# Recent T2K Highlights

Gary Barker (University of Warwick) for the T2K Collaboration

TAU2014, Aachen, 17th September 2014





# Contents

- Neutrino mixing/oscillations
- The T2K project and detectors
- Latest results from oscillation and cross section measurements
- Current run status and future plans
- Conclusion

# Neutrino Mixing

• Flavour eigenstates  $\neq$  mass  $\begin{pmatrix} v_e \\ v_{\mu} \end{pmatrix} = U_{PMNS} \begin{pmatrix} v_1 \\ v_2 \\ v_2 \end{pmatrix}$  eigenstates:

$$\begin{pmatrix} v_e \\ v_\mu \\ v_\tau \end{pmatrix} = \mathbf{U}_{PMNS} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

 U<sub>PMNS</sub> parameterised in terms of 3 angles and a CP-violating phase:

$$\boldsymbol{\theta_{12}}, \boldsymbol{\theta_{23}}, \boldsymbol{\theta_{13}}, \boldsymbol{\delta_{CP}}$$

### Oscillation Probabilities

• Leading order  $v_e$  appearance probability:

$$P_{\mu \to e} \approx \sin^2 \theta_{23} \cdot \sin^2 2\theta_{13} \cdot \sin^2 \left(\frac{\Delta m^2 L}{4E_v}\right) \qquad \Delta m^2 \approx \Delta m_{32}^2 \approx \Delta m_{31}^2$$

- => Determine  $\theta_{13}$
- Leading order  $v_{\mu}$  disappearance probability:

$$P_{\mu \to x} \approx 1 - \left(\cos^4 \theta_{13} \cdot \sin^2 2\theta_{23} + \sin^2 \theta_{23} \cdot \sin^2 2\theta_{13}\right) \sin^2 \left(\frac{\Delta m^2 L}{4E_v}\right)$$

=> Determine  $\theta_{23}$  and  $\Delta m_{32}^2$ 

### Unknowns

- $\theta_{23} \neq 45^{\circ}$ ? Which octant ?  $(\theta_{23} < 45^{\circ}, \theta_{23} > 45^{\circ})$ 
  - Through combination of disappearance and appearance

•  $\delta_{\text{CP}}$  (=0?); Mass Hierarchy? - Through higher order corrections to  $P_{\mu\text{-->e}}$ 



=> All questions that T2K is in the hunt to answer

# The Tokai-to-Kamioka (T2K) Experiment



### **Neutrino Beam**



- Proton beam incident on graphite target
- $\pi^+$  focussed by system of 3 magnetic `horns'
- $\pi^+ \rightarrow \mu^+ \nu_{\mu}$  decay in decay volume
- Beam aligned with SK with a 2.5° off-axis angle
- 2-body kinematics of  $\pi$ -decay produces narrow band beam => lower backgrounds
- Mean beam energy 0.6 GeV => peak of oscillation probabilities
  - Near detectors (on and off-axis) measure  $v_{\mu}$  flux before any oscillations occur



#### **Neutrino Interactions**

 The Charged Current Quasi Elastic (CCQE) process dominates at T2K energies









#### **Near Detectors**

- ND280 (Off-Axis): Collection of tracking detectors and calorimeters inside the UA1 magnet (B=0.2T)
- Measure flux,  $\nu_{\mu}$  energy and momentum,  $\nu$  cross sections and  $\nu_{e}$  contamination
- Plastic and water targets



- INGRID(On-Axis): monitor  $v_{\mu}$  direction, intensity and profile
- 16 modules of Fe-plastic scintillator sandwich



#### **Near Detectors**

- ND280 (Off-Axis): Collection of tracking detectors and calorimeters inside the UA1 magnet (B=0.2T)
- Measure flux,  $v_{\mu}$  energy and momentum, v cross sections and  $v_{e}$  contamination
- Plastic and water targets



- INGRID(On-Axis): monitor  $v_{\mu}$  direction, intensity and profile
- 16 modules of Fe-plastic scintillator sandwich



## Far Detector: Super-Kamiokande





50kt water Cherenkov (22.5 kt fiducial volume) Superb e/μ identification (only 1% contamination) GPS synchronisation with J-PARC beam

Energy reconstruction using kinematics of CCQE interactions





### Beam delivered



- So far delivered 6.57 x 10<sup>20</sup> Protons On Target (POT) (8% of design goal)
- 97% of data used for analysis
- Achieved stable beam power of 235kW (a world-best  $1.2 \times 10^{14}$  protons per pulse)

# Oscillation Analysis Chain



- => constrained by external hadron-production data e.g. NA61/SHINE
- => Proton beam stability
  (INGRID)



