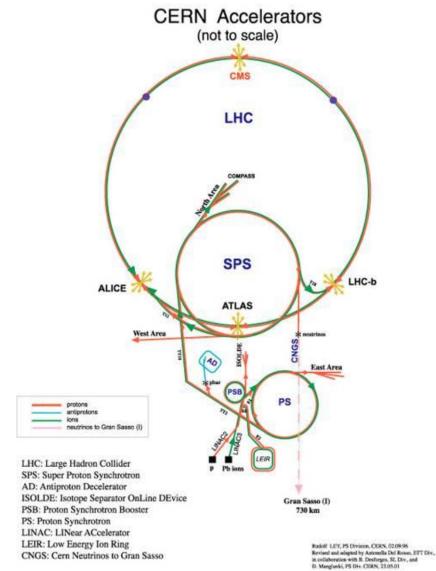
Erstes Ereignis bei 7 TeV am 30.3.10



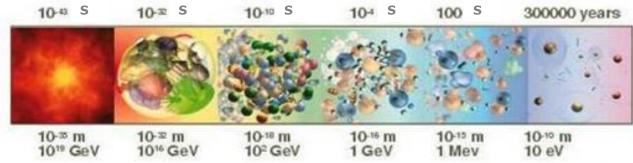
LHC Meilensteine (über > 40 Jahre)

- 1979 Erste Pläne (CERN Scientific Policy Committee)
- 1984 Beginn Forschung und Entwicklung Beschleuniger (ECFA meeting lausanne)
- 1987 LHC Proto-Kollaborationen für Experimente
- 1989 Inbetriebnahme des Large Electron Positron Colliders LEP
- 1989 Erste öffentliche Präsentation durch Generaldirektor C. Rubbia
- 1992 Absichtserklärungen (Letters of Intent) der Experimentatoren
- 1994 Technische Proposals für die Experimente
- 1994/95 Genehmigung des LHC Projekts durch den CERN Rat (Council)
- 1996-1998 Genehmigung von 4 Experimenten (ATLAS, CMS, ALICE, LHCb)
- 2000: Schließung und Abbau des Vorgängers LEP im selben Tunnel
- 2005: Start der Installation der LHC Dipolmagnete
- 2007: Ende des LHC Beschleunigerbaus
- 2008: Erste zirkulierende Strahlen
- -----
- 2009: Erste Kollisionen bei niedriger Energie < 1 TeV
- 2010: Erste Daten bei hoher Energie: 7 TeV
- 2011-2018: Erste Messphase bei 7-14 TeV
- 2019-2030(?): Intensive Messphase "HighLumi-LHC": 14 TeV

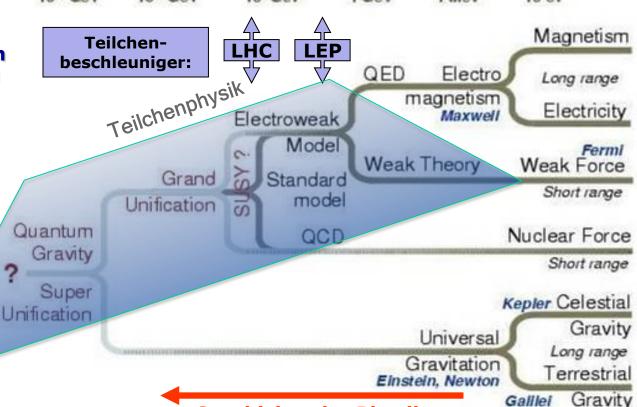
→ Langfristige Planung und dauerhafte Expertise in Gruppen unabdingbar!


