## **LEBT LINES: SIMULATIONS AND EXPERIMENTAL RESULTS**

## Nicolas Chauvin<sup>\*</sup>, Didier Uriot, Raphaël Gobin, Franck Peauger, Franck Sénée, Olivier Tuske

\*Nicolas.Chauvin@cea.fr

Commissariat à l'Énergie Atomique et aux Énergies Alternatives DSM/Irfu; F-91191 Gif-sur-Yvette, France.



March 20, 2014

## Outline



#### Ion source & LEBT

#### Introduction

SCC LEBT Simulations

#### LIPAc injector

Requirements LEBT Layout Experimental setup Experimental results 10% dc Emittance vs solenoids Simulations conditions Simulations results Conclusion

#### SILHI

Requirements LEBT Layout Experimental results Simulations strategy Simulation results Simulation vs Experience

Conclusion

## **Introduction**

- **2** The LIPAc source & LEBT commissioning
- SILHI source & LEBT commissioning
- Conclusions & Perspectives

## Outline



#### Ion source & LEBT

#### Introduction

2

SCC LEBT Simulations

#### LIPAc injector

Requirements LEBT Layout Experimental setup Experimental results 10% dc Emittance vs Intensity Emittance vs solenoids Simulations conditions Simulations results Conclusion

#### SILHI

Requirements LEBT Layout Experimental results Simulations strategy Simulation results Simulation vs Experience

Conclusion

## Introduction

- Space charge compensation
- LEBT simulations performed in CEA-Saclay
- 2 The LIPAc source & LEBT commissioning
- SILHI source & LEBT commissioning
- 4 Conclusions & Perspectives

# Introduction





- Beam production: ion source
- Beam transport, selection and adaptation: LEBT
- Beam qualification (usually): beam diagnostics
- Optimize beam transmission through RFQ
- Minimize emittance growth
- **Deal** with high beam power



#### Introduction

3

SCC LEBT Simulations

#### LIPAc injector

Requirements LEBT Layout Experimental setup Experimental results 10% dc Emittance vs solenoids Simulations conditions Simulations results Conclusion

#### SILHI

Requirements LEBT Layout Experimental results Simulations strategy Simulation results Simulation vs Experience

# The space charge compensation (SCC) regime



## Example

Consider a proton beam propagating through an  $\mathsf{H}_2$  residual gas.

$$p + H_2 \rightarrow p + e^- + H_2$$

With  $n_{gas}/n_{beam} \gg 1$ , with  $n_{gas}$  and  $n_{beam}$  the gas and beam density.

### Space charge compensation is...

- Partial.
- Not uniform longitudinally and radially (nonlinear field).
- Time dependent (pressure dependent).



#### Ion source & LEBT

#### Introduction

SCC LEBT Simulations

#### LIPAc injector

Requirements LEBT Layout Experimental setup Experimental results 10% dc Emittance vs solenoids Simulations conditions Simulations results Conclusion

#### SILHI

Requirements LEBT Layout Experimental results Simulations strategy Simulation results Simulation vs Experience

# The space charge compensation (SCC) regime



## Example

Consider a proton beam propagating through an  $\mathsf{H}_2$  residual gas.

$$p + H_2 \rightarrow p + e^- + H_2$$

With  $n_{gas}/n_{beam} \gg 1$ , with  $n_{gas}$  and  $n_{beam}$  the gas and beam density.

### Space charge compensation is...

- Partial.
- Not uniform longitudinally and radially (nonlinear field).
- Time dependent (pressure dependent).



#### Ion source & LEBT

#### Introduction

SCC LEBT Simulations

#### LIPAc injector

Requirements LEBT Layout Experimental setup Experimental results 10% dc Emittance vs solenoids Simulations conditions Simulations results Conclusion

#### SILHI

Requirements LEBT Layout Experimental results Simulations strategy Simulation results Simulation vs Experience

# LEBT simulations performed in CEA-Saclay

## Ion source extraction: Axcel INP

- Electrode geometry
- No space charge compensation

### LEBT & RFQ: TraceWin

- Multiparticle PIC code
- Transport with space charge compensation dependant of z
- Transport with space charge compensation fiedl map

### LEBT: SolMaxP or Warp (J.L. Vey, D. Grote et al.)

- Self consistant PIC code
- Beam interaction with residual gas and beam pipe
- Transport of beam and secondary particles

