Towards a determination of the tau lepton dipole moments

Matteo Fael

Padova U. & INFN Padova

13th International Workshop on Tau Lepton Physics Aachen, Germany, 15 September, 2014

> hep-ph: 1301.5302 hep-ph: 1310.1081

work in collaboration with: S. Eidelman, D. Epifanov, L. Mercolli, M. Passera.

Problem:

Electron

$$a_e = 1\ 159\ 652\ 180.\ 73\ (28)\cdot 10^{-12}$$

0.24 parts per billion! Hanneke et al, PRL100 (2008) 120801

Tau

 $-0.052 \le a_{ au} \le 0.013$

Not even a test of LO! $\alpha/(2\pi) \approx 0.00116$ DELPHI - EPJC 35 (2004) 159

$g{-}2$ and EDM

Radiative Leptonic Decays

Feasibility study

Conclusions

Vertex Function:

Vertex Function: $\int_{f} \int_{f} \int_{f$

Vertex Function:

Vertex Function:

Direct and Indirect Measurement

Direct and Indirect Measurement

e

Effective Lagrangian Approach

$$\mathcal{L}_{ ext{\tiny eff}} = \mathcal{L}_{ ext{\tiny SM}} \! + \! \left[c_a rac{e Q_{ au}}{4\Lambda} \overline{ au} \sigma^{\mu
u} au - c_d rac{i}{2\Lambda} \overline{ au} \sigma^{\mu
u} \gamma_5 au
ight] F_{\mu
u}$$

• The new terms arise after integrating out the heavy degrees of freedom associated to possible NP.

- The contributions from the two effective operators to a_{τ} and d_{τ} are the same for $q^2 = 0$ and $q^2 \neq 0 \ll \Lambda^2$.
- Only higher dimensional operators would give rise to a difference between these two cases

Radiative Leptonic Decays

Current bounds

▶ $e^+e^- \rightarrow e^+e^-\tau^+\tau^-$ at \sqrt{s} between 183 and 208 GeV at LEP2 (the PDG value)

▶ The 95% C.L. limit

 $-0.052 \le a_{ au} \le 0.013$ DELPHI - EPJC35 (2004) 159

- EDM SM estimate $|d_{\tau}^{\text{SM}}| \leq 10^{-35} e \cdot \text{cm!}$
- EDM current 95% C.L. limits from $e^+e^- \rightarrow \tau^+\tau^-$:

$$\begin{array}{l} -2.2 \leq \operatorname{Re}(d_{\tau}) \leq 4.5 \, (10^{-17} e \cdot \mathrm{cm}) \\ -2.5 \leq \operatorname{Im}(d_{\tau}) \leq 0.8 \, (10^{-17} e \cdot \mathrm{cm}) \end{array}$$

Belle coll. PLB 551 (2003) 16.

• Heavy ions collisions at LHC Pb Pb \rightarrow Pb Pb $\gamma\gamma \rightarrow$ Pb Pb $\tau\tau$

F. del Aguila et al, PLB 271 (1991) 256

Determination of a_{τ} : Proposals

• Heavy ions collisions at LHC Pb Pb \rightarrow Pb Pb $\gamma\gamma \rightarrow$ Pb Pb $\tau\tau$

F. del Aguila et al, PLB 271 (1991) 256

 Channeling of polarized τs in a bent crystal.

Chen et al. PRL 69 (1992) 3286 Samuel et al. PRL 67 (1991) 668

Determination of a_{τ} : Proposals

Bernabéu et al. propose the measurement of $F_{2V}(q^2 = M_{\Upsilon}^2)$ from $e^+e^- \rightarrow \Upsilon \rightarrow \tau^+\tau^-$ production at B factories. Bernabéu et al. NPB 790 (2008) 160.

• Expected sensitivity for Babar+Belle: $4.6 \cdot 10^{-6}$ with $\mathcal{L} = 2$ ab⁻¹.

