

### A. Pich IFIC, Valencia

The 13th International Workshop on Tau Lepton Physics Aachen, Germany, 15-19 September 2014



### HADRONIC TAU DECAY



### Only lepton massive enough to decay into hadrons

$$R_{\tau} \equiv \frac{\Gamma(\tau^- \to v_{\tau} + \text{Hadrons})}{\Gamma(\tau^- \to v_{\tau} \ e^- \ \overline{v_e})} \approx N_C \qquad ; \qquad R_{\tau} = \frac{1 - B_e - B_{\mu}}{B_e} = 3.636 \pm 0.011$$

$$R_{\tau} = \frac{1}{B_e^{\text{univ}}} - 1.97256 = 3.6397 \pm 0.0076 \qquad ; \qquad R_{\tau} = \frac{\text{Br}(\tau^- \to v_{\tau} + \text{Hadrons})}{B_e^{\text{univ}}} = 3.6326 \pm 0.0084$$

### **Only Lepton Massive Enough to Decay into Hadrons**

 $\tau^- \rightarrow \nu_{\tau} H^-$  probes the hadronic V-A current

 $\left\langle H^{-} \left| \overline{d}_{\theta} \gamma^{\mu} (1 - \gamma_{5}) u \right| 0 \right\rangle$ 



 $e^+e^- \rightarrow H^0$  probes the hadronic electromagnetic current



$$\left\langle H^{0} \left| \sum_{q} Q_{q} \; \overline{q} \, \gamma^{\mu} q \, \right| 0 \right
angle$$

**Isospin:** 
$$\frac{\Gamma(\tau^- \to v_{\tau} V^-)}{\Gamma(\tau^- \to v_{\tau} e^- \overline{v_e})} = \frac{3\cos^2\theta_C}{2\pi\alpha^2} S_{\text{EW}} \int_0^1 dx \, (1-x)^2 (1+2x) \, x \, \sigma_{e^+ e^- \to V^0}^{I=1}(x \, m_{\tau}^2)$$

$$\sigma \sim \operatorname{Im} \left\{ \begin{array}{c} e^{-} & q^{+} & e^{-} \\ e^{+} & q^{+} & e^{-} \\ e^{+} & q^{+} & e^{-} \end{array} \right\} \qquad \frac{\sigma(e^{+}e^{-} \rightarrow \text{had})}{\sigma(e^{+}e^{-} \rightarrow \mu^{+}\mu^{-})} = 12 \pi \operatorname{Im} \Pi_{\text{em}}(s)$$

 $\Pi_{\rm em}^{\mu\nu}(q) \equiv i \int d^4x \ e^{iqx} \left\langle 0 \left| T[J_{\rm em}^{\mu}(x) J_{\rm em}^{\nu}(0)] \right| 0 \right\rangle = \left( -g^{\mu\nu}q^2 + q^{\mu}q^{\nu} \right) \Pi_{\rm em}(q^2)$ 

 $\Pi^{(J)}(s) \equiv \left| V_{ud} \right|^2 \left[ \Pi^{(J)}_{ud,V}(s) + \Pi^{(J)}_{ud,A}(s) \right] + \left| V_{us} \right|^2 \left[ \Pi^{(J)}_{us,V}(s) + \Pi^{(J)}_{us,A}(s) \right]$ 

 $\Pi_{ij,J}^{\mu\nu}(q) \equiv i \int d^4x \ e^{iqx} \left\langle 0 \left| T[J_{ij}^{\mu}(x)J_{ij}^{\nu}(0)^{\dagger}] \right| 0 \right\rangle = \left( -g^{\mu\nu}q^2 + q^{\mu}q^{\nu} \right) \Pi_{ij,J}^{(1)}(q^2) + q^{\mu}q^{\nu} \ \Pi_{ij,J}^{(0)}(q^2)$ 