## Ion source & LEBT

#### Introduction

SCC LEBT Simulations

#### LIPAc injecto

Requirements LEBT Layout Experimental setup Experimental results 10% dc Emittance vs solenoids Simulations conditions Simulations results Conclusion

#### SILHI

Requirements LEBT Layout Experimental results Simulations strategy Simulation results Simulation vs Experience

# LEBT simulations performed in CEA-Saclay

## Ion source extraction: Axcel INP

- Electrode geometry
- No space charge compensation

## LEBT & RFQ: TraceWin

- Multiparticle PIC code
- Transport with space charge compensation dependant of z
- Transport with space charge compensation fiedl map

## LEBT: SolMaxP or Warp (J.L. Vey, D. Grote et al.)

- Self consistant PIC code
- Beam interaction with residual gas and beam pipe
- Transport of beam and secondary particles

# Ion source & LEBT

#### ion source & LEL

#### Introduction

SCC LEBT Simulations

#### LIPAc injector

Requirements LEBT Layout Experimental setup Experimental results 10% dc Emittance vs solenoids Simulations conditions Simulations results Conclusion

#### SILHI

Requirements LEBT Layout Experimental results Simulations strategy Simulation results Simulation vs Experience

# LEBT simulations performed in CEA-Saclay

## Ion source extraction: Axcel INP

- Electrode geometry
- No space charge compensation

## LEBT & RFQ: TraceWin

- Multiparticle PIC code
- Transport with space charge compensation dependant of z
- Transport with space charge compensation fiedl map

## LEBT: SolMaxP or Warp (J.L. Vey, D. Grote et al.)

- Self consistant PIC code
- Beam interaction with residual gas and beam pipe
- Transport of beam and secondary particles

## Ion source & LEBT

#### . . . .

SCC

#### LIPAc injector

Requirements LEBT Layout Experimental setup Experimental results 10% dc Emittance vs solenoids Simulations conditions Simulations results Conclusion

#### SILHI

Requirements LEBT Layout Experimental results Simulations strategy Simulation results Simulation vs Experience

# Outline

## Introduction

## 2 The LIPAc source & LEBT commissioning

- Requirements
- LEBT Layout
- Experimental setup
- Experimental results 10% dc
- Emittance vs Intensity
- Emittance vs solenoids
- Simulations conditions
- Simulations results
- LIPAc commissioning conclusion

## 3 SILHI source & LEBT commissioning

## 4 Conclusions & Perspectives



#### Ion source & LEBT

#### Introduction

SCC LEBT Simulations

#### LIPAc injector

6

Requirements LEBT Layout Experimental setup Experimental results 10% dc Emittance vs solenoids Simulations conditions Simulations results Conclusion

#### SILHI

Requirements LEBT Layout Experimental results Simulations strategy Simulation results Simulation vs Experience

# Linear IFMIF Prototype Aceelerator (LIPAc) source & LEBT

## Requirements

- D<sup>+</sup> beam.
- Continuous beam.
- Energy: 100 keV.
- Intensity: 140 mA.
- Final emittance:  $\leq 0.3 \pi$  mm.mrad
- Twiss parameters at the RFQ entrance: ≤ 10% mismatch.

## Commissioning

- Commissioning in Saclay: March to November 2012.
- Status: remounting in Rokkasho.
- Start of beam commissioning in Rokkasho: July 2014.







#### Ion source & LEBT

#### Introduction

SCC LEBT Simulations

#### LIPAc injector

#### Requirements LEBT Layout Experimental setup Experimental results 10% dd Emittance vs solenoids Simulations conditions Simulations results Conclusion

#### SILHI

Requirements LEBT Layout Experimental results Simulations strategy Simulation results Simulation vs Experience



Cone

## LIPAc source & LEBT setup

- Electron Cyclotron Resonance ion source (2.45 GHz), SILHI-like.
- 5 electrodes extraction system (electrode plasma:  $\phi$ 12 mm).
- LEBT with 2 solenoids.
- RFQ injection cone ( $\phi$ 12 mm) with an electron repeller.
- Space charge compensation regime.
- Total length: 2.05 m



#### Ion source & LEBT

LEBT Layout

# LIPAc source & LEBT

Experimental setup for beam commissioning



## **Beam Diagnostics**

Beam intensity: ACCT, Beam Stop 1, Beam Stop 2 (auto polarisation).

