

Sponsored by the

Exotica and SUSY Results with τ Leptons at the LHC

Simon Knutzen

BSM Physics: Exotica and SUSY

Results from LHCb, ATLAS and CMS with Tau Leptons

Exotica:

- 3rd Generation Leptoquarks LO → top + tau and LO → bottom +tau
- Zprime → tau tau

SUSY:

- 3 or more leptons (e,mu,tau) + MET
- Ditau + MET
- Stop in b, tau and WIP
- Jets + MET and at least on tau
- RPV stop with $I \ge 3$ and b-jets
- Heavy resonance decay to e $/\mu$ + tau

LFV @ LHCb:

Search for LFV tau decays (dedicated talk; not shown here)

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults https://twiki.cern.ch/twiki/bin/view/AtlasPublic/SupersymmetryPublicResults https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSUS

Motivation for BSM Searches with Taus

- Tau lepton is very interesting as a subject of new physics (LFV decays).
- Important probe for new phenomena:
 - Lepton with highest mass
 - → strongest couplings to Higgs-Bosons.
 - Many BSM theories contain enhanced 3rd generation couplings.

Reconstruction of Hadronically Decaying Taus

Decay mode	Mass (MeV)	Resonance	Branching fraction (%)
$ au ightarrow \mathrm{h} u_{ au}$			11.6 %
$ au^- o \mathrm{h}^- \pi^0 \nu_{ au}$	770	$ ho^-$	26.0~%
$w \tau^- \to h^- \pi^0 \pi^0 \nu_\tau$	1200	a_1^-	9.5~%
$ au^- ightarrow \mathrm{h^-h^+h^-} u_ au$	1200	a_1^-	9.8~%
$\tau^- \to \mathrm{h}^-\mathrm{h}^+\mathrm{h}^-\pi^0\nu_{ au}$			4.8~%

3

Narrow jet with one or three tracks

Discrimination against jets, electrons and muons by isolation, shower-shape and vertex information.

Due to the neutrino it is not possible to reconstruct the full energy:

In the following, tau energy denotes the visible part.

resonance identification

- Many BSM scenarios predict additional heavy gauge bosons.
- Sequential Standard Model as benchmark:
 Same couplings as Z_{SM} + additional decay to top quarks.

Bayesian 95% limit from a single bin with lower m_{τ} threshold depending on $m_{\tau'}$

4

 $m_{7} < 1900 \text{ GeV}$

stop pairs to b + τ + MET with ATLAS @ 8 TeV

If $m_{stau} < m_{top}$ and $m_{x} < m_{stop}$ then this is the dominant decay.

Light 3rd gen. sparticles are well motivated by naturalness arguments: Protect the Higgs from quadratically divergent quantum corrections.

Consider only leptonic decays of the tau in this

distau → ditau + MET with ATLAS @ 8 TeV

The stau pair can be produced directly, or via chargino and neutralino pair-production. Leads to the same final state: $\tau \tau + \text{MET}$.

Four different signal selections, depending on the production process: Example shown here for C1N2 production:

 $\tau/\nu_{\tau} \ge 2$ OS hadronic taus, b-jet veto, Z-veto, MET > 40 Gev, m_{T2} > 100 GeV

 $m_{stau}=m_{
u\,stau}$ $m_{\widetilde{\chi}_1^\pm}=m_{\widetilde{\chi}_2^0}$ and $\widetilde{\chi}_1^\pm,\widetilde{\chi}_2^0$ pure wino and $\widetilde{\chi}_1^0$ pure bino All other sparticles heavy ($\approx 2\,TeV$)

New Phys with 3 Leptons with ATLAS @ 8 TeV

ATLAS

Many BSM scenarios predict final states with multiple leptons. Determine signature based limits instead of theory limits.

→ These can be interpreted in terms of many theories later on.