Teilchenbeschleuniger am CERN

concept


LEP (e⁺e⁻) 1989-1995 45+45 GeV 1995-2000 bis 104+104 GeV LHC (pp) 2010 3500+3500 GeV 2011-2012 4000+4000 GeV > 2015 6500+6500 GeV

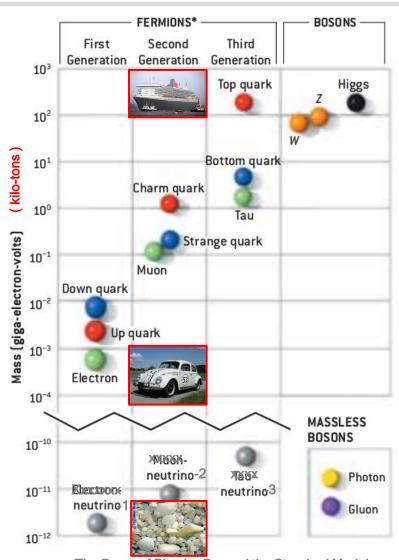
Das große Bild



LHC:

Nachstellen der Prozesse zwischen Elementarteilchen 10⁻¹² s nach dem Urknall

Geschichte der Physik Zurück zum Urknall



Massen der **Elementar**teilchen...

- ❖ ...decken 14(!) Größenordnungen ab
 - v ~ Sandkorn
 - e ~ Auto
 - t ~ Ozeandampfer
- … sind eine Eigenschaft der Teilchen und nicht eine Frage der Größe (alle "gleich groß"= ohne Unterstruktur!)
- ... ergeben charakteristische Muster
 - bzgl. Teilchen-Generationen
 - bzgl. leichter Neutrinos
 (~ 10¹⁰ leichter als ihre Partner)

❖ Warum?

The Dawn of Physics Beyond the Standard Model, by Gordon Kane, Scientific American, June 2003

concept

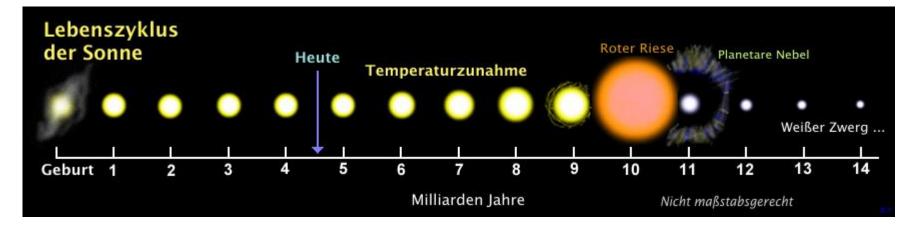
... was wäre wenn ...

View Online: http://www.tricklabor.com/de/portfolio/was-waere-wenn

Download: : www.teilchenphysik.de/multimedia/informationsmaterial/veranstaltungen

- Massen von Elementarteilchen bestimmen den Ablauf der Kosmologie
- Wissenschaftler wollen zunächst verstehen, was Masse ist, um danach versuchen, die Werte zu verstehen

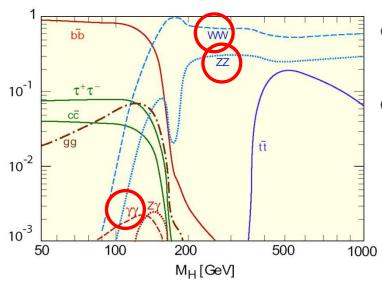
DRESDEN concept



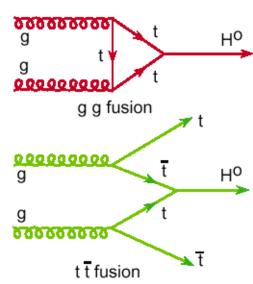
- Warum brennt die Sonne so langsam?
 - p + p \rightarrow D + e⁺ + v (Energiegewinn pp \rightarrow D, $\Delta E = 0.9$ MeV)
 - Vermittelndes W-Teilchen sehr schwer, weil im Higgsfeld: $m_W = 80400 \text{ MeV}$
 - Rate unterdrückt um ~ $(\Delta E / m_W)^4 > 10^{-20}$

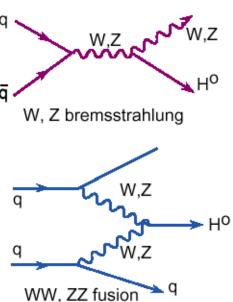
 Sonne brennt im Inneren eines "Supraleiters für schwache Wechselwirkungen", der die Reaktionsrate 10 Milliarden mal effektiver dämpft als ein elektrischer Supraleiter ein Magnetfeld