Determination of a_{τ} : Proposals

Bernabéu et al. propose the measurement of $F_{2V}(q^2 = M_{\Upsilon}^2)$ from $e^+e^- \rightarrow \Upsilon \rightarrow \tau^+\tau^-$ production at B factories. Bernabéu et al. NPB 790 (2008) 160.

- Expected sensitivity for Babar+Belle: $4.6 \cdot 10^{-6}$ with $\mathcal{L} = 2$ ab⁻¹.
- At Belle and Belle II the visible cross section is dominated by non-resonant interaction due to the beam energy spread.

 $\Gamma_{\Upsilon(1S),\Upsilon(2S),\Upsilon(3S)} \sim \mathcal{O}(10 \text{ keV}), \quad \sigma_{\varepsilon} \sim 3 \text{ MeV}$

Leptonic Radiative Decays of the Tau

$$egin{aligned} & au^\pm o \gamma \ l^\pm \
u_ au
u_l \ & ext{ with } l=e, \mu \end{aligned}$$

- Suggested by Laursen et al. to search for the a_τ in radiative leptonic τ decays using the phenomenon of radiation zero.
- The SM tree-level amplitude vanishes in the phase space region:

$$\cos(l,\gamma)=-1, \quad E_l=rac{m_ au^2+m_l^2}{2m_ au} \qquad ext{(in the tau r.f.)}$$

M. L. Laursen et al. PRD 29 (1984) 2652

Leptonic Radiative Decays of the Tau

$$egin{aligned} & au^\pm o \gamma \ l^\pm \,
u_ au
u_l \ & ext{ with } l=e, \mu \end{aligned}$$

• Extend the strategy to d_{τ} ,

• Probe at $\mathcal{O}(10^{-3})$ the parameters

$$ilde{a}_{ au}\equiv c_{a}rac{m_{ au}}{\Lambda} ext{ and } ilde{d}_{ au}\equiv c_{d}rac{1}{\Lambda}$$

> Provide the theoretical framework for such measurement.

- ▶ Polarized differential decay rate $d\Gamma$ up to $\mathcal{O}(10^{-3})$.
- Dependence on E_l , E_{γ} , Ω_l and Ω_{γ}

$$d\Gamma = d\Gamma_{ ext{lo}} + \left(rac{m_ au}{M_W}
ight)^2 d\Gamma_W + ilde{a}_ au \, d\Gamma_{ ext{a}} + ilde{d}_ au \, d\Gamma_{ ext{d}} + rac{lpha}{\pi} \, d\Gamma_{ ext{NLO}}$$

- ▶ Polarized differential decay rate $d\Gamma$ up to $\mathcal{O}(10^{-3})$.
- Dependence on E_l , E_{γ} , Ω_l and Ω_{γ}

$$d\Gamma = d\Gamma_{ ext{lo}} + \left(rac{m_ au}{M_W}
ight)^2 d\Gamma_W + ilde{a}_ au \, d\Gamma_{ ext{a}} + ilde{d}_ au \, d\Gamma_{ ext{d}} + rac{lpha}{\pi} d\Gamma_{ ext{NLO}}$$

- Polarized differential decay rate $d\Gamma$ up to $\mathcal{O}(10^{-3})$.
- Dependence on E_l , E_{γ} , Ω_l and Ω_{γ}

$$d\Gamma = d\Gamma_{ ext{lo}} + \left(rac{m_ au}{M_W}
ight)^2 d\Gamma_W + ilde{a}_ au \, d\Gamma_{ ext{a}} + ilde{d}_ au \, d\Gamma_{ ext{d}} + rac{lpha}{\pi} d\Gamma_{ ext{NLO}}$$

