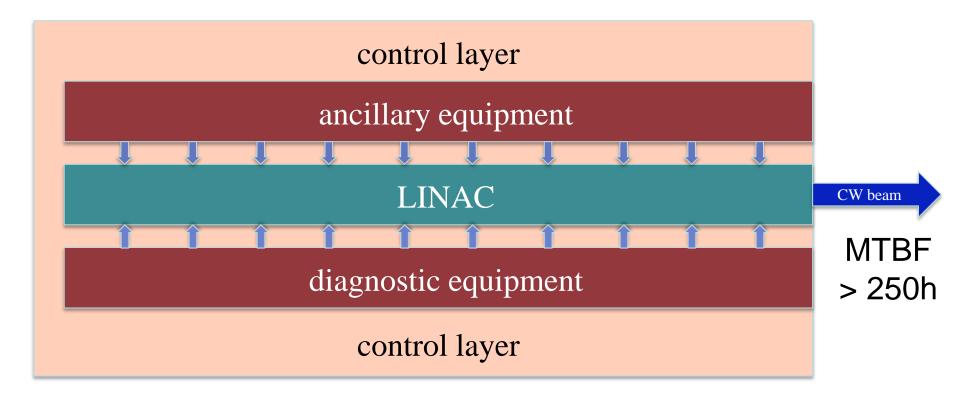


MYRRHA Accelerator eXperiment research & Development programme


Beam Diagnostics for ADS

Dirk Vandeplassche SCK•CEN

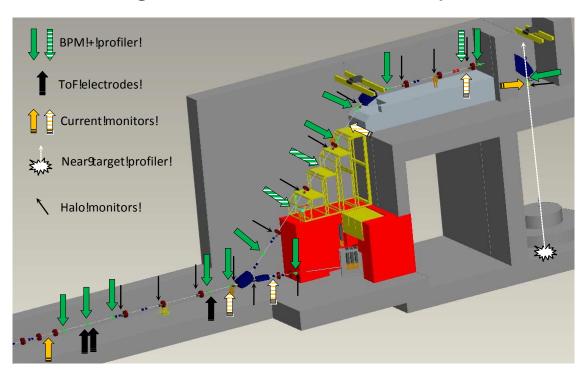
Introduction: framework

- Accelerator for ADS:
 - modest in terms of beam energy and current performances
 - challenging for CW and beam-MTBF
- practical exploitation of a real machine:
 - ancillary equipment
 - diagnostic equipment
 - control system

framework: present

system	subsystem	design study	realization
ancillary	classic	FEED	industry
	cryo	ACS [MAX]	industry
	RF	Thales [MAX]	industry
controls	LL slow	-	PLC-based
	LL fast, RT	Cosylab +	tbd
	HL, integration	Cosylab	industry
diagnostics	beam	acc. team	-
	others	acc. team	-

grey: small scale studies only acknowledged issues:


- industry standards
- some form of redundancy

Introduction

The R&D need for new diagnostic devices is very small

see: CDT
Deliverable D2.4
"Accelerator design
related issues",
Chapter 5

- 2 main global questions regarding diagnostics:
 - consequences of ADS operation
 - consequences of the reliability goal

Global concepts: ADS operation

Consequences of the ADS operation of the accelerator onto the diagnostic system?

item	accelerator design issue	diagnostic role	diagnostic system	request, action
HP CW	min. beam loss	Machine Protection	Beam Loss Monitors	μs-level response, shut off
stability	(specifications)	transverse ctrl longitudinal ctrl	BPM bunch length meas.	"slow" feedback "fast" feedback
current	varying duty cycle	requested current on target, averaged at 0.1s level	N/A on target! upstream current meas., beam centering device	"medium" feedback to cycle definition (TS)
energy		constant beam energy	TOF	