05.02.2014 Rektorbesuch CERN 11

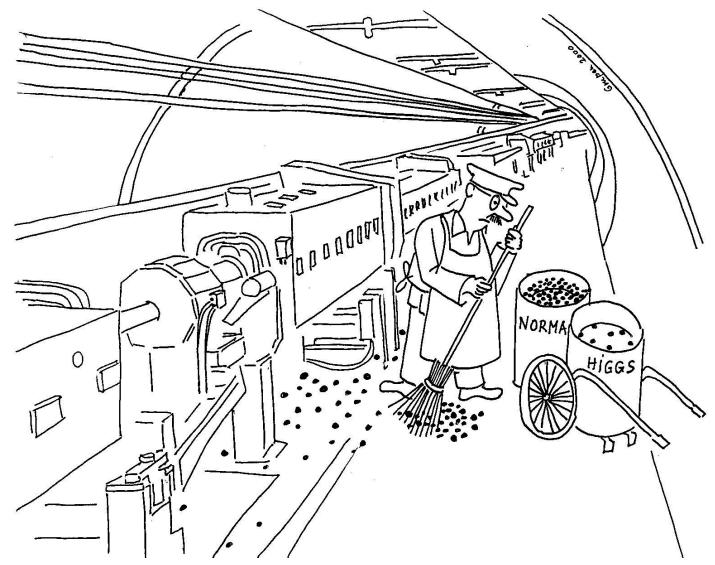


Gibt es das Higgs Feld?

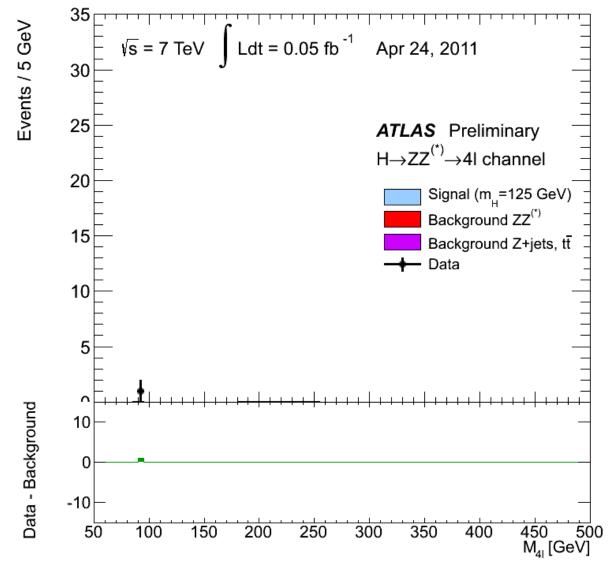



- Entdecke das Feld durch Higgs-Boson Erzeugung
 - Higgs Boson ~ Anregung des Hintergrundfelds (wie Wirbel ~ Anregung der Luft)
 - Schwere Teilchen mit hoher Energie erzeugen Anregung
 Higgs-Teilchen im Hintergrundfeld
- Higgs Boson Zerfälle vorhersagbar
 - Hängen im Standard Modell nur von nicht vorhersagbarer Higgs Masse M_H ab

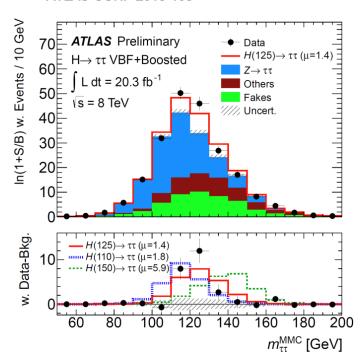
Rektorbesuch CERN

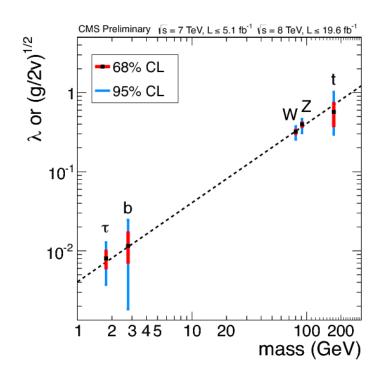


Suchmethode



Ein Entdeckungsprozess: Higgs → ZZ




Suche nach weiteren Zerfällen des Higgs

- Helmholtz-Juniorprofessur Straessner beteiligt an neuesten Messungen (11/2013) zum Higgs-Zerfall in 2 Tau-Leptonen
- ❖ Kopplung des Higgs tatsächlich ~ Masse der Teilchen