- Polarized differential decay rate $d\Gamma$ up to $\mathcal{O}(10^{-3})$.
- Dependence on E_l , E_{γ} , Ω_l and Ω_{γ}

$$d\Gamma = d\Gamma_{ ext{lo}} + \left(rac{m_{ au}}{M_W}
ight)^2 d\Gamma_W + ilde{a}_ au d\Gamma_{ ext{a}} + ilde{d}_ au \ d\Gamma_{ ext{d}} + rac{lpha}{\pi} d\Gamma_{ ext{NLO}}$$

process	lo %	NLO %	MW %
$ au^- o e^- ar u_e u_ au \gamma$	1.836	-0.183	0.0006
$ au^- o \mu^- ar u_\mu u_ au \gamma$	0.367	-0.009	0.0001

process	B.R. %	exp. B.R. % (PDG)
$\mu^+ ightarrow e^+ u_e ar{ u}_\mu \gamma$	1.3	1.4(4) *
$ au^- ightarrow e^- ar u_e u_ au \gamma$	1.653	$1.75\pm0.06\pm0.17~^\dagger$
$ au^- o \mu^- ar{ u}_\mu u_ au \gamma$	0.358	$0.361\pm0.016\pm0.035\ ^{\dagger}$

*Crittenden et al. PR 121 (1964) 1823, [†]CLEO Coll. PRL 84 (2000) 830

process	B.R. %	exp. B.R. %	
$ au^- ightarrow e^- ar u_e u_ au \gamma$	1.653	$1.847 \pm 0.015 \pm 0.052 \ ^{*}$	
$ au^- o \mu^- ar u_\mu u_ au \gamma$	0.358	$0.369 \pm 0.003 \pm 0.010 \ *$	

*BaBar preliminary results, B. Oberhof

process	LO $\%$	NLO $\%$	MW %
$ au^- o e^- ar u_e u_ au \gamma$	1.836	-0.183	0.0006
$ au^- o \mu^- ar u_\mu u_ au \gamma$	0.367	-0.009	0.0001

process	B.R. %	exp. B.R. % (PDG)		
$\mu^+ ightarrow e^+ u_e ar{ u}_\mu \gamma$	1.3	1.4(4) *		
$ au^- ightarrow e^- ar u_e u_ au \gamma$	1.653	$1.75\pm0.06\pm0.17$ †		
$ au^- o \mu^- ar u_\mu u_ au \gamma$	0.358	$0.361\pm0.016\pm0.035\ ^{\dagger}$		

*Crittenden et al. PR 121 (1964) 1823, [†]CLEO Coll. PRL 84 (2000) 830

process	B.R. %	exp. B.R. %
$ au^- ightarrow e^- ar u_e u_ au \gamma$	1.653	$1.847 \pm 0.015 \pm 0.052 \ ^{*}$
$ au^- o \mu^- ar u_\mu u_ au \gamma$	0.358	$0.369 \pm 0.003 \pm 0.010$ *

 3.6σ

*BaBar preliminary results, B. Oberhof

- > Study of the radiation zero point.
- A set of $\tau^+ \tau^-$ events analyzed. $(\tau^{\pm} \rightarrow l_1^{\pm} \nu \nu \gamma, \tau^{\mp} \rightarrow l_2^{\mp} \nu \nu)$
- ▶ Final state: $(l_1^{\pm}\gamma, l_2^{\mp})$ with $l_1, l_2 = e, \mu$ and $l_1 \neq l_2$

 $\cos(l_1,\gamma) < -0.9, \quad 0.1 < \cos(l_2,\gamma), ext{ and } E_\gamma > 0.5 ext{ GeV}$

• With the whole Belle statistics $(0.9 \times 10^9 \tau \text{ pairs})$, the upper \tilde{a}_{τ} upper bound is

- > Study of the radiation zero point.
- A set of $\tau^+ \tau^-$ events analyzed. $(\tau^{\pm} \rightarrow l_1^{\pm} \nu \nu \gamma, \tau^{\mp} \rightarrow l_2^{\mp} \nu \nu)$
- ▶ Final state: $(l_1^{\pm}\gamma, l_2^{\mp})$ with $l_1, l_2 = e, \mu$ and $l_1 \neq l_2$

 $\cos(l_1,\gamma) < -0.9, \quad 0.1 < \cos(l_2,\gamma), ext{ and } E_\gamma > 0.5 ext{ GeV}$

• With the whole Belle statistics $(0.9 \times 10^9 \tau \text{ pairs})$, the upper \tilde{a}_{τ} upper bound is

U.L.
$$(ilde{a}_{ au})\simeq 2$$

Approach 2: Unbinned Maximum Likelihood

- Take advantage of $\tau^{\pm} \rightarrow \rho^{\pm} \nu \rightarrow \pi^{\pm} \pi^{0} \nu$ as a spin analyzer.
- In $\tau^{\mp} \rightarrow l^{\mp} \nu \nu \gamma$ we are sensitive to the spin dependent part.
- ▶ 12-dimensional phase space analysis $(l^{\mp}, \gamma, \pi^{\pm}, \pi^{0})$.