# **SPECTRAL FUNCTIONS**



A. Pich

Leptons & QCD

**QCD** Prediction of **Braaten-Narison-Pich'92**  $R_{\tau} \equiv \frac{\Gamma(\tau^{-} \to v_{\tau} + \text{had})}{\Gamma(\tau^{-} \to v_{\tau} e^{-} \overline{v_{\tau}})} = 12\pi \int_{0}^{1} dx \, (1 - x)^{2} \Big[ (1 + 2x) \, \text{Im} \, \Pi^{(1)}(x \, m_{\tau}^{2}) + \, \text{Im} \, \Pi^{(0)}(x \, m_{\tau}^{2}) \Big]$  $x \equiv s/m_{\tau}^2$ Im(s)  $R_{\tau} = 6\pi i \oint_{|x|=1} dx (1-x)^2 \left[ (1+2x) \Pi^{(0+1)}(x m_{\tau}^2) - 2x \Pi^{(0)}(x m_{\tau}^2) \right]$  $m_{\tau}^2$ Re(s)  $\Pi^{(J)}(s) = \sum_{D=2\pi} \frac{C_D^{(J)}(s,\mu) \langle O_D(\mu) \rangle}{(-s)^{D/2}}$ OPE

$$R_{\tau} = N_C S_{\text{EW}} \left( 1 + \delta_{\text{P}} + \delta_{\text{NP}} \right) = R_{\tau,V} + R_{\tau,A} + R_{\tau,S}$$

•

 $S_{\rm EW} = 1.0201$  (3) Marciano-Sirlin, Braaten-Li, Erler  $\delta_{\rm NP} = -0.0064 \pm 0.0013$ Fitted from data (Davier et al)

 $\delta_{\rm P} = a_{\tau} + 5.20 \ a_{\tau}^2 + 26 \ a_{\tau}^3 + 127 \ a_{\tau}^4 + \dots \approx 20\% \qquad ;$ 

 $a_{\tau} \equiv \alpha_s(m_{\tau})/\pi$ 

Baikov-Chetyrkin-Kühn

$$\begin{array}{ll} \textbf{Perturbative} \quad (\textbf{m}_{q}=0) & -s \frac{d}{ds} \Pi^{(0+1)}(s) = \frac{1}{4\pi^{2}} \sum_{n=0}^{\infty} K_{n} \left( \frac{\alpha_{s}(-s)}{\pi} \right)^{n} \\ K_{0} = K_{1} = 1 \quad , \quad K_{2} = 1.63982 \quad , \quad K_{3} = 6.37101 \quad , \quad K_{4} = 49.07570 \quad \textbf{Baikov-Chetyrkin-Kühn '08} \\ \implies \qquad \delta_{P} = \sum_{n=1}^{\infty} K_{n} \; A^{(n)}(\alpha_{s}) = a_{\tau} + 5.20 \; a_{\tau}^{2} + 26 \; a_{\tau}^{3} + 127 \; a_{\tau}^{4} + \cdots \\ \textbf{Le Diberder- Pich '92} \\ A^{(n)}(\alpha_{s}) = \frac{1}{2\pi i} \oint_{|x|=1} \frac{dx}{x} (1 - 2x + 2x^{3} - x^{4}) \left( \frac{\alpha_{s}(-s)}{\pi} \right)^{n} = a_{\tau}^{n} + \cdots \quad ; \quad a_{\tau} \equiv \alpha_{s}(m_{\tau})/\pi \\ \hline \textbf{Power Corrections} \\ \textbf{Braaten-Narison-Pich '92} \\ \delta_{NP} \approx \frac{-1}{2\pi i} \oint_{|x|=1} dx \; (1 - 3x^{2} + 2x^{3}) \sum_{n\geq 2} \frac{C_{2n} \langle O_{2n} \rangle}{(-xm_{\tau}^{2})^{n}} = -3 \frac{C_{6} \langle O_{6} \rangle}{m_{\tau}^{6}} - 2 \frac{C_{8} \langle O_{8} \rangle}{m_{\tau}^{8}} \\ \textbf{Suppressed by } m_{\tau}^{6} \qquad [additional chiral suppression in \; C_{6} \langle O_{6} \rangle^{V+A} ] \end{array}$$