ATLAS-CONF-2013-108

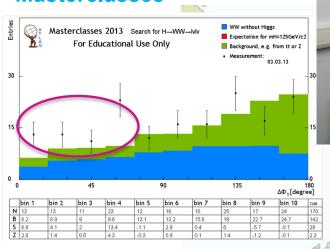
Daten für Jugendliche und Öffentlichkeit (zentral organisiert in Dresden)

Suche nach Higgs Teilchen mit echten CERN Daten

CERN

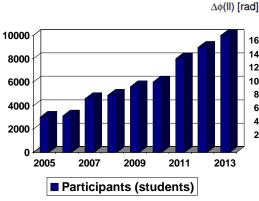
ATLAS Preliminary

H→WW→k/k + 0 iets


 $\sqrt{s} = 7 \text{ TeV}, \text{ L dt} = 1.70 \text{ fb}^{-1}$

Entries / 0.13

60



Masterclasses

Sweden

USA 140 Canada 120 Brazil 100 Columbia South Africa Sao Tomé and Principe 2005 2007 2009 2011 2013 India ■ Institutes
■ US program Indonesia New Zealand

United Kingdom

Ireland Netherlands Poland
Germany
Belgium Czech Republic
France Slovakia
Switzerland Austria
Hungary
Croatia

Norway

Spain Italy
Portugal

: Neu in 2013

Greece

Serbia

Romania

Finland

Turkey

www.physicsmasterclasses.org www.teilchenwelt.de

05.02.2014

Rektorbesuch CERN

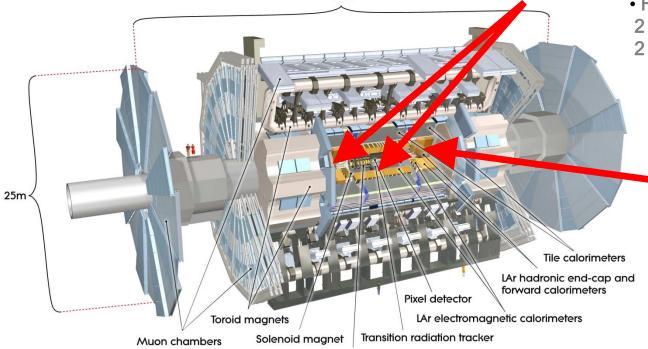
Dresdner Beiträge zum LHC

ATLAS Kollaboration

Eines der 4 Experimente am LHC 174 Institute aus 38 Ländern 3200 Wissenschaftler

Mit ISEG, Rossendorf

44m

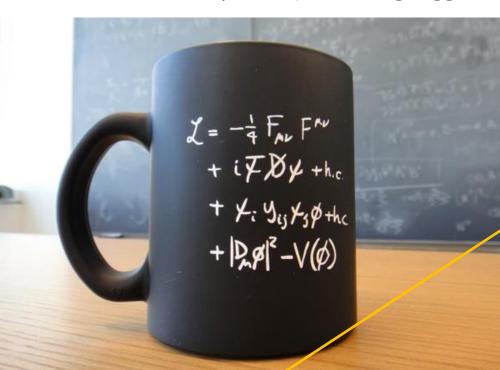


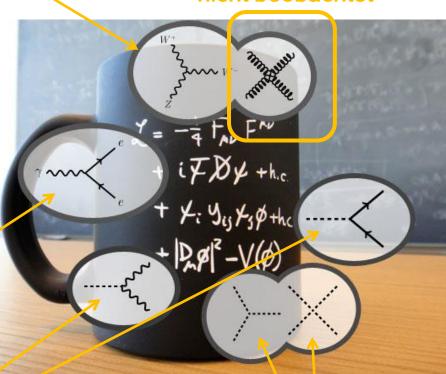
IKTP TU Dresden

Mitglied seit Februar 2006

- Professur Teilchenphysik (M. Kobel)
- 2 Post-Docs, 5 Promovierende.
- 3 Diplom/Master Studenten
- Helmholtz Jun.Prof. (A.Straessner)
- 2 Post-Docs, 7 Promovierende,
- 2 Diplom/Master Stud., 2 Ingenieure

