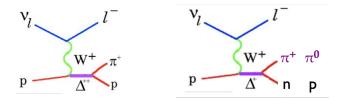
Resonance Interaction Measurement in NOMAD

Hongyue Duyang, Xinchun Tian, Sanjib R. Mishra

August 28, 2014

Nufact 2014


Introduction

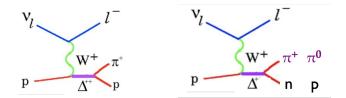
- Resonance (RES) is an important channel for the next generation long-baseline neutrino experiments in few-GeV energy region.
- Unfortunately also the least measured.

Nufact 2014

Resonance Interaction

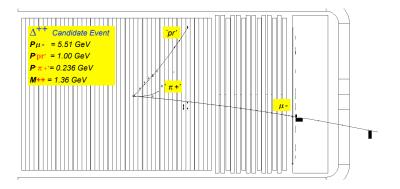
A neutrino inelastically scatters off target nucleon, with a short term resonant state of the excited target nucleon created (N*, Δ) which decay into a nucleon and a single pion.

$$\nu_{\mu} + \mathbf{n} \longrightarrow \mu^{-} + \Delta^{+} \longrightarrow \mu^{-} + \mathbf{n} + \pi^{+}$$


$$\nu_{\mu} + n \longrightarrow \mu^{-} + \Delta^{+} \longrightarrow \mu^{-} + p + \pi^{0}$$

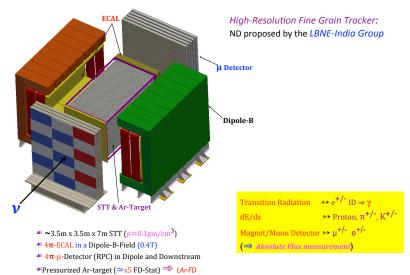
Described by Rein-Seghal (RS) model.

- 3-quark system in relativistic harmonic oscillator potential.
- All resonance states with W < 2 GeV.
- ► A non-interfering background with isospin 1/2.


Nufact 2014

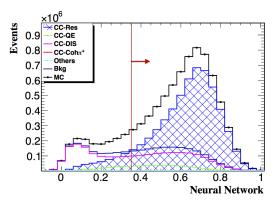
Resonance In a Fine Grained Tracker

- Focus on 2 topologies:
 - 3-track : $\nu_{\mu} + p \longrightarrow \mu + p + \pi^+$.
 - ▶ 2-track: $\nu_{\mu} + p \longrightarrow \mu + p + \pi^{0}, \ \nu_{\mu} + p \longrightarrow \mu + n + \pi^{+}.$
- Measurement of resonance cross-section.
- Constraint on nuclear effects.

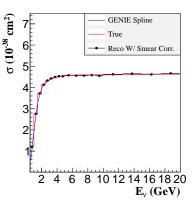

3-Track Event In A FGT

- 3-track topology: $\nu_{\mu} + p \longrightarrow \mu + p + \pi^+$.
- Event from NOMAD data.
- ▶ LBNE FGT will have 10× more hits.

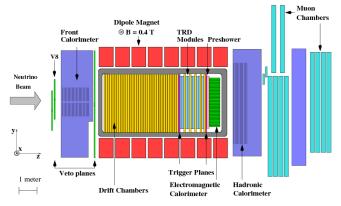
Nufact 2014


LBNE Fine-Grained-Tracker ND (See Xinchun's Talk Monday)

Nufact 2014


Resonance Analysis in FGT

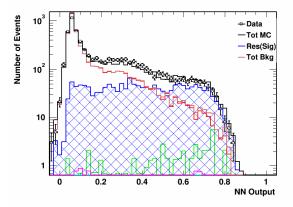
- Select muon.
- Select 3-track $\mu^- p \pi^+$ (or 2-track) topology.
- Pre-selection cuts (missing-p_T, Hadron-momentum vector) to reduce background.
- Multivariate NN analysis.



Resonance Study in FGT

- The primary goal of the resonance study is cross-section measurement.
- Additional Studies:
 - Learning Background characteristics
 - Constraining the Energy-scale of the Neutrino
 - Constraining Nuclear Effects
- Apply these tools, and check ideas, on data from NOMAD,
- Finally apply to LBNE-FGT

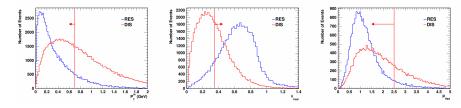
NOMAD Experiment


- ► The Neutrino Oscillation MAgnetic Detector (NOMAD, WA-96) was designed to search for ν_{μ} to ν_{τ} appearing from oscillations in the CERN SPS wide band neutrino beam.
- Accumulated 2M *v*-Interactions leading to precision measurements of several processes.
- Precisely measurement of all four neutrinos interaction types.