Total extracted current: Current on the High Voltage power supply.

Emittance value: Emittance Measurement Unit (Allison scanner). Beam proportion: Doppler shift measurement. Alla

#### Ion source & LEBT

#### Introduction

SCC LEBT Simulations

#### LIPAc injector

Requirements LEBT Layout

#### Experimental setup

Experimental results 10% d Emittance vs Intensity Emittance vs solenoids Simulations conditions Simulations results Conclusion

#### SILHI

Requirements LEBT Layout Experimental results Simulations strategy Simulation results Simulation vs Experience

# The ion source extraction system



## Plasma electrode diameter: 12 mm



# Experimental results at 10% duty cycle



#### Ion source & LEBT

ntroduction

LEBT Simulations

#### LIPAc injector

Requirements LEBT Layout Experimental setup Experimental results 10% dc Emittance vs Intensity Emittance vs solenoids Simulations conditions Simulations results Conclusion

#### SILHI

Requirements LEBT Layout Experimental results Simulations strategy Simulation results Simulation vs Experience

#### Conclusion





 $I_{BS} = 110 \text{ mA} \epsilon = 0.15 \pi.mm.mrad$ 



# Experimental results at 10% duty cycle



#### Ion source & LEBT

ntroduction

LEBT Simulations

#### LIPAc injector

Requirements LEBT Layout Experimental setup Experimental setup Emittance vs Intensity Emittance vs olenoids Simulations conditions Simulations results Concelucions

#### SILHI

12

Requirements LEBT Layout Experimental results Simulations strategy Simulation results Simulation vs Experience

#### Conclusion





 $I_{BS} = 140 \text{ mA } \epsilon = 0.2 \pi.mm.mrad$ 





Introduction

SCC LEBT Simulations

#### LIPAc injector

Requirements LEBT Layout Experimental setup Experimental results 10% dc Emittance vs Intensity Emittance vs solenoids Simulations conditions Simulations results

#### SILHI

13

Requirements LEBT Layout Experimental results Simulations strategy Simulation results Simulation vs Experience

Conclusion

Particles: D<sup>+</sup> – Extraction Voltage: 100 kV Pulse Length: 10 ms – Repetition rate: 10 Hz.

| I <sub>BS</sub> (mA) | I <sub>Tot</sub> (mA) | $D^+$ proportion (%) | $U_{IE} \left( kV \right)$ | $\epsilon$ ( $\pi$ .mm.mrad) |
|----------------------|-----------------------|----------------------|----------------------------|------------------------------|
| 100                  | 125                   | 80                   | 40                         | 0.14                         |
| 110                  | 133                   | 83                   | 40                         | 0.15                         |
| 120                  | 141                   | 85                   | 40                         | 0.16                         |
| 130                  | 148                   | 88                   | 40                         | 0.17                         |
| 140                  | 155                   | 90                   | 40                         | 0.2                          |
| 150                  | 165                   | 91                   | 40                         | 0.26                         |
|                      |                       |                      |                            |                              |



Emittance vs Intensity

SCC

| I <sub>BS</sub> (mA) | I <sub>Tot</sub> (mA) | $U_{IE}$ (kV) | Duty Cycle (%) | $\epsilon$ ( $\pi$ .mm.mrad) |    |
|----------------------|-----------------------|---------------|----------------|------------------------------|----|
| 110                  | 133                   | 40            | 10             | 0.15                         |    |
| 100                  | 134                   | 40            | 30             | 0.14                         | 14 |
| 140                  | 155                   | 40            | 10             | 0.2                          | Ĭ  |
| 120                  | 151                   | 40            | 30             | 0.19                         |    |
| 140                  | 170                   | 40            | 30             | 0.39                         | L  |
| 140                  | 170                   | 43            | 30             | 0.32                         |    |
| 140                  | 170                   | 43            | 50             | 0.33                         |    |
| 140                  | 176                   | 42            | cw             | ??                           |    |