Semiconductor tracker




Theorie der Teilchenphysik (Standardmodell): Eine Formel beschreibt alle Prozesse der Welt Iktp

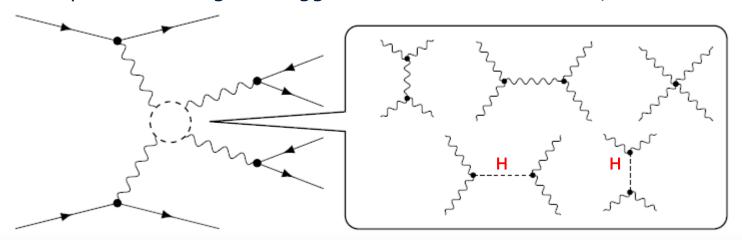
Gesehen von LEP @CERN $\gamma \rightarrow WW, Z \rightarrow WW, g \rightarrow gg$

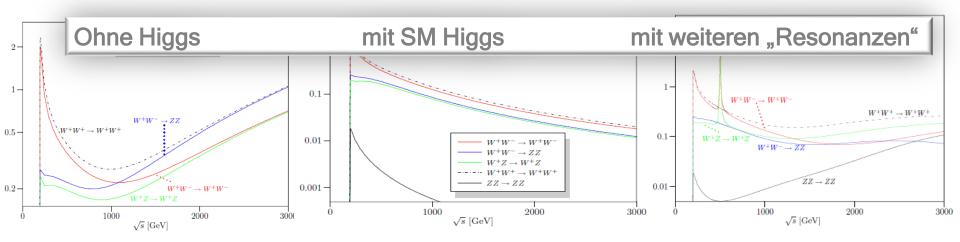
Experimentell noch nicht beobachtet

standard-model-but-is-off-by-a-factor-of-2/ http://www.guantumdiazies.org/2011/06/26/cern-mug-sum

Bestimmt unsere Welt: ist am besten verstanden Am LHC nachgewiesen: $H \rightarrow WW,ZZ \text{ und } H \rightarrow \tau\tau, \text{ (tt)}$

Für nächsten Kollider: $H \rightarrow HH$ and $H \rightarrow HHH$

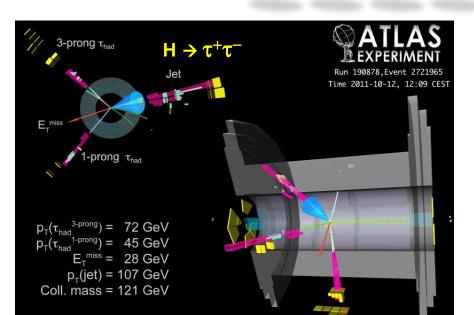

Rektorbesuch CERN



TECHNISCHE Datenanalyse der Dresdner Gruppen DRESDEN

- Streuung von W und Z Bosonen aneinander (Gruppe Kobel)
 - Dämpft der Beitrag der Higgs Bosonen diesen Prozess, wie erwartet?

Suche nach weiteren Higgs-Bosonen

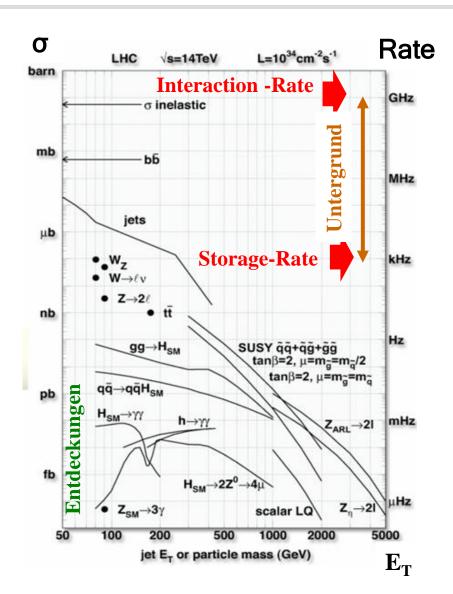

Supersymmetrie sagt 4 weitere Higgs-Bosonen voraus

Expertise der Dresdner Gruppe Straessner:

Supersymmetrische Higgs-Boson-Zerfälle mit Tau-Leptonen

Bisher kein Signal weiterer Higgs-Bosonen entdeckt

Suche wird 2015 bei doppelter Schwerpunktsenergie fortgesetzt



05.02.2014

Trigger-Anforderungen

Bei Design-Luminosität:

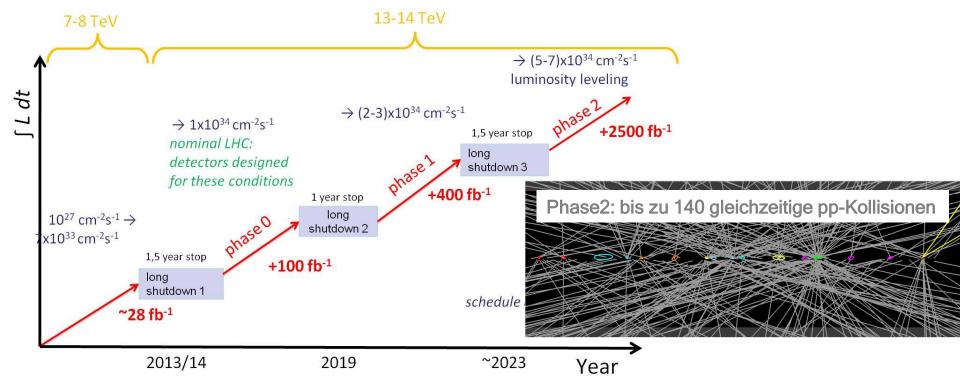
Strahl-Kollisionsrate: 40 MHz

Wechselwirkungsrate: ~ 1 GHz

Speicher-Rate: ~ 1000 Hz

→ "online"-Reduzierung: 99.999%

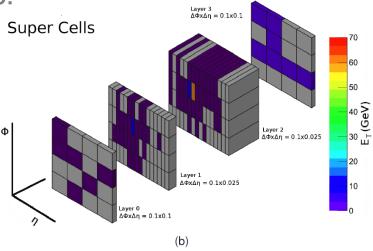
Selektion von seltenen Ereignissen in extrem untergrundreicher LHC Umgebung


→benötige leistungsstarken 3-stufigen Trigger

Der Upgrade des LHC und der Detektoren 2019 und 2023

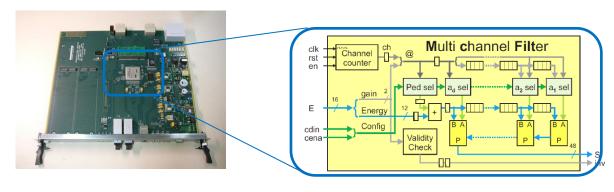
- Erhöhung der Strahlintensität (x 7) und der Datenmenge (x 5) erfordert Upgrade des ATLAS-Detekors
 - → Strahlenschäden und Untergrund durch gleichzeitige pp-Kollisionen

Der Upgrade der ATLAS Kalorimeter-Elektronik



❖ Phase 1: Verbesserter Trigger von Teilchen mit detaillierterer Detektor-Auslese bei 40 MHz

- **!** Mehr Kanäle: $6000 \rightarrow 60000$ und höhere Genauigkeit: $10 \text{ bit } \rightarrow 12 \text{ bit}$
- Insgesamt: Echtzeitverarbeitung von 40 Tbit Daten pro Sekunde
- Phase 2 ab 2023: komplette Detektorauslese von 180000 Kanälen mit 40 MHz und 130 Tbit/Sekunde