Global concepts: reliability

2. Consequences of the accelerator reliability goal onto the diagnostic system?

mission:

avoid beam trips — fast recovery from beam trips — foresee beam trips

accelerator design issues	role of diagnostic system	request
fault tolerance (redundancy) automatic recovery	fault detection automatic feedback	
maximize MTTFall subsystemsall components	(follow the rule)	Confi
minimize MTTR	(follow the rule)	de
 avoid the occurrence of interlocks automated tuning advanced supervision increase interlock confidence level evaluate interlock confidence level 	high quality analog acquisitions be predictive be highly reliable generate statistics	nce

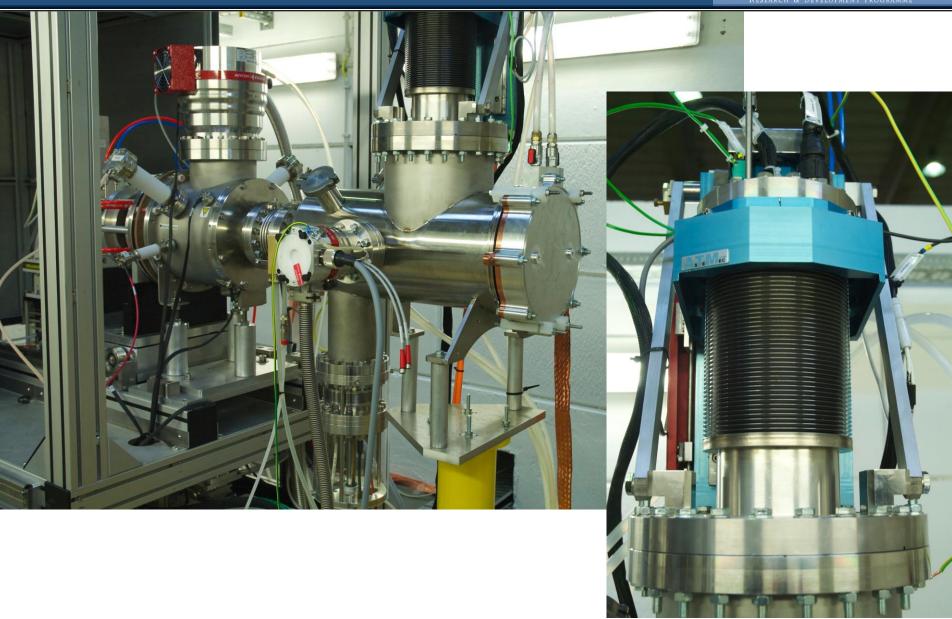
reliability


- How ?
 - at level of individual diagnostic device
 - MTTF (obvious)
 - include provisions for
 - self-diagnostics
 - self-evaluation
 - self-calibration
 - self-repair
 - powerful low level controller (FPGA)
 - at the global level of a given diagnostic system:
 - make the system overdetermined (redundant)
 - statistics
 - coherence checks
 - numerical confidence level
 - generate enough data for predictive algorithms to be applied
 - powerful high level controller

reliability

based on :

- highest quality hardware
- highest quality timing system (WR to be evaluated)
- models !!
 - behaviour of individual components
 - global: "virtual accelerator"
- matched Control System



foreseeable R&D

R&D issues :

- availability of experimental platforms is limited
- presently envisaged in MYRRHA context: IS + LEBT + RFQ
 - not extensive enough for coherence checks with beam induced signals
 - useful for individual devices: MTTF, self-checks
 - high power SS RF amplifier
 - small scale tests on feedback systems (e.g. beam current regulation)
 - small scale tests on "virtual accelerator"
- conceptual developments
 - global models
 - statistical tools

Conclusion and outlook

- ADS: diagnostics are facing contradictory requirements
 - full protection
 - perfect stability
 - 0 false interlocks
- keyword: confidence = reliability + coherence
- border between device and control becomes very fuzzy
- diagnostic system as a whole to go into the reliability model
- main message: it is time to consider the diagnostics within the ADS accelerator R&D program. The subject (or items of it) may be of broader interest and profit from possible synergies with other programs.