## Need to increase $U_{\rm E}$ for high total extracted current.



Emittance vs Intensity

SCC

| I <sub>BS</sub> (mA) | I <sub>Tot</sub> (mA) | $U_{IE}$ (kV) | Duty Cycle (%) | $\epsilon$ ( $\pi$ .mm.mrad) |    |
|----------------------|-----------------------|---------------|----------------|------------------------------|----|
| 110                  | 133                   | 40            | 10             | 0.15                         |    |
| 100                  | 134                   | 40            | 30             | 0.14                         | 14 |
| 140                  | 155                   | 40            | 10             | 0.2                          |    |
| 120                  | 151                   | 40            | 30             | 0.19                         |    |
| 140                  | 170                   | 40            | 30             | 0.39                         |    |
| 140                  | 170                   | 43            | 30             | 0.32                         |    |
| 140                  | 170                   | 43            | 50             | 0.33                         |    |
| 140                  | 176                   | 42            | cw             | ??                           |    |

## Need to increase $U_{\rm I\!E}$ for high total extracted current.

# Emittance vs solenoids magnetic field



#### Ion source & LEBT



 $I_{BS} = 141 \text{ mA} - I_{Tot} = 165 \text{ mA} - U_{IE} = 43 \text{ kV}$ 

SCC LEBT Simulations LIPAc injector Requirements LEBT Layout Experimental setup Experimental results 10% d Emittance vs Intensity Emittance vs Intensity Emittance vs Intensity

#### SILHI

15

Requirements LEBT Layout Experimental results Simulations strategy Simulation results Simulation vs Experience

# Emittance vs solenoids magnetic field



#### Ion source & LEBT



 $I_{BS} = 141 \text{ mA} - I_{Tot} = 165 \text{ mA} - U_{IE} = 43 \text{ kV}$ 

SCC LEBT Simulations LIPAc injector Requirements LEBT Layout Experimental setup Experimental results 10% d Emittance vs Intensity Emittance vs solenoids

Simulations condition Simulations results Conclusion

#### SILHI

16

Requirements LEBT Layout Experimental results Simulations strategy Simulation results Simulation vs Experience

# Emittance vs solenoids magnetic field



#### Ion source & LEBT

Introduction

SCC LEBT Simulations

#### LIPAc injecto

Requirements LEBT Layout Experimental setup Experimental results 10% dc Emittance vs Intensity Emittance vs solenoids Simulations conditions Simulations results

#### SILHI

17

Requirements LEBT Layout Experimental results Simulations strategy Simulation results Simulation vs Experience

Conclusion

Extraction Voltage: 100 kV – Duty cycle: 10%.  $I_{BS} = 141 \text{ mA} - I_{Tot} = 165 \text{ mA} - U_{IE} = 43 \text{ kV}$ 

| ΤР  | B1 (A) | B1 (A) | $\epsilon$ ( $\pi$ .mm.mrad) |
|-----|--------|--------|------------------------------|
| TP1 | 0.35   | 0.44   | 0.36                         |
| TP2 | 0.37   | 0.40   | 0.26                         |
| TP3 | 0.40   | 0.34   | 0.23                         |

# Simulation conditions



#### Ion source & LEBT

#### Introduction

SCC LEBT Simulations

#### LIPAc injector

Requirements LEBT Layout Experimental setup Experimental results 10% dc Emittance vs solenoids Simulations conditions Simulations results Conclusion

#### SILHI

18

2.0

1.5

Requirements LEBT Layout Experimental results Simulations strategy Simulation results Simulation vs Experience

#### Conclusion

Codes used Source extraction 0.8 Space charge compensation with Axcel-INP. 0.6 Space charge 0.4 compensation profile with **SolMaxP**. 0.2 Transport with 0.0 1.0 TraceWin. 0.5 s (m)

Adjustment of the space charge compensation profile to fit the data.

## Solenoids variation Experiment vs Simulation



#### Ion source & LEBT



SCC LEBT Simulations

#### LIPAc injector

Requirements LEBT Layout Experimental setup Experimental results 10% dc Emittance vs Intensity Emittance vs solenoids Simulations conditions Simulations results Conclusion

#### SILHI

19

Requirements LEBT Layout Experimental results Simulations strategy Simulation results Simulation vs Experience

#### Conclusion





## Experiment

## Simulation

## Solenoids variation - Beam Density TP1



B1 = 0.35 A – B2 = 0.44 A  $\epsilon_{expe}$  0.36  $\pi$ .mm.mrad –  $\epsilon_{simu}$  0.38  $\pi$ .mm.mrad