# Perturbative Uncertainty on $\alpha_s(m_{\tau})$

$$-s \frac{d}{ds} \Pi^{(0+1)}(s) = \frac{1}{4\pi^2} \sum_{n=0}^{\infty} K_n a(-s)^n$$

$$\delta_{P} = \sum_{n=1}^{\infty} K_{n} A^{(n)}(\alpha_{s}) = \sum_{n=0}^{\infty} r_{n} a_{\tau}^{n}$$

$$r_{n} = K_{n} + g_{n}$$

$$r_{n} = K_{n} + g_{n}$$

$$A^{(n)}(\alpha_s) \equiv \frac{1}{2\pi i} \oint_{|x|=1} \frac{dx}{x} (1 - 2x + 2x^3 - x^4) a_{\tau} (-x m_{\tau}^2)^n = a_{\tau}^n + \cdots ; \qquad a_{\tau} \equiv \alpha_s(m_{\tau})/\pi$$

| n                     | 1 | 2      | 3       | 4       | 5      |
|-----------------------|---|--------|---------|---------|--------|
| K <sub>n</sub>        | 1 | 1.6398 | 6.3710  | 49.0757 |        |
| <b>g</b> <sub>n</sub> | 0 | 3.5625 | 19.9949 | 78.0029 | 307.78 |
| r <sub>n</sub>        | 1 | 5.2023 | 26.3659 | 127.079 |        |

The dominant corrections come from the contour integration

Le Diberder- Pich 1992

Large running of  $a_s$  along the circle  $s = m_{\tau}^2 e^{i\phi}$ ,  $\phi \in [0, 2\pi]$ 

$$A^{(n)}(a_{\tau}) \equiv \frac{1}{2\pi i} \oint_{|x|=1} \frac{dx}{x} (1 - 2x + 2x^3 - x^4) a_{\tau} (-x m_{\tau}^2)^n = a_{\tau}^n + \cdots \qquad ; \qquad a_{\tau} \equiv \alpha_s(m_{\tau})/\pi$$



$$A^{(1)}(a_{\tau}) = a_{\tau} - \frac{19}{24} \beta_1 a_{\tau}^2 + \left[\beta_1^2 \left(\frac{265}{288} - \frac{\pi^2}{12}\right) - \frac{19}{24} \beta_2\right] a_{\tau}^3 + \cdots$$

$$a(-s) \simeq \frac{a_{\tau}}{1 - \frac{\beta_1}{2} a_{\tau} \log\left(-s/m_{\tau}^2\right)} = \frac{a_{\tau}}{1 - i\frac{\beta_1}{2} a_{\tau}\phi} = a_{\tau} \sum_n \left(i\frac{\beta_1}{2}a_{\tau}\phi\right)^n \qquad ; \qquad \phi \in [0, 2\pi]$$
FOPT expansion only convergent if  $\alpha_{\tau} < 0.14$  (0.11) [at 1 (3) loops]  
Experimentally  $\alpha_{\tau} \approx 0.11$  FOPT should not be used (divergent series)  
FOPT suffers a large renormalization-scale dependence (Le Diberder- Pich, Menke)  
The difference between FOPT and CIPT grows at higher orders

# **Spectral Function Distribution**

Moments:

$$R_{\tau}^{kl}(s_0) \equiv \int_0^{s_0} ds \, \left(1 - \frac{s}{s_0}\right)^k \left(\frac{s}{m_{\tau}^2}\right)^l \frac{dR_{\tau}}{ds}$$

Sensitivity to power corrections (k,l)



The non-perturbative contribution to  $R_{\tau}$  can be obtained from the invariant-mass distribution of the final hadrons

$$\delta_{\rm NP} = -0.0064 \pm 0.0013$$
 Davier et al. (ALEPH data)

### • Fitting the Spectral Function itself: Duality Violations

Im  $\Pi(\mathbf{s}) = \kappa e^{-\gamma s} \sin[\alpha + \beta s]$ 

 $\delta_{\rm NP} = -0.003 \pm 0.012$ 

Boito et al. (OPAL data)