Define signal regions based on the number of leptons in the final state and kinematic properties:

Results: Limits on the visible cross-section in signal region:

Interpret limits in terms of a specific theory:

$$\sigma_{95}^{\text{fid}} = \frac{N_{95}}{\epsilon_{fid} \int L dt} = \frac{\sigma_{95}^{\text{vis}}}{\epsilon_{fid}}$$
theory specific

New Phys with 3 Leptons with CMS @ 8 TeV

Similar approach as the ATLAS analysis. Search region definitions differ a bit. CMS does not calculate limits on visible cross-section, but uses the search regions to set limits on various SUSY models.

Define signal regions based on:

Number of: e, μ , τ , b-jet, OSSF dilepton pairs, M(OSSF) on/below/above Z, binned in MET and H_T

Example: Interpretation for the stau-(N)NLSP scenario

Most sensitive search region:

 $N_{\tau} > 1$, $N_{b-iet} = 0$, off-Z OSSF pairs and large MET

[5]

3rd Gen Leptoquarks \rightarrow b + τ with CMS @ 8 TeV

Many BSM theories predict bosons with non-zero lepton and baryon number. The LQ3 decays into 3rd gen SM particles where the BR is model dependent.

In this analysis, search for pair-produced LQ in two semi-leptonic channels depending on the flavor of the lepton from the second tau decay: $LQ_3 + LQ_3 \rightarrow b \ \tau \ b \ \tau \rightarrow b \ \tau_{had} \ v + b \ (e / \mu) \ v \ v$

Main discriminating variable:

3rd Gen Leptoquarks \rightarrow t + τ with CMS @ 8 TeV₁₇

Search in two categories: A) SS- $\mu\tau_{had}$ pair, B) OS- $\mu\tau_{had}$ pair (+ kinematic selection)

RPV stop with $l \ge 3$ and b-jets with CMS @ 8 TeV

R-parity-violating SUSY models allow the resonant production of SUSY particles and their decay solely into SM particles.

region label	kinematic region	stop decay mode(s)
A	$m_t < m_{\widetilde{t}} < 2m_t, m_{\widetilde{\chi}_1^0}$	$\widetilde{t} ightarrow t u b ar{b}$
В	$2m_t < m_{\widetilde{t}} < m_{\widetilde{\chi}_1^0}$	$\widetilde{t} ightarrow t \mu t ar{b} + t u b ar{b}$
С	$m_{\widetilde{\chi}_1^0} < m_{\widetilde{t}} < m_W + m_{\widetilde{\chi}_1^0}$	$\widetilde{t} \rightarrow \ell \nu b \widetilde{\chi}_1^0 + j j b \widetilde{\chi}_1^0$
D	$m_W + m_{\widetilde{\chi}_1^0} < m_{\widetilde{t}} < m_t + m_{\widetilde{\chi}_1^0}$	$\widetilde{t} o Wb\widetilde{\chi}_1^0$
Е	$m_t + m_{\widetilde{\chi}_1^0} < m_{\widetilde{t}}$	$\widetilde{t} o t \widetilde{\chi}_1^0$

Limits are set by combining many search regions which are definded by the particle content in the event.

Conclusion

- Many searches for BSM physics performed at LHC.
- No new phenomena observed so far.

But many insights in new regions have been obtained:

- M(Z') > 1.9 TeV (> 400 GeV @ CDF)
- $M(LQ_3) > 700 \text{ GeV}$ (First limits in the tau + top channel.)
- Excluded various regions of SUSY parameter space.
- > Tau Reconstruction is challenging at proton-colliders, but:
 - Algorithms performed well in both experiments.
 - Excellent results have been achieved.
 - Many more interesting results expected in the future.