# - Isla

#### Ion source & LEBT

#### Introduction

SCC LEBT Simulations

#### LIPAc injector

Requirements LEBT Layout Experimental setup Experimental results 10% dc Emittance vs Intensity Emittance vs solenoids Simulations conditions Simulations results Conclusion

#### SILHI

20

Requirements LEBT Layout Experimental results Simulations strategy Simulation results Simulation vs Experience

## **Solenoids variation – Beam Density TP2**



B1 = 0.37 A – B2 = 0.40 A  $\epsilon_{expe}$  0.26  $\pi$ .mm.mrad –  $\epsilon_{simu}$  0.29  $\pi$ .mm.mrad

# - John

#### Ion source & LEBT

#### Introduction

SCC LEBT Simulations

#### LIPAc injector

Requirements LEBT Layout Experimental setup Experimental results 10% dc Emittance vs Intensity Emittance vs solenoids Simulations conditions Simulations results Conclusion

#### SILHI

21

Requirements LEBT Layout Experimental results Simulations strategy Simulation results Simulation vs Experience

## **Solenoids variation – Beam Density TP3**



B1 = 0.40 A – B2 = 0.34 A  $\epsilon_{expe}$  0.23  $\pi$ .mm.mrad –  $\epsilon_{simu}$  0.25  $\pi$ .mm.mrad

# - John

#### Ion source & LEBT

#### Introduction

SCC LEBT Simulations

#### LIPAc injector

Requirements LEBT Layout Experimental setup Experimental results 10% dc Emittance vs Intensity Emittance vs solenoids Simulations conditions Simulations results Conclusion

#### SILHI

22

Requirements LEBT Layout Experimental results Simulations strategy Simulation results Simulation vs Experience

# LIPAc commissioning conclusion

## Experiment

- An unprecedented 140 mA D<sup>+</sup> cw beam has been produced and transported.
- LIPAc injector meets the requirements at low duty cycle (and very close in cw).
- No showstopper to reach the specifications in cw.
- Beam commissioning should start in Rokkasho in July 2014.
- Emittance measurement will be done after the source

## Simulation

- More work is needed to perform realistic self-consistent simulations.
- A numerical model gives reasonable agreement with experiments for beam intensity above 130 mA.
- Poor agreement with experiments below 120 mA.
- Simulation of source extraction system are not satisfactory.



#### Ion source & LEBT

#### Introduction

SCC LEBT Simulations

#### LIPAc injector

Requirements LEBT Layout Experimental setup Experimental results 10% do Emittance vs Intensity Emittance vs solenoids Simulations conditions Simulations results Conclusion

#### SILHI

Requirements LEBT Layout Experimental results Simulations strategy Simulation results Simulation vs Experience

# Outline

## Introduction

## 2 The LIPAc source & LEBT commissioning

## **3** SILHI source & LEBT commissioning

- Requirements
- LEBT Layout
- Experimental results
- Simulation strategy
- Simulation results
- Simulation vs Experience

## Conclusions & Perspectives



#### Ion source & LEBT

#### Introduction

SCC LEBT Simulations

#### LIPAc injector

Requirements LEBT Layout Experimental setup Experimental results 10% dc Emittance vs lotensity Emittance vs solenoids Simulations conditions Simulations results Conclusion

#### 24) SILHI

Requirements LEBT Layout Experimental results Simulations strategy Simulation results Simulation vs Experience

# SILHI source & LEBT

## Requirements

- H<sup>+</sup> beam.
- Continuous beam.
- Energy: 95 keV.
- Intensity: 100 mA.
- Final emittance:  $\leq 0.25 \pi$  mm.mrad.

## Commissioning

- Commissioning in Saclay: March to October 2013.
- Status: LEBT dismounted RFQ mounting and cabling.
- Start of beam commissioning with RFQ: early 2015.