- Developed special generator of the $(l^{\mp}\nu\nu\gamma, \pi^{\pm}\pi^{0}\nu)$ events
- Fit the generated event samples corresponding to the amount of data available at Belle and expected at Belle II.

▶ ρ -tag mode, BR= 25.5% $\tau^{\pm} \rightarrow \rho^{\pm} \nu$ only

▶ *full-tag* mode, BR= 90%

$$\begin{array}{l} \tau^{\pm} \rightarrow \rho^{\pm} \nu, \tau^{\pm} \rightarrow \pi^{\pm} \nu, \tau^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0} \nu, \\ \tau^{\pm} \rightarrow \pi^{\pm} \pi^{+} \pi^{-} \nu, \tau^{\pm} \rightarrow e^{\pm} \nu \nu, \tau^{\pm} \rightarrow \mu^{\pm} \nu \nu \end{array}$$

Sensitivity to $ ilde{a}_{ au}$ and $ ilde{d}_{ au}$					
	$\operatorname{Re}(ilde{a}_{ au})$	$\operatorname{Im}(ilde{a}_{ au})$	$\operatorname{Re}(\widetilde{d}_{ au})$	$\operatorname{Im}(\widetilde{d}_{ au})$	
Belle (ρ -tag)	0.16	0.16	0.15	0.046	
Belle-II (ρ -tag)	0.023	0.023	0.021	0.007	
Belle (full tag)	0.085	0.085	0.080	0.024	
Belle-II (full tag)	0.012	0.012	0.011	0.003	
DELPHI [†]	0.017				
Belle*	—	_	0.0015	0.0008	

[†]DELPHI - EPJC35 (2004) 159

*Belle coll. PLB 551 (2003) 16.

- Radiative leptonic τ decays can probe τ DipM.
- We provided with the polarized differential decay rate at NLO in QED plus small W-boson effects.
 We found some discrepancies with previous results.
- The upper limit achievable at Belle via radiation zero phenomenon is only $a_{\tau} \sim 1$.
- Analysis in the full phase-space is required.
- Feasibility study shows that Belle II can ameliorate the current DELPHI result for a_{τ} .
- The extraction of τ DipM from e⁺e[−] → τ⁺τ[−] is not excluded. A careful theoretical reanalysis is needed.
- A possible dedicated experiment (bent crystal)?
- What are the prospects at the LHC?

Thanks!

Backup slides

The total differential decay for a polarized τ lepton in the tau r.f. is

$$rac{d^6\Gamma^{ ext{NLO}}}{dx\,dy\,d\Omega_l\,d\Omega_\gamma} = rac{lpha\,G_F^2m_ au^5}{(4\pi)^6}rac{xeta}{1+\delta_{ ext{w}}(m_\mu,\,m_e)}igg[G(x,\,y,\,c) + xeta\,\hat{n}\cdot\hat{p}_l\,J(x,\,y,\,c) + y\,\hat{n}\cdot\hat{p}_\gamma\,K(x,\,y,\,c) + y\,xeta\,\hat{n}\cdot(\hat{p}_l imes\hat{p}_\gamma)\,L(x,\,y,\,c) - rac{1}{2}r$$

where $x = 2E_l/m_{\tau}$, $y = 2E_{\gamma}/m_{\tau}$, $c = \cos \theta_{l\gamma}$. The tau polarization vector $n = (0, \vec{n})$ satisfies $n^2 = -1$ and $n \cdot p_{\tau} = 0$. The function G(x, y, c), and similarly for J and K, is given by

$$G(x,y,c) = rac{4}{3yz^2} \left[g_{ ext{\tiny LO}}(x,y,z) + rac{lpha}{\pi} \, g_{ ext{\tiny NLO}}(x,y,z;y_{ ext{\tiny min}}) + \left(rac{m_ au}{M_W}
ight)^2 \, g_{ ext{\tiny W}}(x,y,z)
ight]$$