# Recent $\alpha_s(m_{\tau})$ Analyses

| Reference       | Method               | $\delta_{NP}$ | δ <sub>P</sub> | $\alpha_{s}(m_{\tau})$ | $\alpha_{s}(m_{Z})$ |
|-----------------|----------------------|---------------|----------------|------------------------|---------------------|
| Baikov et al    | CIPT, FOPT           |               | 0.1998 (43)    | 0.332 (16)             | 0.1202 (19)         |
| Davier et al'14 | CIPT, FOPT           | - 0.0064 (13) | _              | 0.332 (12)             | 0.1199 (15)         |
| Beneke-Jamin    | BSR + FOPT           | - 0.007 (3)   | 0.2042 (50)    | 0.316 (06)             | 0.1180 (08)         |
| Maltman-Yavin   | PWM + CIPT           | + 0.012 (18)  | _              | 0.321 (13)             | 0.1187 (16)         |
| Menke           | CIPT, FOPT           |               | 0.2042 (50)    | 0.342 (11)             | 0.1213 (12)         |
| Narison         | CIPT, FOPT           |               | _              | 0.324 (08)             | 0.1192 (10)         |
| Caprini-Fischer | BSR + CIPT           |               | 0.2037 (54)    | 0.322 (16)             | -                   |
| Abbas et al     | IFOPT                |               | 0.2037 (54)    | 0.338 (10)             |                     |
| Cvetič et al    | $\beta_{exp} + CIPT$ |               | 0.2040 (40)    | 0.341 (08)             | 0.1211 (10)         |
| Boito et al     | CIPT, DV             | - 0.002 (12)  | _              | 0.347 (25)             | 0.1216 (27)         |
|                 | FOPT, DV             | - 0.004 (12)  |                | 0.325 (18)             | 0.1191 (22)         |
| Pich'14         | CIPT                 | - 0.0064 (13) | 0.2014 (21)    | 0.342 (13)             | 0.1213 (14)         |
|                 | FOPT                 |               | - 0.0004 (13)  | 0.2014 (51)            | 0.320 (14)          |
| Pich'14         | CIPT, FOPT           | - 0.0064 (13) | 0.2014 (31)    | 0.332 (13)             | 0.1202 (15)         |

| CIPT: | Contour-improved perturbation theory | $\beta_{exp}$ : | Expansion in derivatives of $\alpha_s$ ( $\beta$ function) |
|-------|--------------------------------------|-----------------|------------------------------------------------------------|
| FOPT: | Fixed-order perturbation theory      | PWM:            | Pinched-weight moments                                     |
| BSR:  | Borel summation of renormalon series | CIPTm:          | Modified CIPT (conformal mapping)                          |
| IFOPT | Improved FOPT                        | DV:             | Duality violation (OPAL only)                              |

### **Present Status**



 $\alpha_s(m_{\tau}^2) = 0.332 \pm 0.013$ 

 $\alpha_s(M_Z^2) = 0.1202 \pm 0.0015$ 

 $\alpha_s (M_Z^2)_{Z \text{ width}} = 0.1197 \pm 0.0028$ 

The most precise test of Asymptotic Freedom

 $\alpha_s^{\tau}(M_Z^2) - \alpha_s^Z(M_Z^2) = 0.0005 \pm 0.0015_{\tau} \pm 0.0028_Z$ 