#### Ion source & LEBT

#### Introduction

SCC LEBT Simulations

#### LIPAc injector

Requirements LEBT Layout Experimental setup Experimental results 10% dc Emittance vs Intensity Emittance vs solenoids Simulations conditions Simulations results Conclusion

#### SILHI

25

#### Requirements

LEBT Layout Experimental results Simulations strategy Simulation results Simulation vs Experience

# SILHI source & LEBT



## **SILHI source & LEBT setup**

- "Original" SILHI ECR ion source (2.45 GHz).
- 5 electrodes extraction system (electrode plasma:  $\phi$ 10 mm).
- LEBT with 2 solenoids.
- Space charge compensation regime.
- Total length: 3.5 m



#### Ion source & LEBT

Introduction

SCC LEBT Simulations

#### LIPAc injector

Requirements LEBT Layout Experimental setup Experimental results 10% dc Emittance vs Intensity Emittance vs solenoids Simulations conditions Simulations results Conclusion

#### SILHI

26

Requirements LEBT Layout Experimental results Simulations strategy Simulation results Simulation vs Experience



#### Introduction

SCC LEBT Simulations

#### LIPAc injector

Requirements LEBT Layout Experimental setup Experimental results 10% dc Emittance vs solenoids Simulations conditions Simulations results Conclusion

#### SILHI

27

Requirements LEBT Layout Experimental results Simulations strategy Simulation results Simulation vs Experience

Conclusion

| SOL 1 (A) | Sol 2 (A)                             | $\epsilon$ ( $\pi$ .mm.mrad)                                          |
|-----------|---------------------------------------|-----------------------------------------------------------------------|
| 100       | 150                                   | 0.07                                                                  |
| 100       | 150                                   | 0.17                                                                  |
| 100       | 150                                   | 0.3                                                                   |
| 110       | 165                                   | 0.35                                                                  |
|           | SOL 1 (A)<br>100<br>100<br>100<br>110 | SOL 1 (A) Sol 2 (A)   100 150   100 150   100 150   100 150   110 165 |

### To be improved...

- Maintenance of the ion source has to be done to improve the performances.
- Alignment of the beam line to be checked.

| Isfa |
|------|

#### Introduction

SCC LEBT Simulations

#### LIPAc injector

Requirements LEBT Layout Experimental setup Experimental results 10% dc Emittance vs solenoids Simulations conditions Simulations results Conclusion

#### SILHI

27

Requirements LEBT Layout Experimental results Simulations strategy Simulation results Simulation vs Experience

Conclusion

| I <sub>FC</sub> (mA) | SOL 1 (A) | Sol 2 (A) | $\epsilon$ ( $\pi$ .mm.mrad) |
|----------------------|-----------|-----------|------------------------------|
| 10                   | 100       | 150       | 0.07                         |
| 30                   | 100       | 150       | 0.17                         |
| 70                   | 100       | 150       | 0.3                          |
| 80                   | 110       | 165       | 0.35                         |
|                      |           |           |                              |

## To be improved...

- Maintenance of the ion source has to be done to improve the performances.
- Alignment of the beam line to be checked.

# **Experimental results** Transmission vs Solenoid values



#### Ion source & LEBT

28

Experimental results



- Optimal LEBT transmission areas.
- Two focusing scheme can be seen.
- $H^+$  and  $H_2^+$  beam dynamics.

# Simulation strategy

- **Experiment: optimization** of the beam transmission through the cone. Solenoids values are fixed.
- **Experiment: emittance** measurement.
- Simulation: using TraceWin, adjustment of the beam initial conditions (α, β, ε) and degree of SCC to fit to the measured emittance.
- Simulation: using TraceWin with the fitted parameters determination of optimal solenoid values for RFQ injection.
- **Solution:** Experimental validation: Emittance measurement.
- **Solution:** SolMAXP/Warp simulations.

## This method is simple an independent of:

- SOLMAXP/WARP simulations
- Ion source beam distribution calculated with AXCEL.



#### Introduction

SCC LEBT Simulations

#### LIPAc injector

Requirements LEBT Layout Experimental setup Experimental results 10% dc Emittance vs solenoids Simulations conditions Simulations results Conclusion

#### SILHI

29

Requirements LEBT Layout Experimental results Simulations strategy Simulation results Simulation vs Experience



# Simulation results

**Transmission vs Solenoid values** 





#### Introduction

SCC LEBT Simulations

#### LIPAc injector

Requirements LEBT Layout Experimental setup Experimental results 10% dc Emittance vs solenoids Simulations conditions Simulations results Conclusion

#### SILHI

30

Requirements LEBT Layout Experimental results Simulations strategy Simulation results Simulation vs Experience

Conclusion



## Experiment

## Beam intensity: 40 mA

- Reasonable agreement.
- Discrepancies: alignment and steerers.
- RFQ optimal injection  $\neq$  Maximal LEBT transmission