Fit to ND280  $v_u$  data

Predict event rate at Super-K



**Extract** 

oscillation

parameters

Simulate neutrino

#### interactions

- => Interaction models
- => Constrained by external measurements (MiniBooNE)



Measure CC  $\nu_{\mu}$  and  $\nu_{e}$  events at Super-K

# ND280 Fit to Topological Samples

- Select CC  $v_{\mu}$  topological samples :  $0\pi$ ,  $1\pi$ , `other'
- Fit  $(p_{\mu}, \cos\theta_{\mu})$  distributions (marginalising over flux and cross section parameters)



CC-0π 63% pure in CCQE



CC-1π<sup>+</sup> 39% pure in CC-RES



CC-other 68% pure in CC-DIS







### ND280 Constraint on Event Rates at Super-K

| Relative Uncertainty in # of $v_e$ Candidates (%) | Systematic Error Source          | Relative Uncertainty in # of $v_{\mu}$ Candidates (%) |
|---------------------------------------------------|----------------------------------|-------------------------------------------------------|
| 3.1(26)                                           | Flux 🖶 Xsec. (ND280 constrained) | 2.7(21.8)                                             |
| 4.7                                               | Xsec. (ND280-independent)        | 5.0                                                   |
| 2.4                                               | π Hadronic Interactions          | 3.0                                                   |
| 2.7                                               | SK Detector                      | 4.0                                                   |
| 6.8(26.8)                                         | Total                            | 7.7(23.5)                                             |

(Errors from the joint  $v_e - v_u$  analysis:  $\sin^2 2\theta_{13} = 0.1$ ,  $\sin^2 2\theta_{23} = 1$ ,  $\Delta m_{32}^2 = 2.4 \times 10^{-3} \text{ eV}^2$ , NH,  $\delta_{CP} = 0$ )





# Super-K Event Selection: $v_e$ Appearance



### T2K Appearance Result



- Maximum likelihood fit in  $(p_e, \theta_e)$
- Best fit results (for  $\delta_{CP} = 0$ ):

NH 
$$\sin^2 2\theta_{13} = 0.140^{+0.038}_{-0.032}$$
  
IH  $\sin^2 2\theta_{13} = 0.170^{+0.045}_{-0.037}$ 

Only experiment able to a make direct observation of  $v_e$  appearance: 2011 (6 events) =>  $2.5\sigma$  (for non-zero  $\theta_{13}$ )  $2014 (28 \text{ events}) => 7.3\sigma$ 



- 1D contours for all  $\delta_{CP}$  values
- Marginalised over  $\theta_{23}$  and  $|\Delta m_{32}|^2$

# Super-K Event Selection: $v_{\mu}$ Disappearance



# T2K Disappearance Result



World leading result:

$$\sin^2(\theta_{23}) = 0.514 \pm 0.055$$

(=> 3° uncertainty on the angle)

• For the first time,  $\theta_{23}$  is better constrained by an accelerator experiment and not an atmospheric neutrino result





# Sensitivity to $\delta_{CP}$

- Correlations between  $\theta_{23}$ ,  $\theta_{13}$  and  $\delta_{CP}$  => highest sensitivity from a simultaneous fit to both  $v_{\mu}$  and  $v_{e}$  spectra.
- Include constraint on  $\theta_{13}$  from the reactor experiments (Daya Bay, Reno and Double Chooz):  $\sin^2(2\theta_{13}) = 0.095 \pm 0.010$  (PDG 2013)
- Weak preference for  $\delta_{CP}$  = -0.5  $\pi$  (would imply maximal CPV!)
- Consistent result seen from both a frequentist and Bayesian approach
  - ☐ Frequentist: Likelihood ratio fit.

    Confidence intervals evaluated via
    Feldman-Cousins method

Bayesian: Markov chain MC method. Marginalise over MH





### ND280 Analyses

- T2K has active programme of non-oscillation analyses with the ND280
- A primary motivation is to contribute v cross section measurements: scarce at T2K energies and (nuclear) model effects poorly understood e.g.