Bibliography

> [1] A search for high-mass ditau resonances decaying in the fully hadronic final state in pp collisions at √s=8 TeV with the ATLAS detector ATLAS-CONF-2013-066

[2] Search for the direct pair production of top squarks decaying to a b quark, a tau lepton, and weakly interacting particles, in √s = 8TeV pp collisions using 20 fb⁻¹ of ATLAS data
ATLAS-CONF-2014-014

Search for the direct production of charginos, neutralinos and staus in final states with at least two hadronically decaying taus and missing transverse momentum in pp collisions at s√ = 8 TeV with the ATLAS detector arXiv1407.0350

▶ [4] Search for New Phenomena in Events with Three Charged Leptons at a Center-of-Mass Energy of 8 TeV with the ATLAS detector

ATLAS-CONF-2013-070

> [5] Search for anomalous production of events with three or more leptons using 19.5fb-1 of √s = 8 TeV LHC data

arXiv1404.5801v1

Search for pair production of third-generation scalar leptoquarks and top squarks in proton-proton collisions at sqrt(s) = 8 TeV

arXiv1408.0806

> [7] Search for Third Generation Scalar Leptoquarks Decaying to Top Quark - Tau Lepton Pairs in pp Collisions

CMS-PAS-EXO-13-010

▶ [8] Search for top squarks in R-parity-violating supersymmetry using three or more leptons and b-tagged jets

arXiv1306.6643

Search for LFV $Z \rightarrow e \mu$ with ATLAS @ 8 TeV

 Select events with isolated, opposite sign, same flavor leptons and small hadronic activity and low MET.

Derive Limit on BR(Z → e μ) from limit on number of signal events and overall number of Z-bosons.

 $\mathcal{B}(Z \to e\mu) < 7.5 \times 10^{-7}$

Transverse Mass

Transverse mass (m_T) is the invariant mass calculated from the transverse components of the momentum vectors in the final state.

W-like final state (W \rightarrow tau + nu):

$$M_T = \sqrt{2 \cdot E_T^{\tau jet} \cdot MET(1 - cos\Delta\Phi(\vec{E}_T^{\tau jet}, M\vec{E}T))}$$

Z-like final state ($Z \rightarrow tau + tau$):

$$m_{\rm T}^{\rm tot} = \sqrt{2p_{\rm T1}p_{\rm T2}C + 2|E_{\rm T}^{\rm miss}|p_{\rm T1}C_1 + 2|E_{\rm T}^{\rm miss}|p_{\rm T2}C_2}, \qquad C = 1 - \cos\Delta\phi$$

Combinatoric m_{τ} (Susy searches):

$$m_{\text{T2}}(\mathbf{p}_{\text{T},1},\mathbf{p}_{\text{T},2},\mathbf{p}_{\text{T}}^{\text{miss}}) = \min_{\mathbf{q}_{\text{T},1}+\mathbf{q}_{\text{T},2}=\mathbf{p}_{\text{T}}^{\text{miss}}} \{ \max[\ m_{\text{T}}(\mathbf{p}_{\text{T},1},\mathbf{q}_{\text{T},1}), m_{\text{T}}(\mathbf{p}_{\text{T},2},\mathbf{q}_{\text{T},2}) \] \}$$

New Phys with 3 Leptons with ATLAS @ 8 TeV

Define signal regions based on the number of leptons in the final state and kinematic properties:

\geq 3 e / μ | 2e / μ + \geq 1 τ 2 e / μ on- or off-Z

Variable		Signal Reg	Additional Requirements		
$H_{\mathrm{T}}^{\mathrm{leptons}}$	Inclusive	≥200 GeV	≥ 500 GeV	≥ 800 GeV	
Min. p_{T}^{ℓ}	Inclusive	$\geq 50 \text{ GeV}$	$\geq 100 \text{ GeV}$	≥ 150 GeV	
$E_{ m T}^{ m miss}$	Inclusive	≥100 GeV	$\geq 200~{\rm GeV}$	$\geq 300 \text{ GeV}$	$H_{\rm T}^{\rm jets} < 150~{ m GeV}$
$E_{ m T}^{ m miss}$	Inclusive	≥100 GeV	$\geq 200 \text{ GeV}$	$\geq 300 \text{ GeV}$	$H_{\rm T}^{\rm jets} \ge 150 {\rm GeV}$
$m_{ m eff}$	Inclusive	≥600 GeV	≥1000 GeV	≥1500 GeV	-
$m_{ m eff}$	Inclusive	≥600 GeV	≥1200 GeV		$E_{\rm T}^{\rm miss} \ge 100 {\rm GeV}$
$m_{ m eff}$	Inclusive	≥600 GeV	≥1200 GeV		$m_{\rm T}^{\tilde{W}} \ge 100 \text{ GeV}, \text{ on-}Z$
<i>b</i> -tags	Inclusive	≥ 1	≥ 2		•

Table 1: Kinematic signal regions defined in the analysis.