Nufact 2014

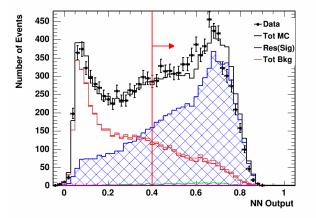
Monte Carlo Simulation

- Use GENIE as event generator.
- A Geant program built for detector response.
- All major neutrino interaction modes simulated.
- Default axial mass MA = 1.12GeV, vector mass MV = 0.84GeV.
- All types of interactions simulated:
 - Resonance: 50k.
 - CC-DIS: 1.36M.
 - QE: 37K.
 - Coherent: 10k.


Control Sample ($\mu^- p \pi^-$)

- The 3-Track $(\mu^- p \pi^-)$ is dominated by DIS.
- ▶ The Genie MC reasonably well reproduces the kinematics.
- The shape of the NN output well reproduces data in signal region (NNo>0.4).
- Background well controlled.

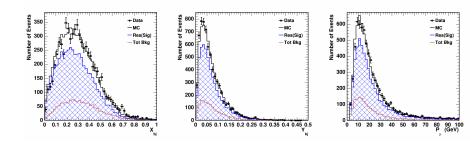
Nufact 2014


3-Track $(\mu^- p \pi^+)$ Analysis: Pre-selection

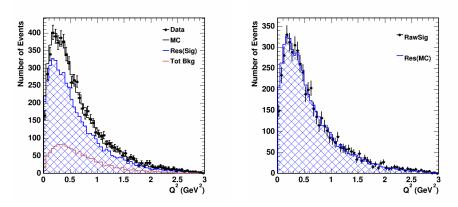
- Select 3-track events in fiducial volume (one muon track + two positive hadron tracks)
- Selection cuts to reduce backgrounds: Missing $P_t < 0.7 GeV$, $\theta_{had} > 0.35$, $P_{had} < 2.5$.
- Background is dominated by DIS.
- Events selected are taken into neural network analysis.

Cuts	QE	RES	CCDIS	NCDIS	COH	TOT-Bac	MC	Data
Events Selected	449.0	6999.2	12367.2	0.2	6.4	12822.8	19822.0	11992.0

3-Track Analysis: Neutral Network

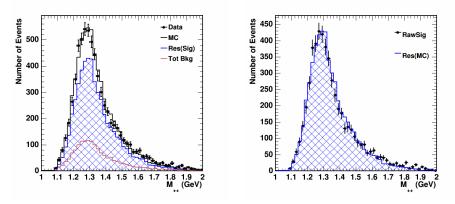


► Built NN with 9 inputs: $p_{\mu}^{x}, p_{\mu}^{y}, p_{\mu}^{z}, p_{Proton}^{x}, p_{Proton}^{y}, p_{Proton}^{z}, p_{\pi}^{x}, p_{\pi}^{y}, p_{\pi}^{z}.$


Compare kirnematic variables data vs MC.

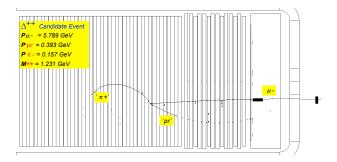
Nufact 2014

Kinematics Comparison: MC vs Data (3-Track)



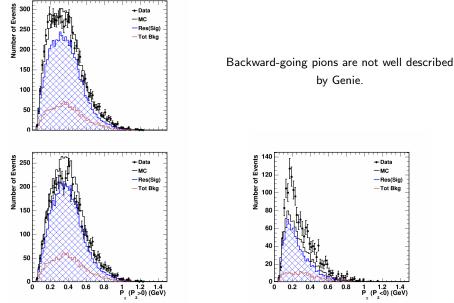
The kinematic variables are reasonably well described by MC.