- Recent measurements:
  - V<sub>µ</sub>: inclusive cross section on C (off-axis) (PRD 87, 092003 (2013)) and Fe/CH(on-axis) (accepted for pub. in PRD, arXiv 1407.4256 [hep-ex])
  - $V_e$ : inclusive cross section (submitted to PRL, arXiv:1407.7389),  $v_e$  beam component (PRD 89, 092004 (2014))
  - V-O Neutral Current Quasi Elastic cross section in SK via the detection of nuclear de-excitation  $\gamma$ -rays (arXiv 1403.3140 [hep-ex])

### **Current Run Status**

Anti- $v_{\mu}$  CC candidate at ND280







- In May T2K successfully completed the first pilot run with anti-neutrinos
- All detectors running well
- Studies suggest best sensitivity to  $\delta_{\text{CP}}$  for  $\nu$ :anti- $\nu$  of 50:50

### What Next From T2K?

- Continue to take data towards the approved design target of  $7.8 \times 10^{21} POT$
- Expect a substantial fraction of the running time assigned to anti-v running
  - Anti-v interaction cross sections are down by factor 3-4 cf. neutrinos
- Planned J-PARC accelerator upgrades will speed-up the data taking rate
  - MR beam power: 235 kW (currently) will rise to 750 kW (design) over the next few years
- Combined oscillation results with the reactor experiments and, soon, NOvA also could provide a strong hint regarding one (or more) of:
  - ullet  $\delta_{\mathsf{CP}}$
  - Mass hierarchy
  - $\theta_{23}$  octant
- More valuable non-oscillation results from ND280:
  - Cross section measurements in preparation: CCQE, CC-0 $\pi$ , CC-1 $\pi$ , coherent  $\pi$  production and (in the future) anti- $\nu$
  - Sterile SBL search, non-standard oscillations

## In Conclusion

- With the existing data set of 6.57 x 10<sup>20</sup> POT, T2K has achieved:
  - $v_{\mu}$  disappearance: world-best precision on  $\theta_{23}$
  - $v_e$  appearance: unique direct measurement with 7.3 $\sigma$  significance
  - first hints of  $\delta_{CP}$  unfavoured regions
- This has been achieved with only 8% of the design data total
- Important results on cross sections on a variety of nuclear targets now being reported
- Will collect ~12 times more data and continue to combine with results from the reactors and Nova

=> exciting times ahead!



# Back-up Slides

# ND280 Analyses: $v_e$ Beam Component

- The ~1%  $\nu_e$  component of the  $\nu_\mu$  beam dominates the  $\nu_e$  appearance uncertainties => is vital to measure precisely
- TPC and ECAL PID capability applied to reject muons in favour of electrons: final sample is 92% electrons (26% from the  $\nu_e$  beam component)
- Data/MC ratio from simultaneous likelihood fit to topological samples: CCQE + non-QE (+  $\gamma$  conversion background):



 $R(v_e)=1.01 \pm 0.06(stat) \pm 0.08(syst)$ 

validation of T2K's simulation used in oscillation results







# ND280 Analyses: CC Inclusive $v_e$ X-Section







- Differential and flux-averaged results:  $\Phi_e^{\text{tot}}=1.11\pm0.2 \text{ x}10^{-38} \text{ cm}^2/\text{nucleon}$
- First  $v_e$  x-section measurement at GeV scale since Gargamelle results in 1978!
- Good agreement with Gargamelle and with different generators within current statistics
- More precision results needed for future  $\nu_e$  appearance experiments and to establish  $\nu_e/\nu_\mu$  differences



Submitted to PRL, arXiv:1407.7389

#### T2K Collaboration



#### Canada



U. Alberta

U. B. Columbia

U. Regina

U. Toronto

U. Victoria

U. Winnipeg

York U.

#### France

CEA Saclay

IPN Lyon

LLR. E. Poly.

LPNHE Paris

#### Germany

U. Aachen

#### Italy



INFN, U. Roma

INFN, U. Napoli

INFN, U. Padova

INFN, U. Bari

#### **Poland**



IFJ PAN, Crakow

NCBJ Warsaw

U. Silesia, Katowice

U. Warsaw

Warsaw U. T.

U. Wroclaw

#### UK



Imperial C. London

Queen Mary U.L.

Lancaster U.

Liverpool U.

Oxford U.

Sheffield U.

STFC/Daresbury

STFC/RAL

Warwick U.



#### Switzerland



U. Bern

U. Geneva

ETH Zurich

#### **USA**



Boston U.

Colorado S.U.

Duke U.

Louisiana S.U.

Stony Brook U.

U.C. Irvine

U. Colorado

U. Pittsburgh

**U. Rochester** 

U. Washington

#### Japan



ICRR Kamioka

ICRR RCCN

Kavli-IPMU

KEK

Kyoto U.

Kobe U.

Miyagi U.Edu.

Okayama U.

Osaka City U.

Tokyo Metro. U.

U. Tokyo

#### Russia





#### Spain



U.A. Barcelona

IFIC, Valencia

~500 members from 11 countries

#### Off-axis Beam







$$E_{\nu} = \frac{m_{\pi}^2 - m_{\mu}^2}{2(E_{\pi} - p_{\pi}\cos\theta)}$$



### v Beam Stability