QED NLO Corrections to Tau Radiative Decay

The total differential decay for a polarized τ lepton in the tau r.f. is

$$rac{d^6 \Gamma^{ ext{NLO}}}{dx \ dy \ d\Omega_l \ d\Omega_\gamma} = rac{lpha \ G_F^2 m_ au^5}{(4\pi)^6} rac{x eta}{1+\delta_{ ext{w}}(m_\mu,m_e)} \Bigg[G(x,y,c)]$$

 $+ \ xeta \, \hat{n} \cdot \hat{p}_l \ J(x,y,c) + y \, \hat{n} \cdot \hat{p}_\gamma \ K(x,y,c) + y \, xeta \, \hat{n} \cdot (\hat{p}_l imes \hat{p}_\gamma) \ L(x,y,c)$

where $x = 2E_l/m_{\tau}$, $y = 2E_{\gamma}/m_{\tau}$, $c = \cos \theta_{l\gamma}$. The tau polarization vector $n = (0, \vec{n})$ satisfies $n^2 = -1$ and $n \cdot p_{\tau} = 0$. The function G(x, y, c), and similarly for J and K, is given by

$$G(x,y,c) = rac{4}{3yz^2} \left[g_{ ext{lo}}(x,y,z) + rac{lpha}{\pi} \, g_{ ext{NLO}}(x,y,z;y_{ ext{min}}) + \left(rac{m_ au}{M_W}
ight)^2 \, g_{ ext{w}}(x,y,z)
ight]$$

Compared with previous work A. B. Arbuzov PLB 597 (2004) 285

QED NLO Corrections to Tau Radiative Decay

- ▶ Polarized differential decay rate $d\Gamma$ up to $\mathcal{O}(10^{-3})$.
- Dependence on E_l , E_{γ} , Ω_l and Ω_{γ}

$$d\Gamma = d\Gamma_{
m lo} + \left(rac{m_{ au}}{M_W}
ight)^2 d\Gamma_W + ilde{a}_{ au} d\Gamma_{
m a} + ilde{d}_{ au} \ d\Gamma_{
m d} + rac{lpha}{\pi} d\Gamma_{
m NLO}$$

> Analytic expression implemented in Fortran

```
subroutine gnlo(resgnlo)
    implicit none
    external NLOfunctions
    double precision resgnlo
```

Feasibility study: Unbinned maximum likelihood

- Phase space point $X = (p_l, \Omega_l, p_\gamma, \Omega_\gamma, p_\rho, \Omega_\rho, m_{\pi\pi}^2, \tilde{\Omega}_\pi)$
- The PDF $\mathcal{P}(\vec{X})$ is constructed from the differential cross section

$$rac{d\sigma}{d\mathrm{PS}}(e^+e^- o au^{\mp} au^{\pm} o (l^{\mp}
u
u\gamma, \pi^{\pm}\pi^0
u))$$

> Unbinned maximum likelihood of the generated events

$$\mathcal{P}(ec{X} | ilde{a}_{ au}, ilde{d}_{ au}) = rac{\mathcal{F}_{ ilde{a}_{ au}, ilde{d}_{ au}}(ec{X})}{\int \mathcal{F}_{ ilde{a}_{ au}, ilde{d}_{ au}}(ec{X}) dec{X}}$$

where $\mathcal{F}_{\tilde{a}_{\tau},\tilde{d}_{\tau}}(\vec{X})$ is the visible differential cross section.

- Developed special generator of the $(l^{\mp}\nu\nu\gamma, \pi^{\pm}\pi^{0}\nu)$ events
- Fit of generated event samples corresponding to the amount of data available at Belle and expected at Belle II.