• Q^2 is qualitatively consistent with the Genie prediction

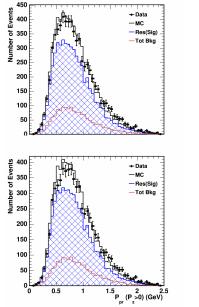

Invariant Mass

- Reconstruct invariant mass using 4-momentums of the 2 positive reconstructed tracks.
- M_{++} is qualitatively consistent with the Genie prediction

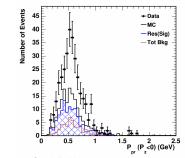
Nufact 2014


Backward-Going Pions and Protons

- Pion momentum are most sensitive to nuclear effects.
- Backward going $(p_z < 0)$ pion and proton of special interest

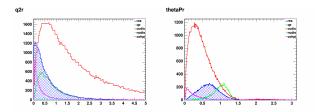

Nufact 2014

Pion Momentum: Forward and Backward



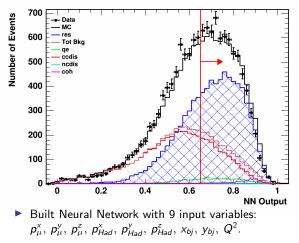
Nufact 2014

Proton Momentum: Forward and Backward


 Backward-going protons are not well described by Genie.

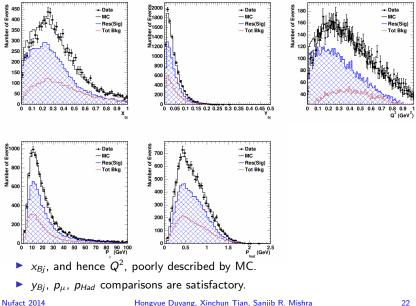
Nufact 2014

Hongyue Duyang, Xinchun Tian, Sanjib R. Mishra


2-Track Sample

- Independent 2-track sample: one muon track + one positive hadron tracks.
- Pre-selection cuts to reduce backgrounds: 0.35 < θ^μ_{Had} < 1.0, Q² < 1GeV.</p>
- Events selected are taken into neural network analysis.

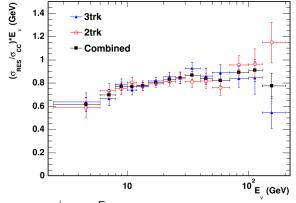
Cuts	QE	RES	CCDIS	NCDIS	COH	TOT-Bac	MC	Data
Event Selected	2042.5	9730.9	17084.5	0.7	1572.0	20699.8	30430.7	15817.0


2-Track Analysis

Compare kinematic variables by data vs MC.

Nufact 2014

Kinematics Comparison: MC vs Data (2-Track)

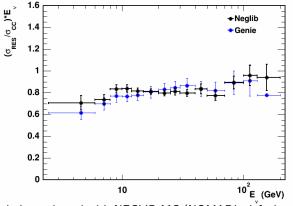


22

Combined Analysis

- Combine statistically independent 3-track and 2-track samples.
- The combined sample is less prone to systematic uncertainty.
- Corrected Signal events:
 - ▶ 3-Track: 48,364 ± 938
 - 2-Track: 47,386 ± 1075
 - ▶ Combined: 47,942 ± 207
- The two topologies give consistent results.

Resonance Ratio to Inclusive-CC



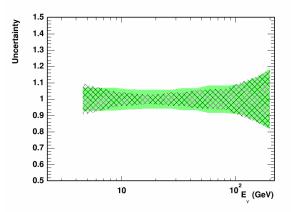
$$R_{RES} = \sigma_{RES} / \sigma_{CC} \times E_{\nu}$$

- 3-Track: $R_{RES} = 0.838 \pm 0.017 \, GeV$
- 2-Track: $R_{RES} = 0.822 \pm 0.019 GeV$
- Combined: $R_{RES} = 0.831 \pm 0.012 GeV$

Nufact 2014

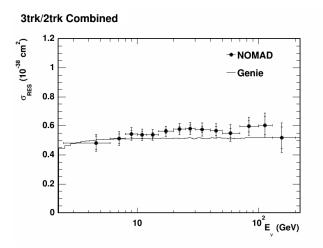
Resonance Analysis (3-Track + 2-Track) with NEGLIB

- Analysis conducted with NEGLIB MC (NOMAD's default event generator).
- A significantly different, and older, generator than Genie
- Measured resonance completely consistent between the two MC.