# **V**<sub>us</sub> **Determination**

#### Gámiz-Jamin-Pich-Prades-Schwab



The  $\tau$  could give the most precise  $V_{us}$  determination

# Cabibbo-suppressed $\tau$ Decays

#### **HFAG**

| $X_s^-$                                                                                                                          | $Br(\tau^- \to \nu_\tau X_s^-) (\%)$     | $X_s^-$                                                         | $\operatorname{Br}(\tau^- \to \nu_\tau X_s^-)(\%)$ |  |  |
|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------|--|--|
| $K^{-}$                                                                                                                          | $(0.6955 \pm 0.0096)$                    | $K^-\eta$                                                       | $(0.0153 \pm 0.0008)$                              |  |  |
| $K^{-}\pi^{0}$                                                                                                                   | $(0.4322\pm 0.0149)$                     | $K^{-}\pi^{0}\eta$                                              | $(0.0048 \pm 0.0012)$                              |  |  |
| $K^{-}2\pi^{0}$ (ex. $K^{0}$ )                                                                                                   | $(0.0630 \pm 0.0222)$                    | $\pi^{-}ar{K}^{0}\eta$                                          | $(0.0094 \pm 0.0015)$                              |  |  |
| $K^{-}3\pi^{0}$ (ex. $K^{0}$ , $\eta$ )                                                                                          | $(0.0419 \pm 0.0218)$                    | $K^-\omega$                                                     | $(0.0410\pm 0.0092)$                               |  |  |
| $\pi^- \bar{K}^0$                                                                                                                | $(0.8206 \pm 0.0182)$                    | $K^-\phi \ (\phi \to K\bar{K})$                                 | $(0.0037 \pm 0.0014)$                              |  |  |
| $\pi^- \bar{K}^0 \pi^0$                                                                                                          | $(0.3649 \pm 0.0108)$                    | $K^{-}\pi^{-}\pi^{+}$ (ex. $K^{0}, \omega$ )                    | $(0.2923 \pm 0.0068)$                              |  |  |
| $\pi^- \bar{K}^0 2 \pi^0$                                                                                                        | $(0.0269 \pm 0.0230)$                    | $K^{-}\pi^{-}\pi^{+}\pi^{0}$ (ex. $K^{0}$ , $\omega$ , $\eta$ ) | $(0.0411 \pm 0.0143)$                              |  |  |
| $\overline{K}^0 h^- h^+ h^-$                                                                                                     | $(0.0222\pm 0.0202)$                     |                                                                 |                                                    |  |  |
|                                                                                                                                  | $\mathrm{Br}(\tau^- \to \nu_\tau X_s^-)$ | $) = (2.875 \pm 0.050)\% $                                      | $(2.967 \pm 0.060)\%$                              |  |  |
| <b>Unaccounted modes:</b> $1 - \sum_{i} Br(\tau^{-} \rightarrow \nu_{\tau}^{-}X_{i}) = (0.0704 \pm 0.1060)\%$                    |                                          |                                                                 |                                                    |  |  |
| Antonelli-Cirigliano-Lu                                                                                                          | siani-Passemar:                          |                                                                 |                                                    |  |  |
| $\Gamma(K \to \mu \nu_{\mu})$ $Br(\tau^- \to \nu_{\tau} K^-) = (0.713 \pm 0.003)\%$                                              |                                          |                                                                 |                                                    |  |  |
| $K_{13} + \tau \rightarrow v_{\tau}(K\pi)^{-}$ spectra<br>Br $(\tau^{-} \rightarrow v_{\tau}K^{-}\pi^{0}) = (0.471 \pm 0.018)\%$ |                                          |                                                                 |                                                    |  |  |
|                                                                                                                                  |                                          | $Br(\tau \rightarrow v_{\tau} \overline{K}^0 \pi) =$            | $(0.857 \pm 0.030)\%$                              |  |  |
|                                                                                                                                  |                                          |                                                                 |                                                    |  |  |

### **Electron Anomalous Magnetic Moment**

Hanneke-Fogwell-Gabrielse '08

 $a_{\rho} = 0.001\,159\,652\,180\,73~(28)$ 



$$a_e^{\text{QED}} = \sum_{n=1}^{\infty} \left(\frac{\alpha}{\pi}\right)^n a_e^{(2n)}$$

$$a_e^{(2n)} = A_1^{(2n)} + A_2^{(2n)}(m_e/m_{\mu}) + A_2^{(2n)}(m_e/m_{\tau}) + A_3^{(2n)}(m_e/m_{\mu}, m_e/m_{\tau})$$

#### Aoyama-Hayakawa-Kinoshita-Nio

$$A_{1}^{(8)} = -1.9106 (20) , \qquad A_{2}^{(8)}(m_{e}/m_{\mu}) = 9.222 (66) \cdot 10^{-4}$$

$$A_{2}^{(8)}(m_{e}/m_{\tau}) = 8.24 (12) \cdot 10^{-6} , \qquad A_{3}^{(8)}(m_{e}/m_{\mu}, m_{e}/m_{\tau}) = 7.465 (18) \cdot 10^{-7}$$

$$A_{1}^{(10)} = 9.16 (58) , \qquad A_{2}^{(10)}(m_{e}/m_{\mu}) = -3.82 (39) \cdot 10^{-3}$$

$$a_e^{\text{QCD}} = 1.685 \ (33) \times 10^{-12}$$
,  $a_e^{\text{Weak}} = 0.0297 \ (5) \times 10^{-12}$ 