Dresdner Elektronik-Entwicklung zum ATLAS-Upgrade

- Untersuchung und Implementierung schneller digitaler Signalfilter mit modernsten Field Programmable Gate Arrays (FPGA)
- Kollaboration u.a. mit Institut f. Technische Informatik der TU Dresden

FPGA-Prototyp-Board in ATCA-Format

- Multi-Gbit Ethernet-Datentransfer mit FPGAs
- Außerdem: Teststrahlmessungen von Flüssig-Argon-Kalorimetermodulen bei höchsten Teilchen-Intensitäten

Zentrale Positionen Dresdner Physikerinnen und Physiker bei ATLAS

aktuell:

- * ATLAS Phase-2 Upgrade Convener: **Jun. Prof. A. Straessner**
- Co-Convenerin der Physik Arbeitsgruppe für Studien der Elektroschwachen Wechselwirkungen im Standardmodell: Dr. Anja Vest
- Co-Convener der Arbeitsgruppe zur Suche nach supersymmetrischen, neutralen Higgs-Bosonen: Dipl. Phys. M. Morgenstern

zuvor:

Co-Convener der Arbeitsgruppe zur Tau-Lepton-Erkennung:
Dr. W. Mader

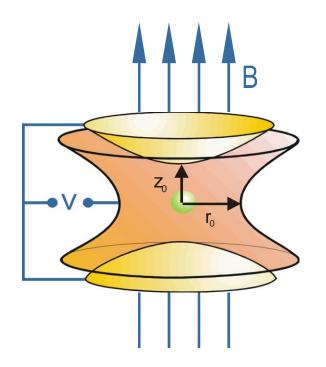
DRESDEN concept

Fakultät Mathematik und Naturwissenschaften, Institut für Kern- und Teilchenphysik

ISOLTRAP

Kai Zuber Institut für Kern- und Teilchenphysik

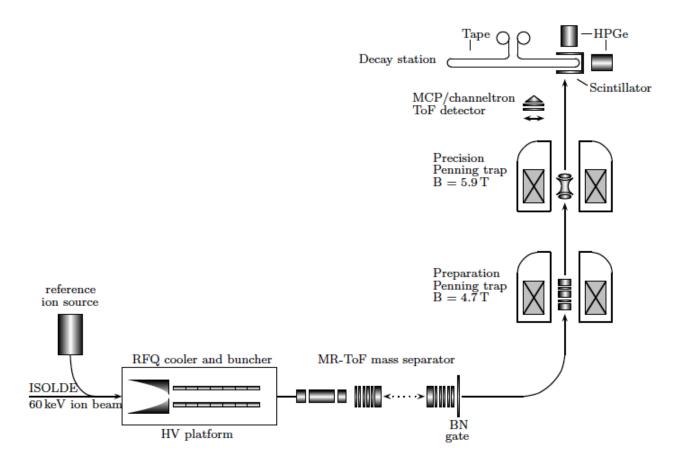
6. 2. 2014, CERN



Das Atom in der Falle (Nobelpreis Dehmelt, Paul 1989)

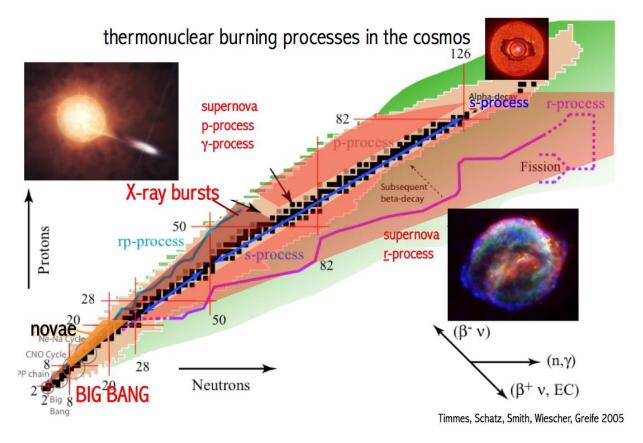
- Lehrstuhl Kernphysik ist seit Juni 2008 (Antritt Prof. K. Zuber) Mitglied der ISOLTRAP Kollaboration
- Eine Falle kann einzelne Ionen auf einer Kreisbahn speichern und ihre Masse präzise vermessen
- Massenmessung wird über Frequenzmessung realisiert