Simulation

# Simulation results

Beam transport





#### Ion source & LEBT

#### Introduction

SCC LEBT Simulations

#### LIPAc injector

Requirements LEBT Layout Experimental setup Experimental results 10% do Emittance vs Intensity Emittance vs solenoids Simulations conditions Simulations results Conclusion

#### SILHI

31

Requirements LEBT Layout Experimental results Simulations strategy Simulation results Simulation ys Experience

# **Simulation vs Experience**

**Emittance measurement** 



#### Ion source & LEBT

#### Introduction

SCC LEBT Simulations

#### LIPAc injector

Requirements LEBT Layout Experimental setup Experimental results 10% dc Emittance vs solenoids Simulations conditions Simulations results Conclusion

#### SILHI

32

Requirements LEBT Layout Experimental results Simulations strategy Simulation results Simulation vs Experience

Conclusion







Experiment  $\epsilon$  = 0.17  $\pi$ .mm.mrad

Simulation  $\epsilon$  = 0.15  $\pi$ .mm.mrad

# **Simulation vs Experience**

**Emittance vs Beam intensity** 





## **SILHI LEBT simulations**

- Simulations give good agreement with data.
- Validated with SOLMAXP and Warp.
- Model has to be tested with a 100 mA beam.

#### Ion source & LEBT

#### Introduction

SCC LEBT Simulations

#### LIPAc injecto

Requirements LEBT Layout Experimental setup Experimental results 10% dc Emittance vs solenoids Simulations conditions Simulations results Conclusion

#### SILHI

33

Requirements LEBT Layout Experimental results Simulations strategy Simulation results Simulation vs Experience

## Outline



#### Ion source & LEBT

#### Introduction

SCC LEBT Simulations

#### LIPAc injector

Requirements LEBT Layout Experimental setup Experimental results 10% dc Emittance vs solenoids Simulations conditions Simulations results Conclusion

#### SILHI

Requirements LEBT Layout Experimental results Simulations strategy Simulation results Simulation vs Experience

34 Conclusion

## **Introduction**

**2** The LIPAc source & LEBT commissioning

SILHI source & LEBT commissioning

Conclusions & Perspectives

# **Conclusions & Perspectives**

## Conclusions

- Self consistent codes gives qualitative results but are not yet predictive enough.
- SPIRAL2 D<sup>+</sup> source and LEBT commissioning has also been done in Saclay in 2012.
- All the sources and LEBT in Saclay are now dismounted.
- Commissioning of source and LEBT have to be anticipated.

### Perspective

- Further work on simulations including SCC (degree of SCC, transient time): quantitative results are needed.
- More experiments will be done on LIPAc in Rokkasho.
- Development and commissioning of the FAIR p-linac source and LEBT will be done in Saclay.
- Measurements on a dedicated test bench in Saclay: BETSI (ESS chopper tests).



#### Ion source & LEBT

#### Introduction

SCC LEBT Simulations

#### LIPAc injector

Requirements LEBT Layout Experimental setup Experimental results 10% dc Emittance vs solenoids Simulations conditions Simulations results Conclusion

#### SILHI

Requirements LEBT Layout Experimental results Simulations strategy Simulation results Simulation vs Experience

# **Conclusions & Perspectives**

## Conclusions

- Self consistent codes gives qualitative results but are not yet predictive enough.
- SPIRAL2 D<sup>+</sup> source and LEBT commissioning has also been done in Saclay in 2012.
- All the sources and LEBT in Saclay are now dismounted.
- Commissioning of source and LEBT have to be anticipated.

## Perspective

- Further work on simulations including SCC (degree of SCC, transient time): quantitative results are needed.
- More experiments will be done on LIPAc in Rokkasho.
- Development and commissioning of the FAIR p-linac source and LEBT will be done in Saclay.
- Measurements on a dedicated test bench in Saclay: BETSI (ESS chopper tests).



#### Ion source & LEBT

#### Introduction

SCC LEBT Simulations

#### LIPAc injector

Requirements LEBT Layout Experimental setup Experimental results 10% dc Emittance vs solenoids Simulations conditions Simulations results Conclusion

#### SILHI

Requirements LEBT Layout Experimental results Simulations strategy Simulation results Simulation vs Experience

# Thank you for your attention !