Event yield in inclusive signal channels:

Flavor Chan.	Z Chan.	I	Observed		
$\geq 3e/\mu$	off-Z	260 ±	10 ±	40	280
$2e/\mu + \ge 1\tau_{\rm had}$	off-Z	$1200 \pm$	$10 \pm$	290	1193
$\geq 3e/\mu$	on-Z	$3100 \pm$	$40 \pm$	500	3199
$2e/\mu + \ge 1\tau_{\text{had}}$	on-Z	17000 ±	40 ±	4000	14733

RPV stop with $l \ge 3$ and b-jets with CMS @ 8 TeV

/	CMS/

SR1-4:	SR	N_L	N_{τ}	0	< S _T < 300	300	$< S_{\rm T} < 600$	600 <	< S _T < 1000	1000	$S_{\rm T} < 1500$		$S_{\rm T} > 1500$
No OSSE on 7				obs	exp	obs	exp	obs	exp	obs	exp	obs	exp
No OSSF on-Z	SR1	3	0	116	123 ± 50	130	127 ± 54	13	18.9 ± 6.7	1	1.43 ± 0.51	0	0.208 ± 0.096
and $N > 1$	SR2	3	≥ 1	710	698 ± 287	746	837 ± 423	83	97 ± 48	3	6.9 ± 3.9	0	0.73 ± 0.49
and $N_{bjet} \ge 1$	SR3	4	0	0	0.186 ± 0.074	1	0.43 ± 0.22	0	0.19 ± 0.12	0	0.037 ± 0.039	0	0.000 ± 0.021
	SR4	4	≥ 1	1	0.89 ± 0.42	0	1.31 ± 0.48	0	0.39 ± 0.19	0	0.019 ± 0.026	0	0.000 ± 0.021
SR4-8:	SR5	3	0	_	_	_	_	165	174 ± 53	16	21.4 ± 8.4	5	2.18 ± 0.99
1 OSSF on-Z	SR6	3	≥ 1	_	_	_	_	276	249 ± 80	17	19.9 ± 6.8	0	1.84 ± 0.83
I USSF UIFZ	SR7	4	0	_	_	_	_	5	8.2 ± 2.6	2	0.96 ± 0.37	0	0.113 ± 0.056
or $N > 1$	SR8	4	≥ 1	_	_	_	_	2	3.8 ± 1.3	0	0.34 ± 0.16	0	0.040 ± 0.033
or N _{bjet} ≥ 1													

Supersymmetric models with RPV interactions violate either B or L but can avoid proton decay limits [9, 10]. The superpotential W_{RPV} includes three trilinear terms parametrized by the Yukawa couplings λ_{ijk} , λ'_{ijk} , and λ''_{ijk} :

$$W_{\text{RPV}} = \frac{1}{2} \lambda_{ijk} L_i L_j \overline{E}_k + \lambda'_{ijk} L_i Q_j \overline{D}_k + \frac{1}{2} \lambda''_{ijk} \overline{U}_i \overline{D}_j \overline{D}_k, \tag{1}$$

where i, j, and k are generation indices; L and Q are the $SU(2)_L$ doublet superfields of the lepton and quark; and the \overline{E} , \overline{D} , and \overline{U} are the $SU(2)_L$ singlet superfields of the charged lepton, down-like quark, and up-like quark. The third term violates baryon number conservation, while the first two terms violate lepton number conservation. These terms do not preclude a natural hierarchy [11].