Nufact 2014

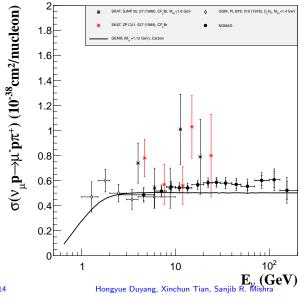
Systematic Uncertainties

About a dozen sources of systematic errors are investigated:


- Event Selection (kinematic and NN cut): Vary the cuts by $\pm \sigma \longrightarrow \pm 1.2\%$
- MC modelling: $MV \pm 10\%$, $MA \pm 20\%$, $MFP \pm 20\% \longrightarrow \pm 3.2\%$
- ▶ Flux: ±4.1%

Total systematic error: $\pm 5.3\%$

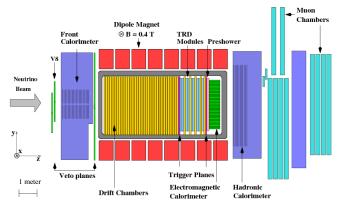
Hongyue Duyang, Xinchun Tian, Sanjib R. Mishra


Resonance Cross Section

NOMAD measurement is consistent with GENIE prediction.

Nufact 2014

Resonance cross section (C target)


Nufact 2014

Summary

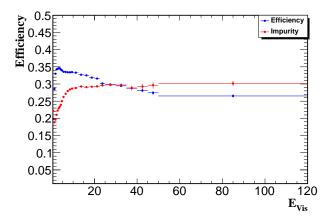
- ► Q^2 , M_{++} are qualitatively consistent with the Genie prediction.
- Proton and Pion momenta distributions in reasonably well reproduced by Genie.
- The backward going particles are poorly described by the MC.
- ► NOMAD data provide the most precise Resonance cross-section in 2.5 GeV < E_ν < 200 GeV.</p>
- An important benchmark to validate the LBNE FGT studies.

Backup Slides

NOMAD Detector

- 2.7 ton, low average density $(0.1g/cm^3)$.
- 44 Drift Chambers $(3 \times 3m^2)$.
- ▶ TRD (Transition Radiation Detector), Preshower, ECal ⇒ Electron PID.
- Dipole magnetic field B = 0.4T. ⇒ High precision momentum measurement of positive/negative particles.

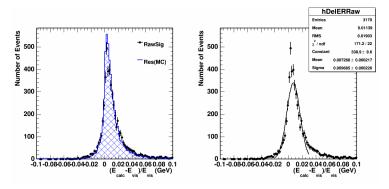
Nufact 2014


FGT vs NOMAD

	Sub-Detector	NOMAD	HiResMnu	Improvement
NOMAD -vs- HiResFGT				
* Tracking Charged Particles \Rightarrow	Tracking		$\times 6$ more hits in X-Y $\times 2$ more hits along Z	×2 higher QE-Proton Eff. e^{\pm} down to 80 MeV γ -Conv. Reconstruction
*Electron/Positron ID ⇒	TR: Electron-ID	Downstream	Continuous	$\simeq imes 3 \; e^{\pm} ext{-Eff}$
$*$ Calorimetry \Rightarrow	Calorimetry Segmentation E-shower Resolution	Downstream No Longitudinal Transverse $3\%/\sqrt{E}$	4π Coverage Fine Longitudinal Finer Transverse $6\%/\sqrt{E}$	Much better converage e^{\pm}/π Separation Better miss- P_T Powerful 'Dirt'-Veto Poorer resolution
$*\mu$ -ID \Rightarrow	μ-ID	${ m Downstream} \ P_{\mu} \geq 2.5 ~{ m GeV}$	4π Coverage	P_{μ} down to 0.3 GeV
\star Trigger \Rightarrow	Trigger	Downstream No Cal.Trigger	Continuous in STT Calorimetric Trigger	P down to 0.1 GeV $E \simeq 0.3 \text{ GeV}$

Nufact 2014

 $\underset{\textbf{Hongyue Duyang, Xinchun Tian, Sanjib R. Mishra}{\underline{NOMAD versus HiResMnu}}$


RES Sensitivity (Backup)

• The signal efficiency is \sim 33%, and background is \sim 23%.

Nufact 2014

Constraining Nuclear Effects using 3-track events (Backup)

- Constraints on nuclear effects such as Fermi Motion and final state interactions (FSI).
- Using muon and pion 4-momentums:

$$E_{\rm vis} = E_{\mu} + E_{\rm had}, \tag{1}$$

$$E_{\nu} = \frac{m_{\mu}^2 + m_{\pi}^2 - 2m_N(E_{\mu} + E_{\pi}) + 2p_{\mu} \cdot p_{\pi}}{2(E_{\mu} + E_{\pi} - |\mathbf{P}_{\mu}| \cos \theta_{\mu} - |\mathbf{P}_{\pi}| \cos \theta_{\pi} - m_N)}$$
(2)

Nufact 2014

Hongyue Duyang, Xinchun Tian, Sanjib R. Mishra

34