 $\alpha_{Rb2010}^{-1} = 137.035\,999\,049\,(90) \implies a_e^{th} = 0.001\,159\,652\,181\,78\,(6)_{8th}(4)_{10th}(3)_{had}(77)_{\alpha}$   $a_e \implies \alpha_{a_e}^{-1} = 137.035\,999\,173\,6\,(68)_{8th}(46)_{10th}(26)_{had}(331)_{exp} \quad [0.25\,ppb]$ 



### **Future Challenge**

 $\Delta a_{\mu} = 1.6 \ 10^{-10}$ 

### (0.14 ppm) FNAL, J-PARC

### □ Hadronic Vacuum Polarization

Kurz et al



- Improved data
- Radiative return
- Isospin breaking
- Improved theoretical tools
- Lattice simulations



### Light-by-Light

NNLO HVP



- Lattice
  - Dispersive approach

Colangelo et al, Pauk-Vanderhaeghen

Blum et al

Analytical methods

de Rafael-Prades-Vainshtein, Knecht et al, e et al. Roig et al. Masiuan-Vanderhaeghen

Melnikov-Vainshtein, Nyffeler, Bijnens et al, Hayakawa et al, Goecke et al, Roig et al, Masjuan-Vanderhaeghen

## **τ** Anomalous Magnetic Moment

**Difficult to measure!** 

$$a_{\tau}^{\exp} = (-0.018 \pm 0.017)$$
 DELPHI

 $-0.007 < a_{\tau}^{\text{New Phys}} < 0.005$ 

González-Springer, Santamaria, Vidal '00 (LEP/SLD data)

#### Eidelman, Passera

| $10^8$ · | $a_{\tau}^{\text{th}} = 117324$ | ± 2       | QED            |
|----------|---------------------------------|-----------|----------------|
|          | + 47.4                          | ± 0.5     | EW             |
|          | + 337.5                         | ± 3.7     | hvp            |
|          | + 7.6                           | $\pm 0.2$ | hvp NLO        |
|          | + 5                             | ± 3       | light-by-light |
|          | = 117 721                       | ± 5       | -              |

Enhanced sensitivity to new physics:  $(m_{\tau}/m_{\mu})^2 = 283$ 

|                                    | Electron | Muon | Tau |
|------------------------------------|----------|------|-----|
| a <sup>EW</sup> /a <sup>HAD</sup>  | 1/56     | 1/45 | 1/7 |
| a <sup>EW</sup> /δa <sup>HAD</sup> | 1.6      | 3    | 10  |

### **Essentially unknown**

May be accessible at BFs through radiative leptonic decays (Fael et al)



# **SUMMARY**



□ Very precise determination of  $\alpha_s$  from  $\tau$  decays  $\alpha_s(m_\tau^2) = 0.332 \pm 0.013$   $\implies$   $\alpha_s(M_Z^2) = 0.1202 \pm 0.0015$ □ The  $\tau$  could give the most precise V<sub>us</sub> determination

 $|V_{us}| = 0.2207 \pm 0.0023_{exp} \pm 0.0011_{th}$  (present  $\tau$  data + K data) **K**<sub>13</sub>:  $|V_{us}| = 0.2239 \pm 0.0009$   $[f_+(0) = 0.9661 \pm 0.0032]$ 

Many QCD tests with τ data: Chiral Dynamics
 Improved predictions for a<sup>QCD</sup><sub>μ</sub> needed
 Theoretical and experimental challenge

# Backup Slides

# Renormalons

$$D(s) \equiv -s \frac{d}{ds} \Pi^{(0+1)}(s) = \frac{1}{4\pi^2} \sum_{n=0}^{\infty} K_n a(-s)^n$$
 Asymptotic series

### **Borel Summation:**

However, B(t) has pole singularities at

- $u \equiv -\beta_1 t/2 = +n$   $(n \ge 2)$ **Infrared Renormalons**
- $u \equiv -\beta_1 t/2 = -n$  ( $n \ge 1$ ) Ultraviolet Renormalons





**Ambiguity:**  $\delta D(s$ 

() 
$$\sim \left(\frac{\Lambda^2}{-s}\right)^n$$



(Descotes-Genon – Malaescu)

# SPECTRAL FUNCTIONS



needed

Leptons & QCD