Zyklotron Frequenz:

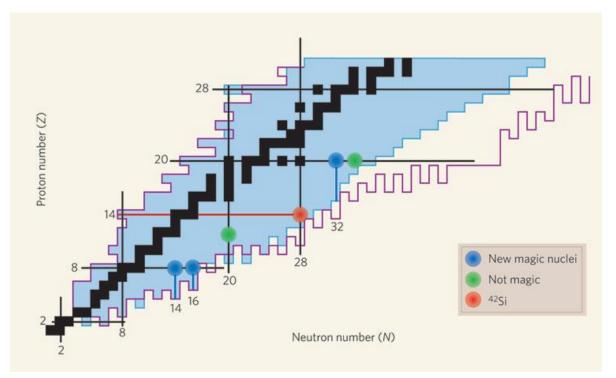

$$f_c = \frac{1}{2\pi} \cdot \frac{q}{m} \cdot B$$

Die Penning-Falle ISOLTRAP am CERN

Strahl des Proton-Synchrotrons trifft auf diverse Targets, produziert kurzlebige Nuklide fernab der Stabilität



Die Entstehung der Elemente


Die schweren Elemente oberhalb von Eisen werden durch den s- oder r-Prozess erzeugt, der genaue Pfad in der Nuklidkarte hängt von den Atommassen ab

- Atomkerne haben magische Zahlen, ähnlich wie Edelgase volle Elektronenhüllen besitzen.
- Gelten diese auch fernab der Stabilität?

Janssens, Nature 435 (2005)

Neutrinophysik mit Fallen

Wo genau liegen die erwarteten Linien des neutrinolosen doppelten Betazerfalls?

Gibt es resonante Erhöhungen im doppelten Elektroneneinfang?

Gibt es Isotopenpaare mit extrem kleinem Q-Wert für die

Neutrinomassen-Suche im Betazerfall?

Isotope	AME 2003 / keV	Q-values 2012 / keV
Ca-48	4272 ± 4	4262.96 ± 0.84
Ge-76	2039.006 ±0.050	2039.006 ± 0.050
Se-82	2995.5 ± 1.9	2997.9 ± 0.3
Zr-96	3347.7 ±2.2	3347.7 ± 2.2
Mo-100	3035 ±6	3034.40 ± 0.17
Pd-110	2004 ±11	2017.85± 0.64
Cd-116	2809 ± 4	2813.50 ± 0.13
Sn-124	2287.8±1.5	2292.64 ± 0.39
Te-130	2530.3 ±2.0	2527.518± 0.013
Xe-136	2462 ±7	2457.83± 0.37
Nd-150	3367.7 ±2.2	3371.38 ± 0.20

ISOLTRAP als Erfolgsgeschichte

- ❖ ISOLTRAP existiert seit knapp 20 Jahren am CERN
- Gegenwärtig besteht ISOLTRAP aus 9 Gruppen aus 6 Ländern, aus Deutschland sind dies: TU Dresden, Univ. Greifswald, GSI Darmstadt, MPI Kernphysik Heidelberg
- Seit 2008 15 Publikationen, darunter
- 1 Nature Paper
- 5 Physical Review Letters
- 1 Physics Letters B

Dresdner Beitrag:

- Aufbau einer Gammaspektroskopie zur Unterstützung der Fallenmessungen
- Ionenoptische Simulationen

Drittmittelprojekte in Verbindung mit CERN

- ❖ Graduiertenkolleg GK1504 "Masse, Spektrum, Symmetrie" (Kobel, Stöckinger, Straessner, Zuber,)
 RADUIERTEN
- BMBF FFSP 101 Forschungsschwerpunkt ATLAS (Kobel, Straessner)
- Helmholtz Allianz "Physik an der Teraskala" (Kobel, Stöckinger, Straessner)
- Helmholtz Allianz "Astroteilchenphysik" (Zuber)
- Netzwerk Teilchenwelt
- International Masterclasses

Allianz für Astroteilchenphysik

hands on particle physics

